Derleme
BibTex RIS Kaynak Göster

Wave Energy Production and Artificial Intelligence: The Potential of Asia, Europe and Türkiye

Yıl 2024, , 798 - 822, 31.08.2024
https://doi.org/10.53433/yyufbed.1445985

Öz

In recent years, there has been a growing need to reduce our reliance on non-renewable energy sources for a more sustainable world. The use of renewable energy sources is increasing as we move towards cleaner energy options and away from fossil fuels. Wave energy technology is gaining particular attention for generating energy sustainably. Under optimal conditions, wave energy projects have the potential to contribute significantly to a country's well-being. In addition to traditional methods, artificial intelligence techniques are widely used in wave energy technology due to the high costs and labor-intensive nature of experimental field measurements and the preparation of parameters and inputs for numerical methods. One such technique involves artificial neural networks to solve problems in this field. This study examines existing research on water-based energy production in Asia and Europe, evaluates Türkiye’s wave energy potential based on the available literature, and discusses the application of artificial neural networks in wave energy technology and the methods employed in the literature.

Kaynakça

  • Abdalla, S., & Özhan, E. (1999, Nisan). Wind and wave climate of the mediterranean and the black sea. Proceedings of the International MEDCOAST Conference, Antalya.
  • Ahmed, A. A. M., Jui, S. J. J., AL-Musaylh, M. S., Raj, N., Saha, R., Deo, R. C., & Saha, S. K. (2024). Hybrid deep learning model for wave height prediction in Australia's wave energy region. Applied Soft Computing, 150, 111003. https://doi.org/10.1016/j.asoc.2023.111003
  • Alday, M., & Lavidas, G. (2024). Assessing the Tidal Stream Resource for energy extraction in The Netherlands. Renewable Energy, 220, 119683. https://doi.org/10.1016/j.renene.2023.119683
  • Ali, M., Prasad, R., Xiang, Y., Sankaran, A., Deo, R. C., Xiao, F., & Zhu, S. (2021). Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia. Renewable Energy, 177, 1031-1044. https://doi.org/10.1016/j.renene.2021.06.052
  • Alpay, Ö. (2020). LSTM mimarisi kullanarak USD/TRY fiyat tahmini. European Journal of Science and Technology, 452-456. https://doi.org/10.31590/ejosat.araconf59
  • Altaş, İ. H., & Şahin, E. (2019). Dünyada ve Türkiye’de dalga enerjisi. Elektrik Mühendisliği, 465, 43-53.
  • Asma, S., Sezer, A., & Ozdemir, O. (2012). MLR and ANN models of significant wave height on the west coast of India. Computers & Geosciences, 49, 231-237. https://doi.org/10.1016/j.cageo.2012.05.032
  • Astariz, S., & Iglesias, G. (2015). The economics of wave energy: A review. Renewable and Sustainable Energy Reviews, 45, 397-408. https://doi.org/10.1016/j.rser.2015.01.061
  • Avrupa Deniz Enerjisi Merkezi. (2024). Sektör raporları: EMEC. Avrupa Deniz Enerjisi Merkezi. Erişim tarihi: 16.01.2024. https://www.emec.org.uk/marine-energy/industry-reports/
  • Aydıner, İ. & Öztürk, D. (2021). Coğrafi bilgi sistemleri tabanlı analitik hiyerarşi yöntemi kullanılarak Ege Denizi’nde rüzgâr ve dalga enerji sistemleri için yer seçimi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 217-232. https://doi.org/10.21205/deufmd.2021236719
  • Aylak, B. L. (2022). The impacts of the applications of artificial intelligence in maritime logistics. Avrupa Bilim ve Teknoloji Dergisi, 34, 217-225. https://doi.org/10.31590/ejosat.1079206
  • Babarit, A. (2017). Ocean Wave Energy Conversion: Resource, Technologies and Performance. Elsevier.
  • Bagheri, M., Farshforoush, N., Bagheri, K., & Shemirani, A. I. (2023). Applications of artificial intelligence technologies in water environments: From basic techniques to novel tiny machine learning systems. Process Safety and Environmental Protection, 180, 10-22. https://doi.org/10.1016/j.psep.2023.09.072
  • Bak, U. (2003). Dalga enerjisinden elektrik enerjisine dönüşüm sistemleri. (Doktora Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • BAKKA. (2023). BAKKA Kütüphane. Erişim tarihi: 04.02.2024. https://bakkakutuphane.org/
  • Bao, X., Huang, G., Liu, M., Sun, H., & Iglesias, G. (2024). Turbine fault diagnosis of the oscillating water column wave energy converter based on multi-lead residual neural networks. Ocean Engineering, 291, 116429. https://doi.org/10.1016/j.oceaneng.2023.116429
  • Bento, P. M. R., Pombo, J. A. N., Mendes, R. P. G., Calado, M. R. A., & Mariano, S. J. P. S. (2021). Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Engineering, 219, 108372. https://doi.org/10.1016/j.oceaneng.2020.108372
  • Bricker, J. D., Esteban, M., Takagi, H., & Roeber, V. (2017). Economic feasibility of tidal stream and wave power in post-Fukushima Japan. Renewable Energy, 114, 32-45. https://doi.org/10.1016/j.renene.2016.06.049
  • Cao, F., Han, M., Shi, H., Li, M., & Liu, Z. (2022). Comparative study on metaheuristic algorithms for optimising wave energy converters. Ocean Engineering, 247, 110461. https://doi.org/10.1016/j.oceaneng.2021.110461
  • Chen, J., Hlophe, T., Gunawan, D., Taylor, P. H., Milne, I. A., & Zhao, W. (2024). Phase-resolved wave prediction with varying buoy positions in the field using machine learning-based methods. Ocean Engineering, 307, 118107. https://doi.org/10.1016/j.oceaneng.2024.118107
  • Chen, Y. L., Lin, C. C., Chen, J. H., Lee, Y. H., & Tzang, S. Y. (2023). Characteristics of wave energy resources on coastal waters of northeast Taiwan. Renewable Energy, 202, 1-16. https://doi.org/10.1016/j.renene.2022.11.058
  • Chiu, Y.-H., Lee, J.-H., Lu, C.-C., Shyu, M.-K., & Luo, Z. (2012). The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model. Energy Policy, 51, 349-357. https://doi.org/10.1016/j.enpol.2012.08.026
  • Choupin, O., Del Río-Gamero, B., Schallenberg-Rodríguez, J., & Yánez-Rosales, P. (2022). Integration of assessment-methods for wave renewable energy: Resource and installation feasibility. Renewable Energy, 185, 455-482. https://doi.org/10.1016/j.renene.2021.12.035
  • Crown Estate Scotland. (2024). Wave and tidal. Erişim tarihi: 28.01.2024. https://www.crownestatescotland.com/scotlands-property/marine/wave-and-tidal
  • Çalışır, E., & Akpınar, A. (2020). ERA5 ve ERA-INTERİM rüzgarları ile çalıştırılan SWAN model sonuçlarının performans anali̇zi̇. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 65-80. https://doi.org/10.17482/uumfd.688805
  • Çokan, M. (2004, Mayıs). Dalga enerjisi (dalga elektrik santralleri). V. Ulusal Temiz Enerji Sempozyumu, İstanbul.
  • Dai, P., Huang, Z., & Zhang, J. (2023). A modelling study of the tidal stream resource around Zhoushan Archipelago, China. Renewable Energy, 218, 119234. https://doi.org/10.1016/j.renene.2023.119234
  • de Mello, P. C., Carneiro, M. L., Tannuri, E. A., Kassab, F., Jr., Marques, R. P., Adamowski, J. C., & Nishimoto, K. (2013). A control and automation system for wave basins. Mechatronics, 23(1), 94-107. https://doi.org/10.1016/j.mechatronics.2012.11.004
  • Demirok, H. D., & Koçer, H. E. (2020). Generation of electrical energy from owc based wave motion. Avrupa Bilim ve Teknoloji Dergisi, 202-206. https://doi.org/10.31590/ejosat.804135
  • den Bieman, J. P., de Ridder, M. P., Irías Mata, M., & van Nieuwkoop, J. C. C. (2023). Hybrid modelling to improve operational wave forecasts by combining process-based and machine learning models. Applied Ocean Research, 136, 103583. https://doi.org/10.1016/j.apor.2023.103583
  • Doğan, F., & Türkoğlu, İ. (2019). Derin öğrenme modelleri ve uygulama alanlarına ilişkin bir derleme. DÜMF Mühendislik Dergisi, 10(2), 409-445. https://doi.org/10.24012/dumf.411130
  • Erselcan, İ. Ö., & Kükner, A. (2020). A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the Black Sea. Ocean Engineering, 218, 108275. https://doi.org/10.1016/j.oceaneng.2020.108275
  • Es, H., Kalender, F. Y., & Hamzaçebi̇, C. (2014). Yapay sinir ağları ile Türkiye net enerji talep tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(3).
  • Foteinis, S., & Emmanuel Synolakis, C. (2023). Field based estimates of wave power at a nearshore Mediterranean locale for sustainable wave energy harnessing. Sustainable Energy Technologies and Assessments, 59, 103410. https://doi.org/10.1016/j.seta.2023.103410
  • Gonçalves, M., Martinho, P., & Guedes Soares, C. (2014). Assessment of wave energy in the Canary Islands. Renewable Energy, 68, 774-784. https://doi.org/10.1016/j.renene.2014.03.017
  • Greaves, D., Conley, D., Magagna, D., Aires, E., Chambel Leitão, J., Witt, M., … & Marina, D. (2016). Environmental impact assessment: Gathering experiences from wave energy test centres in Europe. International Journal of Marine Energy, 14, 68-79. https://doi.org/10.1016/j.ijome.2016.02.003
  • Gülçeli̇k, S., & Di̇ri̇, C. (2021). Alternative energy usage types in buildings and a proposal for a generator working with wave energy. Journal of Architectural Sciences and Applications, 6(1), 1-10. https://doi.org/10.30785/mbud.808924
  • Gunes-Durak, S., & Kapkin, S. (2024). Overview of hydrogen energy production in the Black Sea for the disposal of potentially hazardous hydrogen sulfide. International Journal of Hydrogen Energy, 50, 706-714. https://doi.org/10.1016/j.ijhydene.2023.11.141
  • Güngör, F. (2019). İç denizlere uygun dalga enerjisi üretim sistemi. (Yüksek Lisans Tezi). Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Harameen, H. M. A., & Akman, G. (2023). A cluster analysis of renewable electricity generation policies in Asian Region countries using SPSS software. Uluslararası Yönetim Akademisi Dergisi, 6(2), 357-375. https://doi.org/10.33712/mana.1104853
  • Hassan, M. K., Youssef, H., Gaber, I. M., Shehata, A. S., Khairy, Y., & El-Bary, A. A. (2024). A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions. Results in Engineering, 21, 101734. https://doi.org/10.1016/j.rineng.2023.101734
  • Henriques, J. C. C., Gato, L. M. C., Falcão, A. F. O., Robles, E., & Faÿ, F. X. (2016). Latching control of a floating oscillating-water-column wave energy converter. Renewable Energy, 90, 229-241. https://doi.org/10.1016/j.renene.2015.12.065
  • Hepbaşlı, A., Özdamar, A., & Özalp, N. (2001). Present status and potential of renewable energy sources in Turkey. Energy Sources, 23, 631-648. https://doi.org/10.1080/00908310118259
  • IRENA. (2023). Global geothermal market and technology assessment. International Renewable Energy Agency, Abu Dhabi; International Geothermal Association, The Hague. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Feb/IRENA_Global_geothermal_market_technology_assessment_2023.pdf
  • IRENA. (2015). Renewable power generation costs in 2014. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_RE_Power_Costs_2014_report.pdf
  • IRENA and OEE (2023). Scaling up investments in ocean energy technologies. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_OEE_Scaling_up_investment_ocean_energy_2023.pdf
  • Jafalı, H. (2019). Karadeniz’de dalga gücü potansiyeli yüksek alanların dalga enerji içeriğinin uzun dönemli zamansal ve alansal analizi. (Yüksek Lisans Tezi), Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Jakimavičius, D., & Akstinas, V. (2023). Projections of wind climate and wave energy resources in Lithuanian territorial waters of the Baltic Sea in the 21st century. Oceanologia, 65(4), 534-547. https://doi.org/10.1016/j.oceano.2023.06.004
  • Kalogeri, C., Galanis, G., Spyrou, C., Diamantis, D., Baladima, F., Koukoula, M., & Kallos, G. (2017). Assessing the European offshore wind and wave energy resource for combined exploitation. Renewable Energy, 101, 244-264. https://doi.org/10.1016/j.renene.2016.08.010
  • Kamranzad, B., & Lin, P. (2020). Sustainability of wave energy resources in the South China Sea based on five decades of changing climate. Energy, 210, 118604. https://doi.org/10.1016/j.energy.2020.118604
  • Kamranzad, B., & Takara, K. (2020). A climate-dependent sustainability index for wave energy resources in Northeast Asia. Energy, 209, 118466. https://doi.org/10.1016/j.energy.2020.118466
  • Karaköse, P., & Koca, A. (2022). A novel rotor type wave energy converter design for maximum energy captured in low wave heights. Batman Üniversitesi Yaşam Bilimleri Dergisi, 12(2), 136-153. https://doi.org/10.55024/buyasambid.1131891
  • Kapluhan, E. (2014). Enerji̇ coğrafyası açısından bir inceleme: dalga enerji̇si̇nin dünyadaki̇ ve Türki̇ye’deki kullanım durumu. Uluslararası Avrasya Sosyal Bi̇li̇mler Dergisi, 5(17), 65-86.
  • Kıldıran, E. (2018). Antalya sahi̇li dalga enerji̇ potansi̇yeli̇nin beli̇rlenmesi. (Yüksek Lisans Tezi), Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Antalya, Türkiye.
  • Kim, Y.-H., Cho, S., & Lee, P.-S. (2023). Wave height classification via deep learning using monoscopic ocean videos. Ocean Engineering, 288, 116002. https://doi.org/10.1016/j.oceaneng.2023.116002
  • Kocalar, A. C. (2022). The effects of the EU green deal harmonization policies in Turkey. Advanced Engineering Science, 2, 109-117.
  • Kükner, A. (2018). Study of the oscillating water coloumn (owc) which is one of the most used systems in converting wave energy into electrical energy. Turkish Journal of Engineering, 2(2), 88-93. https://doi.org/10.31127/tuje.329295
  • Lamy, J. V., & Azevedo, I. L. (2018). Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom. Energy Policy, 113, 28-40. https://doi.org/10.1016/j.enpol.2017.10.030
  • Lavidas, G., Venugopal, V., & Friedrich, D. (2017). Wave energy extraction in Scotland through an improved nearshore wave atlas. International Journal of Marine Energy, 17, 64-83. https://doi.org/10.1016/j.ijome.2017.01.008
  • López-Ruiz, A., Bergillos, R. J., & Ortega-Sánchez, M. (2016). The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation. Applied Energy, 182, 191-203. https://doi.org/10.1016/j.apenergy.2016.08.088
  • Magagna, D., & Uihlein, A. (2015). Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy, 11, 84-104. https://doi.org/10.1016/j.ijome.2015.05.001
  • Mahdavi-Meymand, A., & Sulisz, W. (2023). Application of nested artificial neural network for the prediction of significant wave height. Renewable Energy, 209, 157-168. https://doi.org/10.1016/j.renene.2023.03.118
  • Mert, S. (2012). Dalga enerjisi dönüşüm sistemi tasarımı ve deneysel çalışması. (Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Metin, K. (2023). Türkiye’nin dalga enerjisi potansiyeline coğrafi bir bakış: muhtemel sahaların değerlendirilmesi. (Yüksek Lisans Tezi), Karabük Üniversitesi, Coğrafya Anabilim Dalı, Karabük, Türkiye.
  • Molina, A., Jiménez-Portaz, M., Clavero, M., & Moñino, A. (2022). The effect of turbine characteristics on the thermodynamics and compression process of a simple OWC device. Renewable Energy, 190, 836-847. https://doi.org/10.1016/j.renene.2022.03.106
  • Neill, S. P. (2022). Introduction to ocean renewable energy. In T. M. Letcher (Ed.), Comprehensive renewable energy (2. ed, pp. 1-9). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00081-9
  • O'Hagan, A. M., Huertas, C., O'Callaghan, J., & Greaves, D. (2016). Wave energy in Europe: Views on experiences and progress to date. International Journal of Marine Energy, 14, 180-197. https://doi.org/10.1016/j.ijome.2015.09.001
  • Onenli, O., Ercan, H., Acikgoz, S., & Kat, B. (2023). Emission reduction pathways for satisfying Türkiye’s future electricity demand: A cross-country dynamic panel analysis with linear programming scenarios. Cleaner Energy Systems, 6, 100085. https://doi.org/10.1016/j.cles.2023.100085
  • Oztunali Ozbahceci, B., Turgut, A. R., Bozoklu, A., & Abdalla, S. (2020). Calibration and verification of century based wave climate data record along the Turkish coasts using satellite altimeter data. Advances in Space Research, 66(10), 2319-2337. https://doi.org/10.1016/j.asr.2020.02.021
  • Özbek, T., & Ergül, E. U. (2022, Mart). Çok kriterli karar verme ile dalga enerjisi santrali sahası ve dönüştürücü tipi seçimi. İnşaat Mühendisleri Enstitüsü Bildirileri.
  • Özdamar, G., Mut, M., Pekbey, Y., & Özdamar, A. (2016). Bir wells dalga türbininin hesaplamalı akışkanlar dinamiği analizi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), 569-576.
  • Özdemi̇r, D. (2019). Promethee yöntemi̇ ile türki̇ye’de yeni̇lenebi̇lir enerji̇ alternati̇fleri̇nin sıralanması. (Yüksek Lisans Tezi), Akdeni̇z Üni̇versi̇tesi, Sosyal Bilimler Enstitüsü, Antalya, Türkiye.
  • Pontes, M. T., Mollison, D., Cavaleri, L., Athanassoulis, G. A., & Nieto, J. C. (1993). Wave studies and development of resource evaluation methodology. Final Report.
  • Qiu, S., Liu, K., Wang, D., Ye, J., & Liang, F. (2019). A comprehensive review of ocean wave energy research and development in China. Renewable and Sustainable Energy Reviews, 113, 109271. https://doi.org/10.1016/j.rser.2019.109271
  • Renewable UK Marine Energy Database. (2024). eSpatial. Erişim Tarihi: 31.01.2024. https://maps.esp.tl/maps/pages/map.jsp?geoMapId=19671&TENANT_ID=115744
  • Rodriguez-Delgado, C., & Bergillos, R. J. (2021). Wave energy assessment under climate change through artificial intelligence. Science of The Total Environment, 760, 144039. https://doi.org/10.1016/j.scitotenv.2020.144039
  • Ross, D. (1995). Power from the waves. Oxford University Press.
  • Rusu, E., & Onea, F. (2016). Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy, 85, 687-703. https://doi.org/10.1016/j.renene.2015.07.042
  • Rusu, E., & Onea, F. (2022). Evaluation of the adverse weather conditions associated to some significant European marine renewable energy projects. Energy Reports, 8(16), 185-193. https://doi.org/10.1016/j.egyr.2022.10.205
  • Rusu, E., & Rusu, L. (2021). An evaluation of the wave energy resources in the proximity of the wind farms operating in the North Sea. Energy Reports, 7(3), 19-27. https://doi.org/10.1016/j.egyr.2021.05.058
  • Sağlam, M., Sulukan, E., & Uyar, T. S. (2010). Wave energy and technical potential of Turkey. Journal of Naval Sciences and Engineering, 6(2), 34-50.
  • Sareen, K., Panigrahi, B. K., Shikhola, T., & Nagdeve, R. (2023). An integrated decomposition algorithm based bidirectional LSTM neural network approach for predicting ocean wave height and ocean wave energy. Ocean Engineering, 281, 114852. https://doi.org/10.1016/j.oceaneng.2023.114852
  • Shadmani, A., Nikoo, M. R., Gandomi, A. H., Wang, R.-Q., & Golparvar, B. (2023). A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization. Energy Strategy Reviews, 49, 101180. https://doi.org/10.1016/j.esr.2023.101180
  • Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, September). Best practices for convolutional neural networks applied to visual document analysis. Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings, 958-963. https://doi.org/10.1109/icdar.2003.1227801
  • Simões, C., Pintossi, D., Saakes, M., Borneman, Z., Brilman, W., & Nijmeijer, K. (2020). Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency. Desalination, 492, 114604. https://doi.org/10.1016/j.desal.2020.114604
  • Spelta, A., & De Giuli, M. E. (2023). Does renewable energy affect fossil fuel price? A time-frequency analysis for the Europe. Physica A: Statistical Mechanics and its Applications, 626, 129098. https://doi.org/10.1016/j.physa.2023.129098
  • Tufa, R. A., Pawlowski, S., Veerman, J., Bouzek, K., Fontananova, E., di Profio, G., … & Curcio, E. (2018). Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied Energy, 225, 290-331. https://doi.org/10.1016/j.apenergy.2018.04.111
  • Turkchem. (2022). Mavi enerji. Erişim Tarihi: 11.02.2024. https://www.turkchem.net/mavi-enerji.html
  • Türker, Y. Ö., & Aydin, A. (2022). How ready is the Turkish Legislation for the green deal? Energy and Climate Change, 3, 100084. https://doi.org/10.1016/j.egycc.2022.100084
  • Türköz, K. (2021). Türkiye’de sektörel enerji kullanımındaki değişimlerin itici güçleri: Ayrıştırma analizi. MANAS Sosyal Araştırmalar Dergisi, 10, 1038-1052. https://doi.org/10.33206/mjss.853348
  • Uygur, İ., Demi̇rci̇, R., Saruhan, H., Özkan, A., & Belenli̇, İ. (2006). Batı Karadeni̇z bölgesi̇ndeki dalga enerji̇si potansi̇yeli̇nin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 7-13.
  • Veerman, J. (2010). Reverse electrodialysis: Design and optimization by modeling and experimentation. (Thesis fully internal (DIV)), University of Groningen.
  • Wang, Y. (2020). Predicting absorbed power of a wave energy converter in a nonlinear mixed sea. Renewable Energy, 153, 362-374. https://doi.org/10.1016/j.renene.2020.02.031
  • Webb, A., Waseda, T., & Kiyomatsu, K. (2020). A high-resolution, long-term wave resource assessment of Japan with wave-current effects. Renewable Energy, 161, 1341-1358. https://doi.org/10.1016/j.renene.2020.05.030
  • Yeni Enerji. (2019). Gelgit enerjisi ve başarılı örnekleri. Erişim tarihi: 31.01.2024. https://www.yenienerji.com/mercek-alti/gelgit-enerjisi-ve-basarili-ornekleri
  • Yücel, U., Özdemi̇r, E., & Ayaz, M. (2021). Yenilenebilir enerji kaynaklarından üretilen elektrik enerjisi teşvik yöntemlerinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 774-790. https://doi.org/10.29130/dubited.774963
  • Yüksel, F. Ş. (2023). Türkiye’nin havayolu taşıyıcı modellerine göre yolcu talebinin çoklu doğrusal regresyon, anfıs ve yapay sinir ağı teknikleri ile tahminlenmesi. (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Zhang, J., Zhao, X., Greaves, D., & Jin, S. (2023). Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments. Applied Energy, 341, 121072. https://doi.org/10.1016/j.apenergy.2023.121072
  • Zheng, C.-w., Pan, J., & Li, J.-x. (2013). Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65, 39-48. https://doi.org/10.1016/j.oceaneng.2013.03.006
  • Zheng, J., Dai, P., & Zhang, J. (2015). Tidal stream energy in China. Procedia Engineering, 116, 880-887. https://doi.org/10.1016/j.proeng.2015.08.377
  • Zheng, Z., Ali, M., Jamei, M., Xiang, Y., Abdulla, S., Yaseen, Z. M., & Farooque, A. A. (2023). Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation. Renewable and Sustainable Energy Reviews, 185, 113645. https://doi.org/10.1016/j.rser.2023.113645

Su Dalga Enerjisi Üretimi ve Yapay Zekâ: Asya, Avrupa ve Türkiye’nin Potansiyeli

Yıl 2024, , 798 - 822, 31.08.2024
https://doi.org/10.53433/yyufbed.1445985

Öz

Son yıllarda, sürdürülebilir bir dünya için yenilenemeyen enerji kaynaklarının kullanımının azaltılması gerekliliği giderek daha belirgin hale gelmektedir. Fosil yakıt tüketiminden, daha temiz bir enerjiye geçiş döneminde, yenilenebilir enerji kaynakları hızla gelişme göstermektedir. Bu gelişmeler ışığında su enerjisi teknolojilerine odak artmaktadır. Enerji potansiyeli için gerekli şartlar karşılandığı sürece; su kaynaklı enerji üretim projelerinin uygulanması ülkelerin refahına katkı sağlama potansiyeli taşımaktadır. Yenilenebilir enerji üretiminde rekabete konu olan su kaynaklı enerji üretimi için; literatürde kıtalar arası enerjinin incelendiği, su potansiyelinin ölçüldüğü, santraller için uygun yer seçiminin yapıldığı, dalga – iklim ilişkisinin incelendiği, okyanus enerjisi teknolojileri konularını içeren çalışmalarda geleneksel teknikler yanı sıra yapay zekâ tekniklerine de yer verilmektedir. Deneysel modelleme saha ölçüm tekniklerinin yüksek maliyetli olduğu, sayısal yöntemlerin parametre ve girdi hazırlık sürecinin zahmetli olması sebebiyle çeşitli yapay zekâ yöntemleri, su kaynaklı enerji üretimi teknolojisinde yoğun şekilde kullanılmaktadır. Yapay sinir ağları da bu alanda karşılaşılan problemlerin çözümünde kullanılan tekniklerden birisi olarak yer almaktadır. Bu derlemede, Asya ve Avrupa kıtasında su kaynaklı enerji üretimi hakkında yapılmış mevcut çalışmalardan bahsedilmekte, Türkiye’nin su enerjisi potansiyelini, mevcut literatür incelenerek ortaya konulmaktadır. Ayrıca yapay zekâ tekniklerinden yapay sinir ağı metodunun su enerjisi teknolojilerinde ne şekilde ve hangi ölçüde kullanıldığı ve kullanılan yöntemlerle ilgili literatüre yer verilmiştir.

Kaynakça

  • Abdalla, S., & Özhan, E. (1999, Nisan). Wind and wave climate of the mediterranean and the black sea. Proceedings of the International MEDCOAST Conference, Antalya.
  • Ahmed, A. A. M., Jui, S. J. J., AL-Musaylh, M. S., Raj, N., Saha, R., Deo, R. C., & Saha, S. K. (2024). Hybrid deep learning model for wave height prediction in Australia's wave energy region. Applied Soft Computing, 150, 111003. https://doi.org/10.1016/j.asoc.2023.111003
  • Alday, M., & Lavidas, G. (2024). Assessing the Tidal Stream Resource for energy extraction in The Netherlands. Renewable Energy, 220, 119683. https://doi.org/10.1016/j.renene.2023.119683
  • Ali, M., Prasad, R., Xiang, Y., Sankaran, A., Deo, R. C., Xiao, F., & Zhu, S. (2021). Advanced extreme learning machines vs. deep learning models for peak wave energy period forecasting: A case study in Queensland, Australia. Renewable Energy, 177, 1031-1044. https://doi.org/10.1016/j.renene.2021.06.052
  • Alpay, Ö. (2020). LSTM mimarisi kullanarak USD/TRY fiyat tahmini. European Journal of Science and Technology, 452-456. https://doi.org/10.31590/ejosat.araconf59
  • Altaş, İ. H., & Şahin, E. (2019). Dünyada ve Türkiye’de dalga enerjisi. Elektrik Mühendisliği, 465, 43-53.
  • Asma, S., Sezer, A., & Ozdemir, O. (2012). MLR and ANN models of significant wave height on the west coast of India. Computers & Geosciences, 49, 231-237. https://doi.org/10.1016/j.cageo.2012.05.032
  • Astariz, S., & Iglesias, G. (2015). The economics of wave energy: A review. Renewable and Sustainable Energy Reviews, 45, 397-408. https://doi.org/10.1016/j.rser.2015.01.061
  • Avrupa Deniz Enerjisi Merkezi. (2024). Sektör raporları: EMEC. Avrupa Deniz Enerjisi Merkezi. Erişim tarihi: 16.01.2024. https://www.emec.org.uk/marine-energy/industry-reports/
  • Aydıner, İ. & Öztürk, D. (2021). Coğrafi bilgi sistemleri tabanlı analitik hiyerarşi yöntemi kullanılarak Ege Denizi’nde rüzgâr ve dalga enerji sistemleri için yer seçimi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 23(67), 217-232. https://doi.org/10.21205/deufmd.2021236719
  • Aylak, B. L. (2022). The impacts of the applications of artificial intelligence in maritime logistics. Avrupa Bilim ve Teknoloji Dergisi, 34, 217-225. https://doi.org/10.31590/ejosat.1079206
  • Babarit, A. (2017). Ocean Wave Energy Conversion: Resource, Technologies and Performance. Elsevier.
  • Bagheri, M., Farshforoush, N., Bagheri, K., & Shemirani, A. I. (2023). Applications of artificial intelligence technologies in water environments: From basic techniques to novel tiny machine learning systems. Process Safety and Environmental Protection, 180, 10-22. https://doi.org/10.1016/j.psep.2023.09.072
  • Bak, U. (2003). Dalga enerjisinden elektrik enerjisine dönüşüm sistemleri. (Doktora Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • BAKKA. (2023). BAKKA Kütüphane. Erişim tarihi: 04.02.2024. https://bakkakutuphane.org/
  • Bao, X., Huang, G., Liu, M., Sun, H., & Iglesias, G. (2024). Turbine fault diagnosis of the oscillating water column wave energy converter based on multi-lead residual neural networks. Ocean Engineering, 291, 116429. https://doi.org/10.1016/j.oceaneng.2023.116429
  • Bento, P. M. R., Pombo, J. A. N., Mendes, R. P. G., Calado, M. R. A., & Mariano, S. J. P. S. (2021). Ocean wave energy forecasting using optimised deep learning neural networks. Ocean Engineering, 219, 108372. https://doi.org/10.1016/j.oceaneng.2020.108372
  • Bricker, J. D., Esteban, M., Takagi, H., & Roeber, V. (2017). Economic feasibility of tidal stream and wave power in post-Fukushima Japan. Renewable Energy, 114, 32-45. https://doi.org/10.1016/j.renene.2016.06.049
  • Cao, F., Han, M., Shi, H., Li, M., & Liu, Z. (2022). Comparative study on metaheuristic algorithms for optimising wave energy converters. Ocean Engineering, 247, 110461. https://doi.org/10.1016/j.oceaneng.2021.110461
  • Chen, J., Hlophe, T., Gunawan, D., Taylor, P. H., Milne, I. A., & Zhao, W. (2024). Phase-resolved wave prediction with varying buoy positions in the field using machine learning-based methods. Ocean Engineering, 307, 118107. https://doi.org/10.1016/j.oceaneng.2024.118107
  • Chen, Y. L., Lin, C. C., Chen, J. H., Lee, Y. H., & Tzang, S. Y. (2023). Characteristics of wave energy resources on coastal waters of northeast Taiwan. Renewable Energy, 202, 1-16. https://doi.org/10.1016/j.renene.2022.11.058
  • Chiu, Y.-H., Lee, J.-H., Lu, C.-C., Shyu, M.-K., & Luo, Z. (2012). The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model. Energy Policy, 51, 349-357. https://doi.org/10.1016/j.enpol.2012.08.026
  • Choupin, O., Del Río-Gamero, B., Schallenberg-Rodríguez, J., & Yánez-Rosales, P. (2022). Integration of assessment-methods for wave renewable energy: Resource and installation feasibility. Renewable Energy, 185, 455-482. https://doi.org/10.1016/j.renene.2021.12.035
  • Crown Estate Scotland. (2024). Wave and tidal. Erişim tarihi: 28.01.2024. https://www.crownestatescotland.com/scotlands-property/marine/wave-and-tidal
  • Çalışır, E., & Akpınar, A. (2020). ERA5 ve ERA-INTERİM rüzgarları ile çalıştırılan SWAN model sonuçlarının performans anali̇zi̇. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 25(1), 65-80. https://doi.org/10.17482/uumfd.688805
  • Çokan, M. (2004, Mayıs). Dalga enerjisi (dalga elektrik santralleri). V. Ulusal Temiz Enerji Sempozyumu, İstanbul.
  • Dai, P., Huang, Z., & Zhang, J. (2023). A modelling study of the tidal stream resource around Zhoushan Archipelago, China. Renewable Energy, 218, 119234. https://doi.org/10.1016/j.renene.2023.119234
  • de Mello, P. C., Carneiro, M. L., Tannuri, E. A., Kassab, F., Jr., Marques, R. P., Adamowski, J. C., & Nishimoto, K. (2013). A control and automation system for wave basins. Mechatronics, 23(1), 94-107. https://doi.org/10.1016/j.mechatronics.2012.11.004
  • Demirok, H. D., & Koçer, H. E. (2020). Generation of electrical energy from owc based wave motion. Avrupa Bilim ve Teknoloji Dergisi, 202-206. https://doi.org/10.31590/ejosat.804135
  • den Bieman, J. P., de Ridder, M. P., Irías Mata, M., & van Nieuwkoop, J. C. C. (2023). Hybrid modelling to improve operational wave forecasts by combining process-based and machine learning models. Applied Ocean Research, 136, 103583. https://doi.org/10.1016/j.apor.2023.103583
  • Doğan, F., & Türkoğlu, İ. (2019). Derin öğrenme modelleri ve uygulama alanlarına ilişkin bir derleme. DÜMF Mühendislik Dergisi, 10(2), 409-445. https://doi.org/10.24012/dumf.411130
  • Erselcan, İ. Ö., & Kükner, A. (2020). A parametric optimization study towards the preliminary design of point absorber type wave energy converters suitable for the Turkish coasts of the Black Sea. Ocean Engineering, 218, 108275. https://doi.org/10.1016/j.oceaneng.2020.108275
  • Es, H., Kalender, F. Y., & Hamzaçebi̇, C. (2014). Yapay sinir ağları ile Türkiye net enerji talep tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 29(3).
  • Foteinis, S., & Emmanuel Synolakis, C. (2023). Field based estimates of wave power at a nearshore Mediterranean locale for sustainable wave energy harnessing. Sustainable Energy Technologies and Assessments, 59, 103410. https://doi.org/10.1016/j.seta.2023.103410
  • Gonçalves, M., Martinho, P., & Guedes Soares, C. (2014). Assessment of wave energy in the Canary Islands. Renewable Energy, 68, 774-784. https://doi.org/10.1016/j.renene.2014.03.017
  • Greaves, D., Conley, D., Magagna, D., Aires, E., Chambel Leitão, J., Witt, M., … & Marina, D. (2016). Environmental impact assessment: Gathering experiences from wave energy test centres in Europe. International Journal of Marine Energy, 14, 68-79. https://doi.org/10.1016/j.ijome.2016.02.003
  • Gülçeli̇k, S., & Di̇ri̇, C. (2021). Alternative energy usage types in buildings and a proposal for a generator working with wave energy. Journal of Architectural Sciences and Applications, 6(1), 1-10. https://doi.org/10.30785/mbud.808924
  • Gunes-Durak, S., & Kapkin, S. (2024). Overview of hydrogen energy production in the Black Sea for the disposal of potentially hazardous hydrogen sulfide. International Journal of Hydrogen Energy, 50, 706-714. https://doi.org/10.1016/j.ijhydene.2023.11.141
  • Güngör, F. (2019). İç denizlere uygun dalga enerjisi üretim sistemi. (Yüksek Lisans Tezi). Ordu Üniversitesi, Fen Bilimleri Enstitüsü, Ordu, Türkiye.
  • Harameen, H. M. A., & Akman, G. (2023). A cluster analysis of renewable electricity generation policies in Asian Region countries using SPSS software. Uluslararası Yönetim Akademisi Dergisi, 6(2), 357-375. https://doi.org/10.33712/mana.1104853
  • Hassan, M. K., Youssef, H., Gaber, I. M., Shehata, A. S., Khairy, Y., & El-Bary, A. A. (2024). A predictive machine learning model for estimating wave energy based on wave conditions relevant to coastal regions. Results in Engineering, 21, 101734. https://doi.org/10.1016/j.rineng.2023.101734
  • Henriques, J. C. C., Gato, L. M. C., Falcão, A. F. O., Robles, E., & Faÿ, F. X. (2016). Latching control of a floating oscillating-water-column wave energy converter. Renewable Energy, 90, 229-241. https://doi.org/10.1016/j.renene.2015.12.065
  • Hepbaşlı, A., Özdamar, A., & Özalp, N. (2001). Present status and potential of renewable energy sources in Turkey. Energy Sources, 23, 631-648. https://doi.org/10.1080/00908310118259
  • IRENA. (2023). Global geothermal market and technology assessment. International Renewable Energy Agency, Abu Dhabi; International Geothermal Association, The Hague. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Feb/IRENA_Global_geothermal_market_technology_assessment_2023.pdf
  • IRENA. (2015). Renewable power generation costs in 2014. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2015/IRENA_RE_Power_Costs_2014_report.pdf
  • IRENA and OEE (2023). Scaling up investments in ocean energy technologies. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2023/Mar/IRENA_OEE_Scaling_up_investment_ocean_energy_2023.pdf
  • Jafalı, H. (2019). Karadeniz’de dalga gücü potansiyeli yüksek alanların dalga enerji içeriğinin uzun dönemli zamansal ve alansal analizi. (Yüksek Lisans Tezi), Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, Bursa, Türkiye.
  • Jakimavičius, D., & Akstinas, V. (2023). Projections of wind climate and wave energy resources in Lithuanian territorial waters of the Baltic Sea in the 21st century. Oceanologia, 65(4), 534-547. https://doi.org/10.1016/j.oceano.2023.06.004
  • Kalogeri, C., Galanis, G., Spyrou, C., Diamantis, D., Baladima, F., Koukoula, M., & Kallos, G. (2017). Assessing the European offshore wind and wave energy resource for combined exploitation. Renewable Energy, 101, 244-264. https://doi.org/10.1016/j.renene.2016.08.010
  • Kamranzad, B., & Lin, P. (2020). Sustainability of wave energy resources in the South China Sea based on five decades of changing climate. Energy, 210, 118604. https://doi.org/10.1016/j.energy.2020.118604
  • Kamranzad, B., & Takara, K. (2020). A climate-dependent sustainability index for wave energy resources in Northeast Asia. Energy, 209, 118466. https://doi.org/10.1016/j.energy.2020.118466
  • Karaköse, P., & Koca, A. (2022). A novel rotor type wave energy converter design for maximum energy captured in low wave heights. Batman Üniversitesi Yaşam Bilimleri Dergisi, 12(2), 136-153. https://doi.org/10.55024/buyasambid.1131891
  • Kapluhan, E. (2014). Enerji̇ coğrafyası açısından bir inceleme: dalga enerji̇si̇nin dünyadaki̇ ve Türki̇ye’deki kullanım durumu. Uluslararası Avrasya Sosyal Bi̇li̇mler Dergisi, 5(17), 65-86.
  • Kıldıran, E. (2018). Antalya sahi̇li dalga enerji̇ potansi̇yeli̇nin beli̇rlenmesi. (Yüksek Lisans Tezi), Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Antalya, Türkiye.
  • Kim, Y.-H., Cho, S., & Lee, P.-S. (2023). Wave height classification via deep learning using monoscopic ocean videos. Ocean Engineering, 288, 116002. https://doi.org/10.1016/j.oceaneng.2023.116002
  • Kocalar, A. C. (2022). The effects of the EU green deal harmonization policies in Turkey. Advanced Engineering Science, 2, 109-117.
  • Kükner, A. (2018). Study of the oscillating water coloumn (owc) which is one of the most used systems in converting wave energy into electrical energy. Turkish Journal of Engineering, 2(2), 88-93. https://doi.org/10.31127/tuje.329295
  • Lamy, J. V., & Azevedo, I. L. (2018). Do tidal stream energy projects offer more value than offshore wind farms? A case study in the United Kingdom. Energy Policy, 113, 28-40. https://doi.org/10.1016/j.enpol.2017.10.030
  • Lavidas, G., Venugopal, V., & Friedrich, D. (2017). Wave energy extraction in Scotland through an improved nearshore wave atlas. International Journal of Marine Energy, 17, 64-83. https://doi.org/10.1016/j.ijome.2017.01.008
  • López-Ruiz, A., Bergillos, R. J., & Ortega-Sánchez, M. (2016). The importance of wave climate forecasting on the decision-making process for nearshore wave energy exploitation. Applied Energy, 182, 191-203. https://doi.org/10.1016/j.apenergy.2016.08.088
  • Magagna, D., & Uihlein, A. (2015). Ocean energy development in Europe: Current status and future perspectives. International Journal of Marine Energy, 11, 84-104. https://doi.org/10.1016/j.ijome.2015.05.001
  • Mahdavi-Meymand, A., & Sulisz, W. (2023). Application of nested artificial neural network for the prediction of significant wave height. Renewable Energy, 209, 157-168. https://doi.org/10.1016/j.renene.2023.03.118
  • Mert, S. (2012). Dalga enerjisi dönüşüm sistemi tasarımı ve deneysel çalışması. (Yüksek Lisans Tezi), İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul, Türkiye.
  • Metin, K. (2023). Türkiye’nin dalga enerjisi potansiyeline coğrafi bir bakış: muhtemel sahaların değerlendirilmesi. (Yüksek Lisans Tezi), Karabük Üniversitesi, Coğrafya Anabilim Dalı, Karabük, Türkiye.
  • Molina, A., Jiménez-Portaz, M., Clavero, M., & Moñino, A. (2022). The effect of turbine characteristics on the thermodynamics and compression process of a simple OWC device. Renewable Energy, 190, 836-847. https://doi.org/10.1016/j.renene.2022.03.106
  • Neill, S. P. (2022). Introduction to ocean renewable energy. In T. M. Letcher (Ed.), Comprehensive renewable energy (2. ed, pp. 1-9). Oxford: Elsevier. https://doi.org/10.1016/B978-0-12-819727-1.00081-9
  • O'Hagan, A. M., Huertas, C., O'Callaghan, J., & Greaves, D. (2016). Wave energy in Europe: Views on experiences and progress to date. International Journal of Marine Energy, 14, 180-197. https://doi.org/10.1016/j.ijome.2015.09.001
  • Onenli, O., Ercan, H., Acikgoz, S., & Kat, B. (2023). Emission reduction pathways for satisfying Türkiye’s future electricity demand: A cross-country dynamic panel analysis with linear programming scenarios. Cleaner Energy Systems, 6, 100085. https://doi.org/10.1016/j.cles.2023.100085
  • Oztunali Ozbahceci, B., Turgut, A. R., Bozoklu, A., & Abdalla, S. (2020). Calibration and verification of century based wave climate data record along the Turkish coasts using satellite altimeter data. Advances in Space Research, 66(10), 2319-2337. https://doi.org/10.1016/j.asr.2020.02.021
  • Özbek, T., & Ergül, E. U. (2022, Mart). Çok kriterli karar verme ile dalga enerjisi santrali sahası ve dönüştürücü tipi seçimi. İnşaat Mühendisleri Enstitüsü Bildirileri.
  • Özdamar, G., Mut, M., Pekbey, Y., & Özdamar, A. (2016). Bir wells dalga türbininin hesaplamalı akışkanlar dinamiği analizi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi, 7(3), 569-576.
  • Özdemi̇r, D. (2019). Promethee yöntemi̇ ile türki̇ye’de yeni̇lenebi̇lir enerji̇ alternati̇fleri̇nin sıralanması. (Yüksek Lisans Tezi), Akdeni̇z Üni̇versi̇tesi, Sosyal Bilimler Enstitüsü, Antalya, Türkiye.
  • Pontes, M. T., Mollison, D., Cavaleri, L., Athanassoulis, G. A., & Nieto, J. C. (1993). Wave studies and development of resource evaluation methodology. Final Report.
  • Qiu, S., Liu, K., Wang, D., Ye, J., & Liang, F. (2019). A comprehensive review of ocean wave energy research and development in China. Renewable and Sustainable Energy Reviews, 113, 109271. https://doi.org/10.1016/j.rser.2019.109271
  • Renewable UK Marine Energy Database. (2024). eSpatial. Erişim Tarihi: 31.01.2024. https://maps.esp.tl/maps/pages/map.jsp?geoMapId=19671&TENANT_ID=115744
  • Rodriguez-Delgado, C., & Bergillos, R. J. (2021). Wave energy assessment under climate change through artificial intelligence. Science of The Total Environment, 760, 144039. https://doi.org/10.1016/j.scitotenv.2020.144039
  • Ross, D. (1995). Power from the waves. Oxford University Press.
  • Rusu, E., & Onea, F. (2016). Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands. Renewable Energy, 85, 687-703. https://doi.org/10.1016/j.renene.2015.07.042
  • Rusu, E., & Onea, F. (2022). Evaluation of the adverse weather conditions associated to some significant European marine renewable energy projects. Energy Reports, 8(16), 185-193. https://doi.org/10.1016/j.egyr.2022.10.205
  • Rusu, E., & Rusu, L. (2021). An evaluation of the wave energy resources in the proximity of the wind farms operating in the North Sea. Energy Reports, 7(3), 19-27. https://doi.org/10.1016/j.egyr.2021.05.058
  • Sağlam, M., Sulukan, E., & Uyar, T. S. (2010). Wave energy and technical potential of Turkey. Journal of Naval Sciences and Engineering, 6(2), 34-50.
  • Sareen, K., Panigrahi, B. K., Shikhola, T., & Nagdeve, R. (2023). An integrated decomposition algorithm based bidirectional LSTM neural network approach for predicting ocean wave height and ocean wave energy. Ocean Engineering, 281, 114852. https://doi.org/10.1016/j.oceaneng.2023.114852
  • Shadmani, A., Nikoo, M. R., Gandomi, A. H., Wang, R.-Q., & Golparvar, B. (2023). A review of machine learning and deep learning applications in wave energy forecasting and WEC optimization. Energy Strategy Reviews, 49, 101180. https://doi.org/10.1016/j.esr.2023.101180
  • Simard, P. Y., Steinkraus, D., & Platt, J. C. (2003, September). Best practices for convolutional neural networks applied to visual document analysis. Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings, 958-963. https://doi.org/10.1109/icdar.2003.1227801
  • Simões, C., Pintossi, D., Saakes, M., Borneman, Z., Brilman, W., & Nijmeijer, K. (2020). Electrode segmentation in reverse electrodialysis: Improved power and energy efficiency. Desalination, 492, 114604. https://doi.org/10.1016/j.desal.2020.114604
  • Spelta, A., & De Giuli, M. E. (2023). Does renewable energy affect fossil fuel price? A time-frequency analysis for the Europe. Physica A: Statistical Mechanics and its Applications, 626, 129098. https://doi.org/10.1016/j.physa.2023.129098
  • Tufa, R. A., Pawlowski, S., Veerman, J., Bouzek, K., Fontananova, E., di Profio, G., … & Curcio, E. (2018). Progress and prospects in reverse electrodialysis for salinity gradient energy conversion and storage. Applied Energy, 225, 290-331. https://doi.org/10.1016/j.apenergy.2018.04.111
  • Turkchem. (2022). Mavi enerji. Erişim Tarihi: 11.02.2024. https://www.turkchem.net/mavi-enerji.html
  • Türker, Y. Ö., & Aydin, A. (2022). How ready is the Turkish Legislation for the green deal? Energy and Climate Change, 3, 100084. https://doi.org/10.1016/j.egycc.2022.100084
  • Türköz, K. (2021). Türkiye’de sektörel enerji kullanımındaki değişimlerin itici güçleri: Ayrıştırma analizi. MANAS Sosyal Araştırmalar Dergisi, 10, 1038-1052. https://doi.org/10.33206/mjss.853348
  • Uygur, İ., Demi̇rci̇, R., Saruhan, H., Özkan, A., & Belenli̇, İ. (2006). Batı Karadeni̇z bölgesi̇ndeki dalga enerji̇si potansi̇yeli̇nin araştırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 12(1), 7-13.
  • Veerman, J. (2010). Reverse electrodialysis: Design and optimization by modeling and experimentation. (Thesis fully internal (DIV)), University of Groningen.
  • Wang, Y. (2020). Predicting absorbed power of a wave energy converter in a nonlinear mixed sea. Renewable Energy, 153, 362-374. https://doi.org/10.1016/j.renene.2020.02.031
  • Webb, A., Waseda, T., & Kiyomatsu, K. (2020). A high-resolution, long-term wave resource assessment of Japan with wave-current effects. Renewable Energy, 161, 1341-1358. https://doi.org/10.1016/j.renene.2020.05.030
  • Yeni Enerji. (2019). Gelgit enerjisi ve başarılı örnekleri. Erişim tarihi: 31.01.2024. https://www.yenienerji.com/mercek-alti/gelgit-enerjisi-ve-basarili-ornekleri
  • Yücel, U., Özdemi̇r, E., & Ayaz, M. (2021). Yenilenebilir enerji kaynaklarından üretilen elektrik enerjisi teşvik yöntemlerinin incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 9(2), 774-790. https://doi.org/10.29130/dubited.774963
  • Yüksel, F. Ş. (2023). Türkiye’nin havayolu taşıyıcı modellerine göre yolcu talebinin çoklu doğrusal regresyon, anfıs ve yapay sinir ağı teknikleri ile tahminlenmesi. (Doktora Tezi), Çukurova Üniversitesi, Fen Bilimleri Enstitüsü, Adana.
  • Zhang, J., Zhao, X., Greaves, D., & Jin, S. (2023). Modeling of a hinged-raft wave energy converter via deep operator learning and wave tank experiments. Applied Energy, 341, 121072. https://doi.org/10.1016/j.apenergy.2023.121072
  • Zheng, C.-w., Pan, J., & Li, J.-x. (2013). Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65, 39-48. https://doi.org/10.1016/j.oceaneng.2013.03.006
  • Zheng, J., Dai, P., & Zhang, J. (2015). Tidal stream energy in China. Procedia Engineering, 116, 880-887. https://doi.org/10.1016/j.proeng.2015.08.377
  • Zheng, Z., Ali, M., Jamei, M., Xiang, Y., Abdulla, S., Yaseen, Z. M., & Farooque, A. A. (2023). Multivariate data decomposition based deep learning approach to forecast one-day ahead significant wave height for ocean energy generation. Renewable and Sustainable Energy Reviews, 185, 113645. https://doi.org/10.1016/j.rser.2023.113645
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Okyanus Mühendisliği, Yenilenebilir Enerji Sistemleri
Bölüm Derleme Makaleler / Review Articles
Yazarlar

Selma Kaymaz 0009-0002-6342-871X

Tuğrul Bayraktar 0000-0001-5620-5804

Çağrı Sel 0000-0002-8657-2303

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 2 Mart 2024
Kabul Tarihi 4 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kaymaz, S., Bayraktar, T., & Sel, Ç. (2024). Su Dalga Enerjisi Üretimi ve Yapay Zekâ: Asya, Avrupa ve Türkiye’nin Potansiyeli. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 798-822. https://doi.org/10.53433/yyufbed.1445985