Araştırma Makalesi
BibTex RIS Kaynak Göster

Mekanik Alaşımlama ile Sentezlenen Eş-molar Fe-Si-Cu/Nb (at.%) Nanokristallerinin Yapısal, Morfolojik ve Manyetik Özelliklerinin Araştırılması

Yıl 2023, , 871 - 882, 29.12.2023
https://doi.org/10.53433/yyufbed.1240484

Öz

Bu çalışmada mekanik alaşımlama yöntemi ile Argon atmosferi altında eş molar nanokristal Fe-Si-Cu (at.%) ve Fe-Si-Nb (at.%) alaşımları sentezlenmiştir. Deney parametreleri 350 rpm, 10:1 BPR, 120 saat olarak belirlenmiştir. Sentezlenen alaşımların faz yapıları X-Işınları difraktometresi ile, morfoloji ve elementel analizleri SEM-EDS ile, manyetik özellikleri ise oda sıcaklığında titreşimli örnek manyetometresi (VSM) tekniği ile araştırılmıştır. Fe-Si-Cu alaşımının kristalit boyutu öğütme başlangıcı, 30, 60 ve 120 saat öğütme sonrası sırasıyla 102.3, 22.5, 15.9 ve 8.6 nm, örgü gerinimleri ise % 0.164, % 0.510, %0.672 ve %1.165 olarak bulunurken, Fe-Si-Nb alaşımı için ise kristalit boyutlar 140.8, 42.9, 16.8 ve 7.8 nm, örgü gerinimleri ise % 0.134, % 0.301, % 0.639 ve % 1.271 olarak hesaplanmıştır. Manyetizma sonuçlarına göre, Fe-Si-Cu (at.%) alaşımının doyum manyetizasyonu (Ms) 3146 emu/g olarak bulunurken, Fe-Si-Nb (at.%) alaşımının doyum manyetizasyonu 8.91 emu/g olarak bulunmuştur. Fe-Si alaşım sistemine Nb katkısının kuarzivite değerlerinde artışa sebep olduğu belirlenmiştir.

Teşekkür

Yazarlar, manyetizma analizleri için, Hacettepe Fizik Mühendisliği, Süperiletkenlik ve NanoTeknoloji Grubu (SNTG) labaratuvarına teşekkür etmektedir.

Kaynakça

  • Azuma, D., Ito, N., & Ohta, M. (2020). Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 501, 166373. doi:10.1016/j.jmmm.2019.166373
  • Chaudhary, V., Yadav, N. M. S. K. K., Mantri, S. A., Dasari, S., Jagetia, A., Ramanujan, R., & Banerjee, R. (2020). Additive manufacturing of functionally graded Co–Fe and Ni–Fe magnetic materials. Journal of Alloys and Compounds, 823, 153817. doi:10.1016/j.jallcom.2020.153817
  • Du, S., & Ramanujan, R. (2005). Mechanical alloying of Fe–Ni based nanostructured magnetic materials. Journal of Magnetism and Magnetic Materials, 292, 286-298. doi:10.1016/j.jmmm.2004.11.143
  • Escorial, A. G., Adeva, P., Cristina, M., Martin, A., Carmona, F., Cebollada, F., Martin, V. E., Leonato, M., & Gonzalez, J. (1991). Ball milling mechanical alloying in the Fe100−xSix system. Materials Science and Engineering: A, 134, 1394-1397. doi:10.1016/0921-5093(91)90998-3
  • Gao, Z., & Fultz, B. (1994). Inter-dependence of grain growth, Nb segregation, and chemical ordering in Fe Si Nb nanocrystals. Nanostructured Materials, 4(8), 939-947. doi:10.1016/0965-9773(94)90100-7
  • Gonzalez, J., Giri, L., & Giri, A. K. (1995). Magnetic properties of mechanically alloyed amorphous Fe50B50. Journal of Magnetism and Magnetic Materials, 140, 249-250. doi:10.1016/0304-8853(94)01228-8
  • Haines, M., List III, F., Carver, K., Leonard, D., Plotkowski, A., Fancher, C., Dehoff, R. R., & Babu, S. (2022). Role of scan strategies and heat treatment on grain structure evolution in Fe-Si soft magnetic alloys made by laser-powder bed fusion. Additive Manufacturing, 50, 102578. doi:10.1016/j.addma.2021.102578
  • Hajalilou, A., Kianvash, A., Lavvafi, H., & Shameli, K. (2018). Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. Journal of Materials Science: Materials in Electronics, 29, 1690-1717. doi:10.1007/s10854-017-8082-0
  • Kwon, S., Kim, S., Yim, H., Kang, K. H., & Yoon, C. S. (2020). High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field. Journal of Alloys and Compounds, 826, 154136. doi:10.1016/j.jallcom.2020.154136
  • Li, Y., Jia, X., Zhang, W., Zhang, Y., Xie, G., Qiu, Z., Luan, J., Jiao, Z. (2021). Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys. Journal of Materials Science & Technology, 65, 171-181. doi:10.1016/j.jmst.2020.05.049
  • Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J., Moreno, L., Lere, M., & García, M. A. (2018). A simple vibrating sample magnetometer for macroscopic samples. Review of Scientific Instruments, 89(3), 034707. doi:10.1063/1.5017708
  • Marin, P., Vázquez, M., Olofinjana, A., & Davies, H. (1998). Influence of Cu and Nb on relaxation and crystallization of amorphous FeSiB (CuNb) wires. Nanostructured Materials, 10(2), 299-310. doi:10.1016/S0965-9773(98)00070-1
  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. doi:10.1039/c8nr02278j
  • Obaidat, I., Issa, B., Albiss, B., & Haik, Y. (2015). Temperature dependence of saturation magnetization and coercivity in Mn0. 5Zn0. 5Gd0. 02Fe1. 98O4 ferrite nanoparticles. IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/92/1/012012
  • Ohta, M., & Yoshizawa, Y. (2008). Cu addition effect on soft magnetic properties in Fe–Si–B alloy system. Journal of Applied Physics, 103(7), 07E722. doi:10.1063/1.2829240
  • Ohta, M., & Yoshizawa, Y. (2011). Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys. Journal of Physics D: Applied Physics, 44(6), 064004. doi:10.1088/0022-3727/44/6/064004
  • Ouyang, G., Chen, X., Liang, Y., Macziewski, C., & Cui, J. (2019). Review of Fe-6.5 wt% Si high silicon steel-A promising soft magnetic material for sub-kHz application. Journal of Magnetism and Magnetic Materials, 481, 234-250. doi:10.1016/j.jmmm.2019.02.089
  • Páez-Pavón, A., Jiménez-Morales, A., Santos, T., Quintino, L., & Torralba, J. (2016). Influence of thermal debinding on the final properties of Fe–Si soft magnetic alloys for metal injection molding (MIM). Journal of Magnetism and Magnetic Materials, 416, 342-347. doi:10.1016/j.jmmm.2016.05.031
  • Penton-Madrigal, A., Turtelli, R. S., Estevez-Rams, E., & Grössinger, R. (2005). Structural evolution with Nb content in melt-spun Fe80− xSi20Nbx ribbons. Journal of Alloys and Compounds, 395(1-2), 63-67. doi:10.1016/j.jallcom.2004.11.026
  • Shi, L., & Yao, K. (2020). Composition design for Fe-based soft magnetic amorphous and nanocrystalline alloys with high Fe content. Materials & Design, 189, 108511. doi:10.1016/j.matdes.2020.108511
  • Shyni, P., & Alagarsamy, P. (2014). Thermomagnetic properties of nanocrystalline Fe–Si alloys with high Si content. Physica B: Condensed Matter, 448, 60-63. doi:10.1016/j.physb.2014.02.032
  • Sunday, K. J., & Taheri, M. L. (2017). Soft magnetic composites: recent advancements in the technology. Metal Powder Report, 72(6), 425-429. doi:10.1016/j.mprp.2016.08.003
  • Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/S0079-6425(99)00010-9
  • Suryanarayana, C. (2004). Mechanical Alloying and Milling, (pp. 59-78). New York, USA: Marcel Dekker. doi:10.1201/9780203020647
  • Suzuki, K., & Herzer, G. (2012). Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Materialia, 67(6), 548-553. doi:10.1016/j.scriptamat.2012.03.006
  • Şimşek, T., Akgül, Ş., Güler, Ö., Özkul, İ., Avar, B., Chattopadhyay, A. K., Canbay, C. A., & Güler, S. H. (2021). A comparison of magnetic, structural and thermal properties of NiFeCoMo high entropy alloy produced by sequential mechanical alloying versus the alloy produced by conventional mechanical alloying. Materials Today Communications, 29, 102986. doi:10.1016/j.mtcomm.2021.102986
  • Şimşek, T., Özkul, İ., Canbay, C. A., Avar, B., Şimşek, T., … & Chattopadhyay, A. K. (2022). Effect of Cu, Sn and Sb addition on the structural, thermal and magnetic properties of body-centered cubic structured CoNiMnGaSi high entropy alloy. Applied Physics A, 128(6), 1-9. doi:10.1007/s00339-022-05667-x
  • Tsepelev, V., Starodubtsev, Y. N., & Belozerov, V. Y. (2018). The effect of inhibitors on the structure and magnetic properties of nanocrystalline soft magnetic alloys. Physics of Metals and Metallography, 119(9), 831-836. doi:10.1134/S0031918X18090120
  • Turtelli, R. S., Penton-Madrigal, A., Barbatti, C., Grössinger, R., Sassik, H., … & Guimarães, A. P. (2005). Effect of the addition of Cr, Ta and Nb on structural and magnetic properties of Fe–Si alloys. Journal of Magnetism and Magnetic Materials, 294(2), e151-e154. doi:10.1016/j.jmmm.2005.03.073
  • Wan, F., He, A., Zhang, J., Song, J., Wang, A., Chang, C., & Wang, X. (2016). Development of FeSiBNbCu nanocrystalline soft magnetic alloys with high B s and good manufacturability. Journal of Electronic Materials, 45(10), 4913-4918. doi:10.1007/s11664-016-4643-x
  • Yoshizawa, Y., Oguma, S., & Yamauchi, K. (1988). New Fe‐based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 64(10), 6044-6046. doi:10.1063/1.342149
  • Zaporotskova, I. V., Radchenko, D. P., Kozhitov, L. V., Zaporotskov, P. A., & Popkova, A. V. (2020). Theoretical study of metal composite based on pyrolyzed polyacrylonitrile monolayer containing Fe-Co, Ni-Co and Fe-Ni metal atom pairs and silicon amorphizing admixture. Modern Electronic Materials, 6(3), 95-99. doi:10.3897/j.moem.6.3.63308
  • Zhao, R., Huang, J., Yang, Y., Jiao, L., Dong, Y., … & Li, J. (2022). The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites. Advanced Powder Technology, 33(8), 103663. doi:10.1016/j.apt.2022.103663

Investigation of Structural, Morphological and Magnetic Properties of Equi-molar Fe-Si-Cu/Nb (at.%) Nanocrystals Synthesized by Mechanical Alloying

Yıl 2023, , 871 - 882, 29.12.2023
https://doi.org/10.53433/yyufbed.1240484

Öz

In this study, equimolar nanocrystalline Fe-Si-Cu (at.%) and Fe-Si-Nb (at.%) alloys were synthesized under an Argon atmosphere by a mechanical alloying method. Experimental parameters were determined as 350 rpm, 10:1 BPR, 120 hours. Phase structures of the synthesized alloys were investigated by X-Ray diffractometry, morphology and elemental analyzes were investigated by SEM-EDS, and magnetic properties were investigated by vibrating sample magnetometer (VSM) technique at room temperature. The crystallite size of the Fe-Si-Cu alloy was found to be 102.3, 22.5, 15.9 and 8.6 nm at the beginning of grinding, after 30, 60 and 120 hours grinding, respectively, and the lattice strains were 0.164%, 0.510%, 0.672% and 1.165%, while the Fe-Si-Cu alloy For the Nb alloy, the crystallite sizes were calculated as 140.8, 42.9, 16.8 and 7.8 nm, and the lattice strains were calculated as 0.134%, 0.301%, 0.639% and 1.271%. According to the magnetism results, the saturation magnetization (Ms) of the Fe-Si-Cu (at.%) alloy was found to be 3146 emu/g, while the saturation magnetization of the Fe-Si-Nb (at.%) alloy was found to be 8.91 emu/g. It was determined that Nb addition to the Fe-Si alloy system caused an increase in the coercivity values.

Kaynakça

  • Azuma, D., Ito, N., & Ohta, M. (2020). Recent progress in Fe-based amorphous and nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 501, 166373. doi:10.1016/j.jmmm.2019.166373
  • Chaudhary, V., Yadav, N. M. S. K. K., Mantri, S. A., Dasari, S., Jagetia, A., Ramanujan, R., & Banerjee, R. (2020). Additive manufacturing of functionally graded Co–Fe and Ni–Fe magnetic materials. Journal of Alloys and Compounds, 823, 153817. doi:10.1016/j.jallcom.2020.153817
  • Du, S., & Ramanujan, R. (2005). Mechanical alloying of Fe–Ni based nanostructured magnetic materials. Journal of Magnetism and Magnetic Materials, 292, 286-298. doi:10.1016/j.jmmm.2004.11.143
  • Escorial, A. G., Adeva, P., Cristina, M., Martin, A., Carmona, F., Cebollada, F., Martin, V. E., Leonato, M., & Gonzalez, J. (1991). Ball milling mechanical alloying in the Fe100−xSix system. Materials Science and Engineering: A, 134, 1394-1397. doi:10.1016/0921-5093(91)90998-3
  • Gao, Z., & Fultz, B. (1994). Inter-dependence of grain growth, Nb segregation, and chemical ordering in Fe Si Nb nanocrystals. Nanostructured Materials, 4(8), 939-947. doi:10.1016/0965-9773(94)90100-7
  • Gonzalez, J., Giri, L., & Giri, A. K. (1995). Magnetic properties of mechanically alloyed amorphous Fe50B50. Journal of Magnetism and Magnetic Materials, 140, 249-250. doi:10.1016/0304-8853(94)01228-8
  • Haines, M., List III, F., Carver, K., Leonard, D., Plotkowski, A., Fancher, C., Dehoff, R. R., & Babu, S. (2022). Role of scan strategies and heat treatment on grain structure evolution in Fe-Si soft magnetic alloys made by laser-powder bed fusion. Additive Manufacturing, 50, 102578. doi:10.1016/j.addma.2021.102578
  • Hajalilou, A., Kianvash, A., Lavvafi, H., & Shameli, K. (2018). Nanostructured soft magnetic materials synthesized via mechanical alloying: a review. Journal of Materials Science: Materials in Electronics, 29, 1690-1717. doi:10.1007/s10854-017-8082-0
  • Kwon, S., Kim, S., Yim, H., Kang, K. H., & Yoon, C. S. (2020). High saturation magnetic flux density of Novel nanocrystalline core annealed under magnetic field. Journal of Alloys and Compounds, 826, 154136. doi:10.1016/j.jallcom.2020.154136
  • Li, Y., Jia, X., Zhang, W., Zhang, Y., Xie, G., Qiu, Z., Luan, J., Jiao, Z. (2021). Formation and crystallization behavior of Fe-based amorphous precursors with pre-existing α-Fe nanoparticles—Structure and magnetic properties of high-Cu-content Fe-Si-B-Cu-Nb nanocrystalline alloys. Journal of Materials Science & Technology, 65, 171-181. doi:10.1016/j.jmst.2020.05.049
  • Lopez-Dominguez, V., Quesada, A., Guzmán-Mínguez, J., Moreno, L., Lere, M., & García, M. A. (2018). A simple vibrating sample magnetometer for macroscopic samples. Review of Scientific Instruments, 89(3), 034707. doi:10.1063/1.5017708
  • Marin, P., Vázquez, M., Olofinjana, A., & Davies, H. (1998). Influence of Cu and Nb on relaxation and crystallization of amorphous FeSiB (CuNb) wires. Nanostructured Materials, 10(2), 299-310. doi:10.1016/S0965-9773(98)00070-1
  • Mourdikoudis, S., Pallares, R. M., & Thanh, N. T. (2018). Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale, 10(27), 12871-12934. doi:10.1039/c8nr02278j
  • Obaidat, I., Issa, B., Albiss, B., & Haik, Y. (2015). Temperature dependence of saturation magnetization and coercivity in Mn0. 5Zn0. 5Gd0. 02Fe1. 98O4 ferrite nanoparticles. IOP Conference Series: Materials Science and Engineering. doi:10.1088/1757-899X/92/1/012012
  • Ohta, M., & Yoshizawa, Y. (2008). Cu addition effect on soft magnetic properties in Fe–Si–B alloy system. Journal of Applied Physics, 103(7), 07E722. doi:10.1063/1.2829240
  • Ohta, M., & Yoshizawa, Y. (2011). Recent progress in high Bs Fe-based nanocrystalline soft magnetic alloys. Journal of Physics D: Applied Physics, 44(6), 064004. doi:10.1088/0022-3727/44/6/064004
  • Ouyang, G., Chen, X., Liang, Y., Macziewski, C., & Cui, J. (2019). Review of Fe-6.5 wt% Si high silicon steel-A promising soft magnetic material for sub-kHz application. Journal of Magnetism and Magnetic Materials, 481, 234-250. doi:10.1016/j.jmmm.2019.02.089
  • Páez-Pavón, A., Jiménez-Morales, A., Santos, T., Quintino, L., & Torralba, J. (2016). Influence of thermal debinding on the final properties of Fe–Si soft magnetic alloys for metal injection molding (MIM). Journal of Magnetism and Magnetic Materials, 416, 342-347. doi:10.1016/j.jmmm.2016.05.031
  • Penton-Madrigal, A., Turtelli, R. S., Estevez-Rams, E., & Grössinger, R. (2005). Structural evolution with Nb content in melt-spun Fe80− xSi20Nbx ribbons. Journal of Alloys and Compounds, 395(1-2), 63-67. doi:10.1016/j.jallcom.2004.11.026
  • Shi, L., & Yao, K. (2020). Composition design for Fe-based soft magnetic amorphous and nanocrystalline alloys with high Fe content. Materials & Design, 189, 108511. doi:10.1016/j.matdes.2020.108511
  • Shyni, P., & Alagarsamy, P. (2014). Thermomagnetic properties of nanocrystalline Fe–Si alloys with high Si content. Physica B: Condensed Matter, 448, 60-63. doi:10.1016/j.physb.2014.02.032
  • Sunday, K. J., & Taheri, M. L. (2017). Soft magnetic composites: recent advancements in the technology. Metal Powder Report, 72(6), 425-429. doi:10.1016/j.mprp.2016.08.003
  • Suryanarayana, C. (2001). Mechanical alloying and milling. Progress in Materials Science, 46(1-2), 1-184. doi:10.1016/S0079-6425(99)00010-9
  • Suryanarayana, C. (2004). Mechanical Alloying and Milling, (pp. 59-78). New York, USA: Marcel Dekker. doi:10.1201/9780203020647
  • Suzuki, K., & Herzer, G. (2012). Magnetic-field-induced anisotropies and exchange softening in Fe-rich nanocrystalline soft magnetic alloys. Scripta Materialia, 67(6), 548-553. doi:10.1016/j.scriptamat.2012.03.006
  • Şimşek, T., Akgül, Ş., Güler, Ö., Özkul, İ., Avar, B., Chattopadhyay, A. K., Canbay, C. A., & Güler, S. H. (2021). A comparison of magnetic, structural and thermal properties of NiFeCoMo high entropy alloy produced by sequential mechanical alloying versus the alloy produced by conventional mechanical alloying. Materials Today Communications, 29, 102986. doi:10.1016/j.mtcomm.2021.102986
  • Şimşek, T., Özkul, İ., Canbay, C. A., Avar, B., Şimşek, T., … & Chattopadhyay, A. K. (2022). Effect of Cu, Sn and Sb addition on the structural, thermal and magnetic properties of body-centered cubic structured CoNiMnGaSi high entropy alloy. Applied Physics A, 128(6), 1-9. doi:10.1007/s00339-022-05667-x
  • Tsepelev, V., Starodubtsev, Y. N., & Belozerov, V. Y. (2018). The effect of inhibitors on the structure and magnetic properties of nanocrystalline soft magnetic alloys. Physics of Metals and Metallography, 119(9), 831-836. doi:10.1134/S0031918X18090120
  • Turtelli, R. S., Penton-Madrigal, A., Barbatti, C., Grössinger, R., Sassik, H., … & Guimarães, A. P. (2005). Effect of the addition of Cr, Ta and Nb on structural and magnetic properties of Fe–Si alloys. Journal of Magnetism and Magnetic Materials, 294(2), e151-e154. doi:10.1016/j.jmmm.2005.03.073
  • Wan, F., He, A., Zhang, J., Song, J., Wang, A., Chang, C., & Wang, X. (2016). Development of FeSiBNbCu nanocrystalline soft magnetic alloys with high B s and good manufacturability. Journal of Electronic Materials, 45(10), 4913-4918. doi:10.1007/s11664-016-4643-x
  • Yoshizawa, Y., Oguma, S., & Yamauchi, K. (1988). New Fe‐based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 64(10), 6044-6046. doi:10.1063/1.342149
  • Zaporotskova, I. V., Radchenko, D. P., Kozhitov, L. V., Zaporotskov, P. A., & Popkova, A. V. (2020). Theoretical study of metal composite based on pyrolyzed polyacrylonitrile monolayer containing Fe-Co, Ni-Co and Fe-Ni metal atom pairs and silicon amorphizing admixture. Modern Electronic Materials, 6(3), 95-99. doi:10.3897/j.moem.6.3.63308
  • Zhao, R., Huang, J., Yang, Y., Jiao, L., Dong, Y., … & Li, J. (2022). The influence of FeNi nanoparticles on the microstructures and soft magnetic properties of FeSi soft magnetic composites. Advanced Powder Technology, 33(8), 103663. doi:10.1016/j.apt.2022.103663
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Seval Hale Güler 0000-0001-5888-9437

Doç.dr. Tuncay Şimşek 0000-0002-4683-0152

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 22 Ocak 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Güler, S. H., & Şimşek, D. T. (2023). Mekanik Alaşımlama ile Sentezlenen Eş-molar Fe-Si-Cu/Nb (at.%) Nanokristallerinin Yapısal, Morfolojik ve Manyetik Özelliklerinin Araştırılması. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 871-882. https://doi.org/10.53433/yyufbed.1240484