Derleme
BibTex RIS Kaynak Göster

BCL-2 Protein Family and Cancer

Yıl 2023, , 1218 - 1232, 29.12.2023
https://doi.org/10.53433/yyufbed.1220984

Öz

The main goal of this review is to highlight the most recent findings about the regulation of apoptosis by BCL-2 family members. Apoptosis, a crucial biological mechanism, is a reaction to cellular stress or developmental stimuli. Impaired apoptosis is a major contributor to cancer formation and lowers the effectiveness of conventional cytotoxic therapy. Over the last ten years, researchers have heavily focused on understanding the pro- or anti-apoptotic activities of members of the B-cell lymphoma 2 (BCL-2) protein family and its significance in controlling carcinogenesis, apoptosis, and cellular reactions to anticancer treatment. The development of anticancer medications targeting apoptosis is currently receiving increasing attention because the inflammatory response brought on by apoptosis-induced cell death is extremely little. Additionally, it was investigated how BCL-2 family proteins control apoptosis. The promise of BCL-2 family proteins in cancer treatment is suggested by all of the research.

Kaynakça

  • Adams, J. M., & Cory, S. (2007). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Current Opinion in Immunology, 19(5), 488-496. doi:10.1016/j.coi.2007.05.004
  • Alam, M., Alam, S., Shamsi, A., Adnan, M., Elasbali, A. M., Abu Al-Soud, W., ... & Hassan, I. (2022). Bax/Bcl-2 cascade is regulated by EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Frontiers in Oncology, 12, 869672. doi:10.3389/fonc.2022.869672
  • Arbab, I. A., Looi, C. Y., Abdul, A. B., Cheah, F. K., Wong, W. F., Sukari, M. A., ... & Ibrahim Abdelwahab, S. (2012). Dentatin induces apoptosis in prostate cancer cells via Bcl-2, Bcl-xL, Survivin downregulation, caspase-9,-3/7 activation, and NF-κB inhibition. Evidence-Based Complementary and Alternative Medicine, 2012, 856029. doi:10.1155/2012/856029
  • Ayllón, V., Cayla, X., García, A., Fleischer, A., & Rebollo, A. (2002). The anti‐apoptotic molecules Bcl‐xL and Bcl‐w target protein phosphatase 1α to Bad. European Journal of Immunology, 32(7), 1847-18 doi:10.1002/1521-4141(200207)32:7%3C1847::AID-IMMU1847%3E3.0.CO;2-7
  • Bergamini, C. M., Gambetti, S., Dondi, A., & Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Current Pharmaceutical Design, 10(14), 1611-1626. doi:10.2174/1381612043384664
  • Bessou, M., Lopez, J., Gadet, R., Deygas, M., Popgeorgiev, N., Poncet, D., … & Gillet, G. (2020). The apoptosis inhibitor Bcl-xL controls breast cancer cell migration through mitochondria-dependent reactive oxygen species production. Oncogene, 39(15), 3056-3074. doi:10.1038/s41388-020-1212-9
  • Boac, B. M., Abbasi, F., Ismail-Khan, R., Xiong, Y., Siddique, A., Park, H., ... & Marchion, D. C. (2019). Expression of the BAD pathway is a marker of triple-negative status and poor outcome. Scientific Reports, 9(1), 1-14. doi:10.1038/s41598-019-53695-0
  • Bubendorf, L., Sauter, G., Moch, H., Jordan, P., Blöchlinger, A., Gasser, T. C., & Mihatsch, M. J. (1996). Prognostic significance of Bcl-2 in clinically localized prostate cancer. The American Journal of Pathology, 148(5), 1557.
  • Carberry, S., D’Orsi, B., Monsefi, N., Salvucci, M., Bacon, O., Fay, J., ... & Prehn, J. H. (2018). The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer. Cell Death & Disease, 9(2), 1-10. doi:10.1038/s41419-017-0140-2
  • Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17(7), 395-417. doi:10.1038/s41571-020-0341-y
  • Caro-Gómez, L. A., Rosas-Trigueros, J. L., Mixcoha, E., Vique-Sánchez, J. L., Gasperin-Sánchez, H., Benítez-Cardoza, C. G., & Zamorano-Carrillo, A. (2019). Exploring the conformational space of Bcl-2 protein variants: dynamic contributions of the flexible loop domain and transmembrane region. Molecules, 24(21), 3896. doi:10.3390/molecules24213896
  • Chen, S., & Wu, S. (2020). Identifying lung cancer risk factors in the elderly using deep neural networks: quantitative analysis of web-based survey data. Journal of Medical Internet Research, 22(3), e17695. doi:10.2196/17695
  • Chen, P. H., Hsueh, T. C., Wu, J. L., & Hong, J. R. (2022). Infectious spleen and kidney necrosis virus (ISKNV) triggers mitochondria-mediated dynamic interaction signals via an imbalance of Bax/Bak over Bcl-2/Bcl-xL in fish cells. Viruses, 14(5), 922. doi:10.3390/v14050922
  • Choi, J., Choi, K., Benveniste, E. N., Hong, Y. S., Lee, J. H., Kim, J., & Park, K. (2005). Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Research, 65(13), 5554-5560. doi:10.1158/0008-5472.can-04-4570
  • Craig, A. J., Von Felden, J., Garcia-Lezana, T., Sarcognato, S., & Villanueva, A. (2020). Tumour evolution in hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 17(3), 139-152. doi:10.1038/s41575-019-0229-4
  • Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 15(1), 49-63. doi:10.1038/nrm3722
  • Dadsena, S., Jenner, A., & García-Sáez, A. J. (2021). Mitochondrial outer membrane permeabilization at the single molecule level. Cellular and Molecular Life Sciences, 78(8), 3777-3790. doi:10.1007/s00018-021-03771-4
  • Dai, H., Smith, A., Meng, X. W., Schneider, P. A., Pang, Y. P., & Kaufmann, S. H. (2011). Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. Journal of Cell Biology, 194(1), 39-48. doi:10.1083%2Fjcb.201102027
  • Dai, H., Meng, W., & Kaufmann, S. (2016). BCL2 family, mitochondrial apoptosis, and beyond. Cancer Translational Medicine, 2(1), 7-20.
  • Edlich, F. (2018). BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochemical and Biophysical Research Communications, 500(1), 26-34. doi:10.1016/j.bbrc.2017.06.190
  • Feng, X., Yan, Z., Zhou, F., Lou, J., Lyu, X., Ren, X., ... & Zhao, Y. (2022). Discovery of a selective and covalent small-molecule inhibitor of BFL-1 protein that induces robust apoptosis in cancer cells. European Journal of Medicinal Chemistry, 236, 114327. doi:10.1016/j.ejmech.2022.114327
  • Fernández, A., Ordóñez, R., Reiter, R. J., González‐Gallego, J., & Mauriz, J. L. (2015). Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. Journal of Pineal Research, 59(3), 292-307. doi:10.1111/jpi.12264
  • Flores‐Romero, H., Ros, U., & Garcia‐Saez, A. J. (2020). Pore formation in regulated cell death. The EMBO Journal, 39(23), e105753. doi:10.15252/embj.2020105753
  • Gabellini, C., Trisciuoglio, D., & Del Bufalo, D. (2017). Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis, 38(6), 579-587. doi:10.1093/carcin/bgx016
  • Gong, J., Zhang, J. P., Li, B., Zeng, C., You, K., Chen, M. X., ... & Zhuang, S. M. (2013). MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene, 32(25), 3071-3079. doi:10.1038/onc.2012.318
  • González-García, M., Pérez-Ballestero, R., Ding, L., Duan, L., Boise, L. H., Thompson, C. B., & Nunez, G. (1994). bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development, 120(10), 3033-3042. doi:10.1242/dev.120.10.3033
  • Greaves, G., Milani, M., Butterworth, M., Carter, R. J., Byrne, D. P., Eyers, P. A., ... & Varadarajan, S. (2019). BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-XL. Cell Death & Differentiation, 26(6), 1037-1047. doi:10.1038/s41418-018-0183-7
  • Green, D. R. (2018). Cell Death. Apoptosis and Other Means to an End. New York, NY, USA: Cold Spring Harbor Laboratory Press.
  • Guicciardi, M. E., & Gores, G. J. (2009). Life and death by death receptors. The FASEB Journal, 23(6), 1625-1637. doi:10.1096/fj.08-111005
  • Han, C. W., Lee, H. N., Jeong, M. S., Park, S. Y., & Jang, S. B. (2021). Structural basis of the p53 DNA binding domain and PUMA complex. Biochemical and Biophysical Research Communications, 548, 39-46. doi:10.1016/j.bbrc.2021.02.049
  • Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T., & Rehm, M. (2018). Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death & Disease, 9(4), 1-13. doi:10.1038/s41419-018-0464-6
  • Hartman, M. L., & Czyz, M. (2020). BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death & Disease, 11(4), 1-16. doi:10.1038/s41419-020-2417-0
  • Harvey, E. P., Hauseman, Z. J., Cohen, D. T., Rettenmaier, T. J., Lee, S., Huhn, A. J., ... & Walensky, L. D. (2020). Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering. Cell Chemical Biology, 27(6), 647-656. doi:10.1016/j.chembiol.2020.04.004
  • Hauseman, Z. J., Harvey, E. P., Newman, C. E., Wales, T. E., Bucci, J. C., Mintseris, J., ... & Walensky, L. D. (2020). Homogeneous oligomers of pro-apoptotic BAX reveal structural determinants of mitochondrial membrane permeabilization. Molecular Cell, 79(1), 68-83. doi:10.1016/j.molcel.2020.05.029
  • Hung, C. L., Chang, H. H., Lee, S. W., & Chiang, Y. W. (2021). Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death & Differentiation, 28(6), 1910-1925. doi:10.1038/s41418-020-00716-5
  • Ilkhomovna, K. D. (2021). Morphological features of tumor in different treatment options for patients with locally advanced breast cancer. International Journal of Innovative Analyses and Emerging Technology, 1(2), 4-5.
  • Imre, G. (2020). Cell death signalling in virus infection. Cellular Signalling, 76, 109772. doi:10.1016/j.cellsig.2020.109772
  • Ishida, M., Gomyo, Y., Tatebe, S., Ohfuji, S., & Ito, H. (1996). Apoptosis in human gastric mucosa, chronic gastritis, dysplasia and carcinoma: analysis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling. Virchows Archiv, 428(4), 229-235. doi:10.1007/bf00196695
  • Jackson, S., Harwood, C., Thomas, M., Banks, L., & Storey, A. (2000). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes & Development, 14(23), 3065-3073. doi:10.1101%2Fgad.182100
  • Jeng, P. S., Inoue-Yamauchi, A., Hsieh, J. J., & Cheng, E. H. (2018). BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis. Current Opinion in Physiology, 3, 71-81. doi:10.1016/j.cophys.2018.03.005
  • Jeong, S. Y., & Seol, D. W. (2008). The role of mitochondria in apoptosis. BMB Reports, 41(1), 11-22. doi:10.5483/bmbrep.2008.41.1.011
  • Kaloni, D., Diepstraten, S. T., Strasser, A., & Kelly, G. L. (2022). BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis, 28, 20-38. doi:10.1007/s10495-022-01780-7
  • Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., ... & Huttemann, M. (2019). Tissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. The FASEB Journal, 33(2), 1540-1553. doi:10.1096/fj.201801417r
  • Kathania, M., Raje, C. I., Raje, M., Dutta, R. K., & Majumdar, S. (2011). Bfl-1/A1 acts as a negative regulator of autophagy in mycobacteria infected macrophages. The International Journal of Biochemistry & Cell Biology, 43(4), 573-585. doi:10.1016/j.biocel.2010.12.014
  • Kelly, P. N., & Strasser, A. (2011). The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death & Differentiation, 18(9), 1414-1424. doi:10.1038/cdd.2011.17
  • Kim, C., & Kim, B. (2018). Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 10(8), 1021. doi:10.3390/nu10081021
  • Knittel, G., Rehkämper, T., Nieper, P., Schmitt, A., Flümann, R., & Reinhardt, H. C. (2018). DNA damage pathways and B-cell lymphomagenesis. Current Opinion in Hematology, 25(4), 315-322. doi:10.1097/moh.0000000000000433
  • Kondo, S., Shinomura, Y., Miyazaki, Y., Kiyohara, T., Tsutsui, S., Kitamura, S., ... & Matsuzawa, Y. (2000). Mutations of the bak gene in human gastric and colorectal cancers. Cancer Research, 60(16), 4328-4330.
  • Lalier, L., Cartron, P. F., Juin, P., Nedelkina, S., Manon, S., Bechinger, B., & Vallette, F. M. (2007). Bax activation and mitochondrial insertion during apoptosis. Apoptosis, 12(5), 887-896. doi:10.1007/s10495-007-0749-1
  • Lee, E. F., & Fairlie, W. D. (2019). The structural biology of Bcl-xL. International Journal of Molecular Sciences, 20(9), 2234. doi:10.3390%2Fijms20092234
  • Lee, H. Y., & Oh, S. H. (2021). Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells. Biochemical and Biophysical Research Communications, 534, 128-133. doi:10.1016/j.bbrc.2020.12.019
  • Lee, Y. S., Lee, D. H., Choudry, H. A., Bartlett, D. L., & Lee, Y. J. (2018). Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Molecular Cancer Research, 16(7), 1073-1076. doi:10.1158/1541-7786.MCR-18-0055
  • Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell, 81(18), 3691-3707. doi:10.1016/j.molcel.2021.08.018
  • Li, M. (2021). The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis, 26(5), 235-247. doi:10.1007/s10495-021-01667-z
  • Li, W., He, P., Huang, Y., Li, Y. F., Lu, J., Li, M., ... & Feng, D. (2021). Selective autophagy of intracellular organelles: recent research advances. Theranostics, 11(1), 222. doi:10.7150/thno.49860
  • Lim, Y., De Bellis, D., Sandow, J. J., Capalbo, L., D’Avino, P. P., Murphy, J. M., ... & Kumar, S. (2021). Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death & Differentiation, 28(1), 349-366. doi:10.1038/s41418-020-00604-y
  • Lindenboim, L., Kringel, S., Braun, T., Borner, C., & Stein, R. (2005). Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death & Differentiation, 12(7), 713-723. doi:10.1038/sj.cdd.4401638
  • Liu, Q., Osterlund, E. J., Chi, X., Pogmore, J., Leber, B., & Andrews, D. W. (2019). Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. Elife, 8, e37689. doi:10.7554/elife.37689
  • Liu, N., Wang, D., Lian, C., Zhao, R., Tu, L., Zhang, Y., ... & Li, Z. (2021). Selective covalent targeting of anti‐apoptotic BFL‐1 by a sulfonium‐tethered peptide. ChemBioChem, 22(2), 340-344. doi:10.1002/cbic.202000473
  • Lohitesh, K., Chowdhury, R., & Mukherjee, S. (2018). Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell International, 18(1), 1-15. doi:10.1186/s12935-018-0538-7
  • Luna‐Vargas, M. P., & Chipuk, J. E. (2016). The deadly landscape of pro‐apoptotic BCL‐2 proteins in the outer mitochondrial membrane. The FEBS Journal, 283(14), 2676-2689. doi:10.1111/febs.13624
  • Luo, X., O'Neill, K. L., & Huang, K. (2020). The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?. F1000Research, 9. doi:10.12688/f1000research.25607.1
  • Luo, Y., Wu, Y., Huang, H., Yi, N., & Chen, Y. (2021). Emerging role of BAD and DAD1 as potential targets and biomarkers in cancer. Oncology Letters, 22(6), 1-13. doi:10.3892/ol.2021.13072
  • Martin, B., Paesmans, M., Berghmans, T., Branle, F., Ghisdal, L., Mascaux, C., ... & Sculier, J. P. (2003). Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 89(1), 55-64. doi:10.1038/sj.bjc.6601095
  • Matthew-Onabanjo, A. N., Janusis, J., Mercado-Matos, J., Carlisle, A. E., Kim, D., Levine, F., ... & Shaw, L. M. (2020). Beclin 1 promotes endosome recruitment of hepatocyte growth factor tyrosine kinase substrate to suppress tumor proliferation. Cancer Research, 80(2), 249-262. doi:10.1158/0008-5472.can-19-1555
  • Matuszyk, J., & Klopotowska, D. (2020). miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. Journal of Cellular Physiology, 235(10), 6335-6344. doi:10.1002/jcp.29610
  • Mei, A. H. C., Tung, K., Han, J., Perumal, D., Laganà, A., Keats, J., ... & Cho, H. J. (2020). MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1. Oncotarget, 11(7), 727. doi:10.18632/oncotarget.27488
  • Meinhardt, A. L., Munkhbaatar, E., Höckendorf, U., Dietzen, M., Dechant, M., Anton, M., ... & Jost, P. J. (2022). The BCL-2 family member BOK promotes KRAS-driven lung cancer progression in a p53-dependent manner. Oncogene, 41(9), 1376-1382. doi:10.1038/s41388-021-02161-1
  • Meng, X., Zhang, J., Wu, H., Yu, D., & Fang, X. (2020). Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. International Journal of Molecular Sciences, 21(9), 3385. doi:10.3390/ijms21093385
  • Montero, J., & Letai, A. (2018). Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death & Differentiation, 25(1), 56-64. doi:10.1038/cdd.2017.183
  • Nakano, K., & Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell, 7(3), 683-694. doi:10.1016/S1097-2765(01)00214-3
  • Nazeri, M., Mirzaie-Asl, A., Saidijam, M., & Moradi, M. (2020). Methanolic extract of Artemisia absinthium prompts apoptosis, enhancing expression of Bax/Bcl-2 ratio, cell cycle arrest, caspase-3 activation and mitochondrial membrane potential destruction in human colorectal cancer HCT-116 cells. Molecular Biology Reports, 47(11), 8831-8840. doi:10.1007/s11033-020-05933-2
  • O'Connor, L., Strasser, A., O'Reilly, L. A., Hausmann, G., Adams, J. M., Cory, S., & Huang, D. C. (1998). Bim: a novel member of the Bcl-2 family that promotes apoptosis. The EMBO Journal, 17(2), 384-395. doi:10.1093/emboj/17.2.384
  • O’Reilly, L. A., Cullen, L., Visvader, J., Lindeman, G. J., Print, C., Bath, M. L., ... & Strasser, A. (2000). The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. The American Journal of Pathology, 157(2), 449-461. doi:10.1016%2FS0002-9440(10)64557-9
  • O'Reilly, L. A., Hausmann, G., Moriishi, K., Cory, S., Huang, D. C. S., & Strasser, A. (2001). Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death & Differentiation, 8(5), 486-494. doi:10.1038/sj.cdd.4400835
  • Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metabolism Reviews, 39(2-3), 443-455. doi:10.1080/03602530701468516
  • Park, H. A., Broman, K., & Jonas, E. A. (2021). Oxidative stress battles neuronal Bcl-xL in a fight to the death. Neural Regeneration Research, 16(1), 12. doi:10.4103%2F1673-5374.286946
  • Peña‐Blanco, A., & García‐Sáez, A. J. (2018). Bax, Bak and beyond—mitochondrial performance in apoptosis. The FEBS Journal, 285(3), 416-431. doi:10.1111/febs.14186
  • Petros, A. M., Olejniczak, E. T., & Fesik, S. W. (2004). Structural biology of the Bcl-2 family of proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1644(2-3), 83-94. doi:10.1016/j.bbamcr.2003.08.012
  • Pinton, P., Ferrari, D., Magalhães, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., & Rizzuto, R. (2000). Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2–overexpressing cells. The Journal of Cell Biology, 148(5), 857-862. doi:10.1083%2Fjcb.148.5.857
  • Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12, 985363. doi:10.3389/fonc.2022.985363
  • Raha, P., Thomas, S., Thurn, K. T., Park, J., & Munster, P. N. (2015). Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Research, 17(1), 1-16. doi:10.1186%2Fs13058-015-0533-z
  • Roufayel, R., Younes, K., Al-Sabi, A., & Murshid, N. (2022). BH3-only proteins Noxa and Puma are key regulators of induced apoptosis. Life, 12(2), 256. doi:10.3390%2Flife12020256
  • Saha, A., Saleem, S., Paidi, R. K., & Biswas, S. C. (2021). BH3-only proteins Puma and Beclin1 regulate autophagic death in neurons in response to Amyloid-β. Cell Death Discovery, 7(1), 1-13. doi:10.1038/s41420-021-00748-x
  • Schneider, P., & Tschopp, J. (2000). Apoptosis induced by death receptors. Pharmacochemistry library, 31, 281-286.
  • Shalaby, R., Flores-Romero, H., & García-Sáez, A. J. (2020). The mysteries around the BCL-2 family member BOK. Biomolecules, 10(12), 1638.
  • Schulman, J. J., Szczesniak, L. M., Bunker, E. N., Nelson, H. A., Roe, M. W., Wagner, L. E., ... & Wojcikiewicz, R. J. (2019). Bok regulates mitochondrial fusion and morphology. Cell Death & Differentiation, 26(12), 2682-2694.
  • Sia, D., Villanueva, A., Friedman, S. L., & Llovet, J. M. (2017). Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 152(4), 745-761.
  • Siddiqui, W. A., Ahad, A., & Ahsan, H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of toxicology, 89(3), 289-317.
  • Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5), 415-418.
  • Sirotković-Skerlev, M., Plavetić, N. D., Sedlić, F., Kuna, S. K., Vrbanec, D., Belev, B., ... & Kulić, A. (2021). Prognostic value of circulating Bcl-2 and anti-p53 antibodies in patients with breast cancer: A long term follow-up (17.5 years). Cancer Biomarkers, 30(1), 95-104.
  • Sun, B., & Zhao, H. (2021). The bioinformatics analysis of RIOX2 gene in lung adenocarcinoma and squamous cell carcinoma. Plos one, 16(12), e0259447.
  • Sun, Y. L., Jiang, W. Q., Luo, Q. Y., Yang, D. J., Cai, Y. C., Huang, H. Q., & Sun, J. (2020). A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway. BMC cancer, 20(1), 1-12.
  • Suraweera, C. D., Hinds, M. G., & Kvansakul, M. (2021). Structural investigation of orf virus bcl-2 homolog orfv125 interactions with bh3-motifs from bh3-only proteins puma and hrk. Viruses, 13(7), 1374.
  • Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays in biochemistry, 62(3), 341-360.
  • Tsujimoto, Y., Cossman, J., Jaffe, E., & Croce, C. M. (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228(4706), 1440-1443.
  • Wu, W., Yang, B., Qiao, Y., Zhou, Q., He, H., & He, M. (2020). Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin. Biomedicine & Pharmacotherapy, 126, 110040.
  • Westphal, D., Dewson, G., Czabotar, P. E., & Kluck, R. M. (2011). Molecular biology of Bax and Bak activation and action. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(4), 521-531.
  • Westphal, S., & Kalthoff, H. (2003). Apoptosis: targets in pancreatic cancer. Molecular cancer, 2(1), 1-14.
  • Xia, M., Zhang, Y., Jin, K., Lu, Z., Zeng, Z., & Xiong, W. (2019). Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell & Bioscience, 9(1), 1-19.
  • Xu, A. G., Li, S. G., Liu, J. H., & Gan, A. H. (2001). Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer. World Journal of gastroenterology, 7(3), 403.
  • Yamaguchi, R., Lartigue, L., & Perkins, G. (2019). Targeting Mcl-1 and other Bcl-2 family member proteins in cancer therapy. Pharmacology & therapeutics, 195, 13-20.
  • Yin, X. M. (2000). Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. Journal of molecular medicine, 78(4), 203-211.
  • Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology, 9(1), 47-59.
  • Zhang, H., Holzgreve, W., & De Geyter, C. (2000). Evolutionarily conserved Bok proteins in the Bcl‐2 family. FEBS letters, 480(2-3), 311-313.
  • Zhang, Z., Guo, M., Liu, Y., Liu, P., Cao, X., Xu, Y., & Zhu, X. (2020). RNPS1 inhibition aggravates ischemic brain injury and promotes neuronal death. Biochemical and Biophysical Research Communications, 523(1), 39-45.
  • Zheng, C., Liu, T., Liu, H., & Wang, J. (2020). Role of BCL-2 family proteins in apoptosis and its regulation by nutrients. Current Protein and Peptide Science, 21(8), 799-806.
  • Zhou, X., Ouyang, S., Li, J., Huang, X., Ai, X., Zeng, Y., ... & Cai, M. (2019). The novel non‐immunological role and underlying mechanisms of B7‐H3 in tumorigenesis. Journal of Cellular Physiology, 234(12), 21785-21795.
  • Zhu, P. J., Yu, Z. Z., You, Q. D., & Jiang, Z. Y. (2020). Myeloid cell leukemin-1 inhibitors: A growing arsenal for cancer therapy. Drug discovery today, 25(10), 1873-1882.

BCL-2 Protein Ailesi ve Kanser

Yıl 2023, , 1218 - 1232, 29.12.2023
https://doi.org/10.53433/yyufbed.1220984

Öz

Bu derlemenin odak noktası, BCL-2 ailesi proteinlerinin apoptozu düzenlemedeki rolüdür. Apoptoz, gelişimsel süreçte ve stres yanıtı olarak ortaya çıkan çok önemli bir biyolojik süreçtir. Bozulmuş apoptotik mekanizma kanser gelişiminde merkezi bir rol oynar ve ayrıca bilinen sitotoksik tedavilerin etkinliğini azaltır. B-hücreli lenfoma 2 (BCL-2) protein ailesinin üyeleri, pro- veya anti-apoptotik aktivitelere sahiptir ve son on yılda apoptozu, tümör oluşumunu ve antikanser tedavisine hücresel yanıtların düzenlemedeki önemleri açısından yoğun bir şekilde incelenmiştir. Apoptoz kaynaklı hücre ölümünün indüklediği inflamatuar yanıtlardan dolayı günümüzde apoptozu hedef alan antikanser ilaçların geliştirilmesi giderek daha fazla dikkat çekici hale gelmiştir. BCL-2 ailesi proteinlerinin apoptoz regülasyon mekanizması araştırılmış ve bütün bulgular, BCL-2 ailesi proteinlerinin kanser tedavisindeki potansiyelinin ne kadar önemli olduğunu vurgulamaktadır.

Kaynakça

  • Adams, J. M., & Cory, S. (2007). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Current Opinion in Immunology, 19(5), 488-496. doi:10.1016/j.coi.2007.05.004
  • Alam, M., Alam, S., Shamsi, A., Adnan, M., Elasbali, A. M., Abu Al-Soud, W., ... & Hassan, I. (2022). Bax/Bcl-2 cascade is regulated by EGFR pathway: Therapeutic targeting of non-small cell lung cancer. Frontiers in Oncology, 12, 869672. doi:10.3389/fonc.2022.869672
  • Arbab, I. A., Looi, C. Y., Abdul, A. B., Cheah, F. K., Wong, W. F., Sukari, M. A., ... & Ibrahim Abdelwahab, S. (2012). Dentatin induces apoptosis in prostate cancer cells via Bcl-2, Bcl-xL, Survivin downregulation, caspase-9,-3/7 activation, and NF-κB inhibition. Evidence-Based Complementary and Alternative Medicine, 2012, 856029. doi:10.1155/2012/856029
  • Ayllón, V., Cayla, X., García, A., Fleischer, A., & Rebollo, A. (2002). The anti‐apoptotic molecules Bcl‐xL and Bcl‐w target protein phosphatase 1α to Bad. European Journal of Immunology, 32(7), 1847-18 doi:10.1002/1521-4141(200207)32:7%3C1847::AID-IMMU1847%3E3.0.CO;2-7
  • Bergamini, C. M., Gambetti, S., Dondi, A., & Cervellati, C. (2004). Oxygen, reactive oxygen species and tissue damage. Current Pharmaceutical Design, 10(14), 1611-1626. doi:10.2174/1381612043384664
  • Bessou, M., Lopez, J., Gadet, R., Deygas, M., Popgeorgiev, N., Poncet, D., … & Gillet, G. (2020). The apoptosis inhibitor Bcl-xL controls breast cancer cell migration through mitochondria-dependent reactive oxygen species production. Oncogene, 39(15), 3056-3074. doi:10.1038/s41388-020-1212-9
  • Boac, B. M., Abbasi, F., Ismail-Khan, R., Xiong, Y., Siddique, A., Park, H., ... & Marchion, D. C. (2019). Expression of the BAD pathway is a marker of triple-negative status and poor outcome. Scientific Reports, 9(1), 1-14. doi:10.1038/s41598-019-53695-0
  • Bubendorf, L., Sauter, G., Moch, H., Jordan, P., Blöchlinger, A., Gasser, T. C., & Mihatsch, M. J. (1996). Prognostic significance of Bcl-2 in clinically localized prostate cancer. The American Journal of Pathology, 148(5), 1557.
  • Carberry, S., D’Orsi, B., Monsefi, N., Salvucci, M., Bacon, O., Fay, J., ... & Prehn, J. H. (2018). The BAX/BAK-like protein BOK is a prognostic marker in colorectal cancer. Cell Death & Disease, 9(2), 1-10. doi:10.1038/s41419-017-0140-2
  • Carneiro, B. A., & El-Deiry, W. S. (2020). Targeting apoptosis in cancer therapy. Nature Reviews Clinical Oncology, 17(7), 395-417. doi:10.1038/s41571-020-0341-y
  • Caro-Gómez, L. A., Rosas-Trigueros, J. L., Mixcoha, E., Vique-Sánchez, J. L., Gasperin-Sánchez, H., Benítez-Cardoza, C. G., & Zamorano-Carrillo, A. (2019). Exploring the conformational space of Bcl-2 protein variants: dynamic contributions of the flexible loop domain and transmembrane region. Molecules, 24(21), 3896. doi:10.3390/molecules24213896
  • Chen, S., & Wu, S. (2020). Identifying lung cancer risk factors in the elderly using deep neural networks: quantitative analysis of web-based survey data. Journal of Medical Internet Research, 22(3), e17695. doi:10.2196/17695
  • Chen, P. H., Hsueh, T. C., Wu, J. L., & Hong, J. R. (2022). Infectious spleen and kidney necrosis virus (ISKNV) triggers mitochondria-mediated dynamic interaction signals via an imbalance of Bax/Bak over Bcl-2/Bcl-xL in fish cells. Viruses, 14(5), 922. doi:10.3390/v14050922
  • Choi, J., Choi, K., Benveniste, E. N., Hong, Y. S., Lee, J. H., Kim, J., & Park, K. (2005). Bcl-2 promotes invasion and lung metastasis by inducing matrix metalloproteinase-2. Cancer Research, 65(13), 5554-5560. doi:10.1158/0008-5472.can-04-4570
  • Craig, A. J., Von Felden, J., Garcia-Lezana, T., Sarcognato, S., & Villanueva, A. (2020). Tumour evolution in hepatocellular carcinoma. Nature Reviews Gastroenterology & Hepatology, 17(3), 139-152. doi:10.1038/s41575-019-0229-4
  • Czabotar, P. E., Lessene, G., Strasser, A., & Adams, J. M. (2014). Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nature Reviews Molecular Cell Biology, 15(1), 49-63. doi:10.1038/nrm3722
  • Dadsena, S., Jenner, A., & García-Sáez, A. J. (2021). Mitochondrial outer membrane permeabilization at the single molecule level. Cellular and Molecular Life Sciences, 78(8), 3777-3790. doi:10.1007/s00018-021-03771-4
  • Dai, H., Smith, A., Meng, X. W., Schneider, P. A., Pang, Y. P., & Kaufmann, S. H. (2011). Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization. Journal of Cell Biology, 194(1), 39-48. doi:10.1083%2Fjcb.201102027
  • Dai, H., Meng, W., & Kaufmann, S. (2016). BCL2 family, mitochondrial apoptosis, and beyond. Cancer Translational Medicine, 2(1), 7-20.
  • Edlich, F. (2018). BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochemical and Biophysical Research Communications, 500(1), 26-34. doi:10.1016/j.bbrc.2017.06.190
  • Feng, X., Yan, Z., Zhou, F., Lou, J., Lyu, X., Ren, X., ... & Zhao, Y. (2022). Discovery of a selective and covalent small-molecule inhibitor of BFL-1 protein that induces robust apoptosis in cancer cells. European Journal of Medicinal Chemistry, 236, 114327. doi:10.1016/j.ejmech.2022.114327
  • Fernández, A., Ordóñez, R., Reiter, R. J., González‐Gallego, J., & Mauriz, J. L. (2015). Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. Journal of Pineal Research, 59(3), 292-307. doi:10.1111/jpi.12264
  • Flores‐Romero, H., Ros, U., & Garcia‐Saez, A. J. (2020). Pore formation in regulated cell death. The EMBO Journal, 39(23), e105753. doi:10.15252/embj.2020105753
  • Gabellini, C., Trisciuoglio, D., & Del Bufalo, D. (2017). Non-canonical roles of Bcl-2 and Bcl-xL proteins: relevance of BH4 domain. Carcinogenesis, 38(6), 579-587. doi:10.1093/carcin/bgx016
  • Gong, J., Zhang, J. P., Li, B., Zeng, C., You, K., Chen, M. X., ... & Zhuang, S. M. (2013). MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene, 32(25), 3071-3079. doi:10.1038/onc.2012.318
  • González-García, M., Pérez-Ballestero, R., Ding, L., Duan, L., Boise, L. H., Thompson, C. B., & Nunez, G. (1994). bcl-XL is the major bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development, 120(10), 3033-3042. doi:10.1242/dev.120.10.3033
  • Greaves, G., Milani, M., Butterworth, M., Carter, R. J., Byrne, D. P., Eyers, P. A., ... & Varadarajan, S. (2019). BH3-only proteins are dispensable for apoptosis induced by pharmacological inhibition of both MCL-1 and BCL-XL. Cell Death & Differentiation, 26(6), 1037-1047. doi:10.1038/s41418-018-0183-7
  • Green, D. R. (2018). Cell Death. Apoptosis and Other Means to an End. New York, NY, USA: Cold Spring Harbor Laboratory Press.
  • Guicciardi, M. E., & Gores, G. J. (2009). Life and death by death receptors. The FASEB Journal, 23(6), 1625-1637. doi:10.1096/fj.08-111005
  • Han, C. W., Lee, H. N., Jeong, M. S., Park, S. Y., & Jang, S. B. (2021). Structural basis of the p53 DNA binding domain and PUMA complex. Biochemical and Biophysical Research Communications, 548, 39-46. doi:10.1016/j.bbrc.2021.02.049
  • Hantusch, A., Das, K. K., García-Sáez, A. J., Brunner, T., & Rehm, M. (2018). Bax retrotranslocation potentiates Bcl-xL’s antiapoptotic activity and is essential for switch-like transitions between MOMP competency and resistance. Cell Death & Disease, 9(4), 1-13. doi:10.1038/s41419-018-0464-6
  • Hartman, M. L., & Czyz, M. (2020). BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death & Disease, 11(4), 1-16. doi:10.1038/s41419-020-2417-0
  • Harvey, E. P., Hauseman, Z. J., Cohen, D. T., Rettenmaier, T. J., Lee, S., Huhn, A. J., ... & Walensky, L. D. (2020). Identification of a covalent molecular inhibitor of anti-apoptotic BFL-1 by disulfide tethering. Cell Chemical Biology, 27(6), 647-656. doi:10.1016/j.chembiol.2020.04.004
  • Hauseman, Z. J., Harvey, E. P., Newman, C. E., Wales, T. E., Bucci, J. C., Mintseris, J., ... & Walensky, L. D. (2020). Homogeneous oligomers of pro-apoptotic BAX reveal structural determinants of mitochondrial membrane permeabilization. Molecular Cell, 79(1), 68-83. doi:10.1016/j.molcel.2020.05.029
  • Hung, C. L., Chang, H. H., Lee, S. W., & Chiang, Y. W. (2021). Stepwise activation of the pro-apoptotic protein Bid at mitochondrial membranes. Cell Death & Differentiation, 28(6), 1910-1925. doi:10.1038/s41418-020-00716-5
  • Ilkhomovna, K. D. (2021). Morphological features of tumor in different treatment options for patients with locally advanced breast cancer. International Journal of Innovative Analyses and Emerging Technology, 1(2), 4-5.
  • Imre, G. (2020). Cell death signalling in virus infection. Cellular Signalling, 76, 109772. doi:10.1016/j.cellsig.2020.109772
  • Ishida, M., Gomyo, Y., Tatebe, S., Ohfuji, S., & Ito, H. (1996). Apoptosis in human gastric mucosa, chronic gastritis, dysplasia and carcinoma: analysis by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labelling. Virchows Archiv, 428(4), 229-235. doi:10.1007/bf00196695
  • Jackson, S., Harwood, C., Thomas, M., Banks, L., & Storey, A. (2000). Role of Bak in UV-induced apoptosis in skin cancer and abrogation by HPV E6 proteins. Genes & Development, 14(23), 3065-3073. doi:10.1101%2Fgad.182100
  • Jeng, P. S., Inoue-Yamauchi, A., Hsieh, J. J., & Cheng, E. H. (2018). BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis. Current Opinion in Physiology, 3, 71-81. doi:10.1016/j.cophys.2018.03.005
  • Jeong, S. Y., & Seol, D. W. (2008). The role of mitochondria in apoptosis. BMB Reports, 41(1), 11-22. doi:10.5483/bmbrep.2008.41.1.011
  • Kaloni, D., Diepstraten, S. T., Strasser, A., & Kelly, G. L. (2022). BCL-2 protein family: Attractive targets for cancer therapy. Apoptosis, 28, 20-38. doi:10.1007/s10495-022-01780-7
  • Kalpage, H. A., Bazylianska, V., Recanati, M. A., Fite, A., Liu, J., Wan, J., ... & Huttemann, M. (2019). Tissue‐specific regulation of cytochrome c by post‐translational modifications: respiration, the mitochondrial membrane potential, ROS, and apoptosis. The FASEB Journal, 33(2), 1540-1553. doi:10.1096/fj.201801417r
  • Kathania, M., Raje, C. I., Raje, M., Dutta, R. K., & Majumdar, S. (2011). Bfl-1/A1 acts as a negative regulator of autophagy in mycobacteria infected macrophages. The International Journal of Biochemistry & Cell Biology, 43(4), 573-585. doi:10.1016/j.biocel.2010.12.014
  • Kelly, P. N., & Strasser, A. (2011). The role of Bcl-2 and its pro-survival relatives in tumourigenesis and cancer therapy. Cell Death & Differentiation, 18(9), 1414-1424. doi:10.1038/cdd.2011.17
  • Kim, C., & Kim, B. (2018). Anti-cancer natural products and their bioactive compounds inducing ER stress-mediated apoptosis: A review. Nutrients, 10(8), 1021. doi:10.3390/nu10081021
  • Knittel, G., Rehkämper, T., Nieper, P., Schmitt, A., Flümann, R., & Reinhardt, H. C. (2018). DNA damage pathways and B-cell lymphomagenesis. Current Opinion in Hematology, 25(4), 315-322. doi:10.1097/moh.0000000000000433
  • Kondo, S., Shinomura, Y., Miyazaki, Y., Kiyohara, T., Tsutsui, S., Kitamura, S., ... & Matsuzawa, Y. (2000). Mutations of the bak gene in human gastric and colorectal cancers. Cancer Research, 60(16), 4328-4330.
  • Lalier, L., Cartron, P. F., Juin, P., Nedelkina, S., Manon, S., Bechinger, B., & Vallette, F. M. (2007). Bax activation and mitochondrial insertion during apoptosis. Apoptosis, 12(5), 887-896. doi:10.1007/s10495-007-0749-1
  • Lee, E. F., & Fairlie, W. D. (2019). The structural biology of Bcl-xL. International Journal of Molecular Sciences, 20(9), 2234. doi:10.3390%2Fijms20092234
  • Lee, H. Y., & Oh, S. H. (2021). Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells. Biochemical and Biophysical Research Communications, 534, 128-133. doi:10.1016/j.bbrc.2020.12.019
  • Lee, Y. S., Lee, D. H., Choudry, H. A., Bartlett, D. L., & Lee, Y. J. (2018). Ferroptosis-induced endoplasmic reticulum stress: cross-talk between ferroptosis and apoptosis. Molecular Cancer Research, 16(7), 1073-1076. doi:10.1158/1541-7786.MCR-18-0055
  • Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular Cell, 81(18), 3691-3707. doi:10.1016/j.molcel.2021.08.018
  • Li, M. (2021). The role of P53 up-regulated modulator of apoptosis (PUMA) in ovarian development, cardiovascular and neurodegenerative diseases. Apoptosis, 26(5), 235-247. doi:10.1007/s10495-021-01667-z
  • Li, W., He, P., Huang, Y., Li, Y. F., Lu, J., Li, M., ... & Feng, D. (2021). Selective autophagy of intracellular organelles: recent research advances. Theranostics, 11(1), 222. doi:10.7150/thno.49860
  • Lim, Y., De Bellis, D., Sandow, J. J., Capalbo, L., D’Avino, P. P., Murphy, J. M., ... & Kumar, S. (2021). Phosphorylation by Aurora B kinase regulates caspase-2 activity and function. Cell Death & Differentiation, 28(1), 349-366. doi:10.1038/s41418-020-00604-y
  • Lindenboim, L., Kringel, S., Braun, T., Borner, C., & Stein, R. (2005). Bak but not Bax is essential for Bcl-xS-induced apoptosis. Cell Death & Differentiation, 12(7), 713-723. doi:10.1038/sj.cdd.4401638
  • Liu, Q., Osterlund, E. J., Chi, X., Pogmore, J., Leber, B., & Andrews, D. W. (2019). Bim escapes displacement by BH3-mimetic anti-cancer drugs by double-bolt locking both Bcl-XL and Bcl-2. Elife, 8, e37689. doi:10.7554/elife.37689
  • Liu, N., Wang, D., Lian, C., Zhao, R., Tu, L., Zhang, Y., ... & Li, Z. (2021). Selective covalent targeting of anti‐apoptotic BFL‐1 by a sulfonium‐tethered peptide. ChemBioChem, 22(2), 340-344. doi:10.1002/cbic.202000473
  • Lohitesh, K., Chowdhury, R., & Mukherjee, S. (2018). Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: an insight. Cancer Cell International, 18(1), 1-15. doi:10.1186/s12935-018-0538-7
  • Luna‐Vargas, M. P., & Chipuk, J. E. (2016). The deadly landscape of pro‐apoptotic BCL‐2 proteins in the outer mitochondrial membrane. The FEBS Journal, 283(14), 2676-2689. doi:10.1111/febs.13624
  • Luo, X., O'Neill, K. L., & Huang, K. (2020). The third model of Bax/Bak activation: a Bcl-2 family feud finally resolved?. F1000Research, 9. doi:10.12688/f1000research.25607.1
  • Luo, Y., Wu, Y., Huang, H., Yi, N., & Chen, Y. (2021). Emerging role of BAD and DAD1 as potential targets and biomarkers in cancer. Oncology Letters, 22(6), 1-13. doi:10.3892/ol.2021.13072
  • Martin, B., Paesmans, M., Berghmans, T., Branle, F., Ghisdal, L., Mascaux, C., ... & Sculier, J. P. (2003). Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis. British Journal of Cancer, 89(1), 55-64. doi:10.1038/sj.bjc.6601095
  • Matthew-Onabanjo, A. N., Janusis, J., Mercado-Matos, J., Carlisle, A. E., Kim, D., Levine, F., ... & Shaw, L. M. (2020). Beclin 1 promotes endosome recruitment of hepatocyte growth factor tyrosine kinase substrate to suppress tumor proliferation. Cancer Research, 80(2), 249-262. doi:10.1158/0008-5472.can-19-1555
  • Matuszyk, J., & Klopotowska, D. (2020). miR‐125b lowers sensitivity to apoptosis following mitotic arrest: Implications for breast cancer therapy. Journal of Cellular Physiology, 235(10), 6335-6344. doi:10.1002/jcp.29610
  • Mei, A. H. C., Tung, K., Han, J., Perumal, D., Laganà, A., Keats, J., ... & Cho, H. J. (2020). MAGE-A inhibit apoptosis and promote proliferation in multiple myeloma through regulation of BIM and p21Cip1. Oncotarget, 11(7), 727. doi:10.18632/oncotarget.27488
  • Meinhardt, A. L., Munkhbaatar, E., Höckendorf, U., Dietzen, M., Dechant, M., Anton, M., ... & Jost, P. J. (2022). The BCL-2 family member BOK promotes KRAS-driven lung cancer progression in a p53-dependent manner. Oncogene, 41(9), 1376-1382. doi:10.1038/s41388-021-02161-1
  • Meng, X., Zhang, J., Wu, H., Yu, D., & Fang, X. (2020). Akkermansia muciniphila aspartic protease Amuc_1434* inhibits human colorectal cancer LS174T cell viability via TRAIL-mediated apoptosis pathway. International Journal of Molecular Sciences, 21(9), 3385. doi:10.3390/ijms21093385
  • Montero, J., & Letai, A. (2018). Why do BCL-2 inhibitors work and where should we use them in the clinic?. Cell Death & Differentiation, 25(1), 56-64. doi:10.1038/cdd.2017.183
  • Nakano, K., & Vousden, K. H. (2001). PUMA, a novel proapoptotic gene, is induced by p53. Molecular Cell, 7(3), 683-694. doi:10.1016/S1097-2765(01)00214-3
  • Nazeri, M., Mirzaie-Asl, A., Saidijam, M., & Moradi, M. (2020). Methanolic extract of Artemisia absinthium prompts apoptosis, enhancing expression of Bax/Bcl-2 ratio, cell cycle arrest, caspase-3 activation and mitochondrial membrane potential destruction in human colorectal cancer HCT-116 cells. Molecular Biology Reports, 47(11), 8831-8840. doi:10.1007/s11033-020-05933-2
  • O'Connor, L., Strasser, A., O'Reilly, L. A., Hausmann, G., Adams, J. M., Cory, S., & Huang, D. C. (1998). Bim: a novel member of the Bcl-2 family that promotes apoptosis. The EMBO Journal, 17(2), 384-395. doi:10.1093/emboj/17.2.384
  • O’Reilly, L. A., Cullen, L., Visvader, J., Lindeman, G. J., Print, C., Bath, M. L., ... & Strasser, A. (2000). The proapoptotic BH3-only protein bim is expressed in hematopoietic, epithelial, neuronal, and germ cells. The American Journal of Pathology, 157(2), 449-461. doi:10.1016%2FS0002-9440(10)64557-9
  • O'Reilly, L. A., Hausmann, G., Moriishi, K., Cory, S., Huang, D. C. S., & Strasser, A. (2001). Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death & Differentiation, 8(5), 486-494. doi:10.1038/sj.cdd.4400835
  • Orrenius, S. (2007). Reactive oxygen species in mitochondria-mediated cell death. Drug Metabolism Reviews, 39(2-3), 443-455. doi:10.1080/03602530701468516
  • Park, H. A., Broman, K., & Jonas, E. A. (2021). Oxidative stress battles neuronal Bcl-xL in a fight to the death. Neural Regeneration Research, 16(1), 12. doi:10.4103%2F1673-5374.286946
  • Peña‐Blanco, A., & García‐Sáez, A. J. (2018). Bax, Bak and beyond—mitochondrial performance in apoptosis. The FEBS Journal, 285(3), 416-431. doi:10.1111/febs.14186
  • Petros, A. M., Olejniczak, E. T., & Fesik, S. W. (2004). Structural biology of the Bcl-2 family of proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1644(2-3), 83-94. doi:10.1016/j.bbamcr.2003.08.012
  • Pinton, P., Ferrari, D., Magalhães, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T., & Rizzuto, R. (2000). Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2–overexpressing cells. The Journal of Cell Biology, 148(5), 857-862. doi:10.1083%2Fjcb.148.5.857
  • Qian, S., Wei, Z., Yang, W., Huang, J., Yang, Y., & Wang, J. (2022). The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Frontiers in Oncology, 12, 985363. doi:10.3389/fonc.2022.985363
  • Raha, P., Thomas, S., Thurn, K. T., Park, J., & Munster, P. N. (2015). Combined histone deacetylase inhibition and tamoxifen induces apoptosis in tamoxifen-resistant breast cancer models, by reversing Bcl-2 overexpression. Breast Cancer Research, 17(1), 1-16. doi:10.1186%2Fs13058-015-0533-z
  • Roufayel, R., Younes, K., Al-Sabi, A., & Murshid, N. (2022). BH3-only proteins Noxa and Puma are key regulators of induced apoptosis. Life, 12(2), 256. doi:10.3390%2Flife12020256
  • Saha, A., Saleem, S., Paidi, R. K., & Biswas, S. C. (2021). BH3-only proteins Puma and Beclin1 regulate autophagic death in neurons in response to Amyloid-β. Cell Death Discovery, 7(1), 1-13. doi:10.1038/s41420-021-00748-x
  • Schneider, P., & Tschopp, J. (2000). Apoptosis induced by death receptors. Pharmacochemistry library, 31, 281-286.
  • Shalaby, R., Flores-Romero, H., & García-Sáez, A. J. (2020). The mysteries around the BCL-2 family member BOK. Biomolecules, 10(12), 1638.
  • Schulman, J. J., Szczesniak, L. M., Bunker, E. N., Nelson, H. A., Roe, M. W., Wagner, L. E., ... & Wojcikiewicz, R. J. (2019). Bok regulates mitochondrial fusion and morphology. Cell Death & Differentiation, 26(12), 2682-2694.
  • Sia, D., Villanueva, A., Friedman, S. L., & Llovet, J. M. (2017). Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology, 152(4), 745-761.
  • Siddiqui, W. A., Ahad, A., & Ahsan, H. (2015). The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update. Archives of toxicology, 89(3), 289-317.
  • Simon, H. U., Haj-Yehia, A., & Levi-Schaffer, F. (2000). Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis, 5(5), 415-418.
  • Sirotković-Skerlev, M., Plavetić, N. D., Sedlić, F., Kuna, S. K., Vrbanec, D., Belev, B., ... & Kulić, A. (2021). Prognostic value of circulating Bcl-2 and anti-p53 antibodies in patients with breast cancer: A long term follow-up (17.5 years). Cancer Biomarkers, 30(1), 95-104.
  • Sun, B., & Zhao, H. (2021). The bioinformatics analysis of RIOX2 gene in lung adenocarcinoma and squamous cell carcinoma. Plos one, 16(12), e0259447.
  • Sun, Y. L., Jiang, W. Q., Luo, Q. Y., Yang, D. J., Cai, Y. C., Huang, H. Q., & Sun, J. (2020). A novel Bcl-2 inhibitor, BM-1197, induces apoptosis in malignant lymphoma cells through the endogenous apoptotic pathway. BMC cancer, 20(1), 1-12.
  • Suraweera, C. D., Hinds, M. G., & Kvansakul, M. (2021). Structural investigation of orf virus bcl-2 homolog orfv125 interactions with bh3-motifs from bh3-only proteins puma and hrk. Viruses, 13(7), 1374.
  • Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018). Mitochondrial dynamics: overview of molecular mechanisms. Essays in biochemistry, 62(3), 341-360.
  • Tsujimoto, Y., Cossman, J., Jaffe, E., & Croce, C. M. (1985). Involvement of the bcl-2 gene in human follicular lymphoma. Science, 228(4706), 1440-1443.
  • Wu, W., Yang, B., Qiao, Y., Zhou, Q., He, H., & He, M. (2020). Kaempferol protects mitochondria and alleviates damages against endotheliotoxicity induced by doxorubicin. Biomedicine & Pharmacotherapy, 126, 110040.
  • Westphal, D., Dewson, G., Czabotar, P. E., & Kluck, R. M. (2011). Molecular biology of Bax and Bak activation and action. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(4), 521-531.
  • Westphal, S., & Kalthoff, H. (2003). Apoptosis: targets in pancreatic cancer. Molecular cancer, 2(1), 1-14.
  • Xia, M., Zhang, Y., Jin, K., Lu, Z., Zeng, Z., & Xiong, W. (2019). Communication between mitochondria and other organelles: a brand-new perspective on mitochondria in cancer. Cell & Bioscience, 9(1), 1-19.
  • Xu, A. G., Li, S. G., Liu, J. H., & Gan, A. H. (2001). Function of apoptosis and expression of the proteins Bcl-2, p53 and C-myc in the development of gastric cancer. World Journal of gastroenterology, 7(3), 403.
  • Yamaguchi, R., Lartigue, L., & Perkins, G. (2019). Targeting Mcl-1 and other Bcl-2 family member proteins in cancer therapy. Pharmacology & therapeutics, 195, 13-20.
  • Yin, X. M. (2000). Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF-R1 death receptors in hepatocytes. Journal of molecular medicine, 78(4), 203-211.
  • Youle, R. J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nature reviews Molecular cell biology, 9(1), 47-59.
  • Zhang, H., Holzgreve, W., & De Geyter, C. (2000). Evolutionarily conserved Bok proteins in the Bcl‐2 family. FEBS letters, 480(2-3), 311-313.
  • Zhang, Z., Guo, M., Liu, Y., Liu, P., Cao, X., Xu, Y., & Zhu, X. (2020). RNPS1 inhibition aggravates ischemic brain injury and promotes neuronal death. Biochemical and Biophysical Research Communications, 523(1), 39-45.
  • Zheng, C., Liu, T., Liu, H., & Wang, J. (2020). Role of BCL-2 family proteins in apoptosis and its regulation by nutrients. Current Protein and Peptide Science, 21(8), 799-806.
  • Zhou, X., Ouyang, S., Li, J., Huang, X., Ai, X., Zeng, Y., ... & Cai, M. (2019). The novel non‐immunological role and underlying mechanisms of B7‐H3 in tumorigenesis. Journal of Cellular Physiology, 234(12), 21785-21795.
  • Zhu, P. J., Yu, Z. Z., You, Q. D., & Jiang, Z. Y. (2020). Myeloid cell leukemin-1 inhibitors: A growing arsenal for cancer therapy. Drug discovery today, 25(10), 1873-1882.
Toplam 109 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Bitki Koruma (Diğer)
Bölüm Derleme Makaleler / Review Articles
Yazarlar

Derya Babacan 0000-0001-6758-8556

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 26 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Babacan, D. (2023). BCL-2 Protein Ailesi ve Kanser. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1218-1232. https://doi.org/10.53433/yyufbed.1220984