Derleme
BibTex RIS Kaynak Göster

Metal/Metal Oxide Nanoparticles Produced by Green Synthesis Targeting the Blood-Brain Barrier

Yıl 2025, Cilt: 30 Sayı: 3, 1188 - 1202, 24.12.2025
https://doi.org/10.53433/yyufbed.1702653

Öz

The blood-brain barrier (BBB) is a significant obstacle in the treatment of neurological diseases due to its selectively permeable structure, which protects the central nervous system (CNS) from harmful substances. In recent years, nanotechnological carrier systems developed to overcome this barrier have attracted great interest. Metal and metal oxide nanoparticles (ZnO, FeO, Ag, Au), produced under environmentally friendly conditions with green synthesis methods, stand out due to their suitable size, surface charge, and biocompatibility properties to cross the BBB. These biogenic nanostructures synthesized using plant extracts, microorganisms, or biomolecules offer low toxicity, long circulation time, and targeted transport potential, making them promising candidates for the treatment of neurodegenerative diseases. In this review, studies on the production of green synthesized metal and metal oxide nanoparticles and their brain-targeted applications are examined. The findings indicatethat these nanostructures may provide safe and effective alternatives for brain-targeted drug delivery and diagnostic systems.

Etik Beyan

Bu makalenin yazarları çalışmalarında araştırma ve yayın etiğine uyduklarını beyan ederler. Bu makalenin yazarları çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve/veya yasal-özel bir izin gerektirmediğini beyan ederler.

Kaynakça

  • Aftenieva, O., Schletz, D., Offenhäußer, T., Riesterer, J., Schmalzriedt, S., & König, T. A. (2024). Expanding the plasmonic color palette: enhancing nanotechnology education through a user-friendly teaching platform. Journal of Chemical Education, 101(8), 3311-3317. https://doi.org/10.1021/acs.jchemed.4c00329
  • Ahmaruzzaman, M., Roy, S., Singha, A., Rtimi, S., & Aminabhavi, T. M. (2025). Emerging nanotechnologies in adsorption of dyes: a comprehensive review of carbon and metal oxide-based nanomaterials. Adsorption, 31(2), 34. https://doi.org/10.1007/s10450-024-00588-y
  • Ahmed, A. A., Alegret, N., Almeida, B., Alvarez-Puebla, R., Andrews, A. M., Ballerini, L., & Parak, W. J. (2025). Interfacing with the brain: how nanotechnology can contribute. ACS Nano, 19(11), 10630-10717. https://doi.org/10.1021/acsnano.4c10525
  • Ahmed, T. A. E., Suso, H., Maqbool, A., & Hincke, M. T. (2019). Processed eggshell membrane powder: bioinspiration for an ınnovative wound healing product. Mater. Sci. Eng., 95, 192–203.
  • Al-Harbi, N., & Abd-Elrahman, N. K. (2025). Physical methods for preparation of nanomaterials, their characterization and applications: a review. Journal of Umm Al-Qura University for Applied Sciences, 11(2), 356-377. https://doi.org/10.1016/j.msec.2018.10.054
  • Alex, A. M., Subburaman, S., Chauhan, S., Ahuja, V., Abdi, G., & Tarighat, M. A. (2024). Green synthesis of silver nanoparticle prepared with ocimum species and assessment of anticancer potential. Scientific Reports, 14(1), 11707. https://doi.org/10.1038/s41598-024-61946-y
  • Aliero, A. S., Hasmoni, S. H., Haruna, A., Isah, M., Malek, N. A. N. N., & Zawawi, N. A. (2025). Bibliometric exploration of green synthesized silver nanoparticles for antibacterial activity. Emerging Contaminants, 11(1), 100411. https://doi.org/10.1016/j.emcon.2024.100411
  • Altınsoy, C., & Dikmen, D. (2023). Kan beyin bariyeri modülasyonuna yeni bir bakış açısı: beslenme ve çevresel faktörlerin etkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 8(1), 183-192.
  • Anirud, U. A. (2025). Overcoming the blood-brain barrier, strategies and advances in therapeutic delivery: a literature review. Undergraduate Research in Natural and Clinical Science and Technology Journal, 9, 1-9. https://doi.org/10.26685/urncst.774
  • Arain, S., Usman, M., Saeed, F., Feng, S., Rehman, W., Liu, X., & Dai, H. (2025). Microemulsion-based synthesis of highly efficient Ag-doped fibrous SiO2-TiO2 photoanodes for photoelectrochemical water splitting. Catalysts, 15(1), 66. https://doi.org/10.3390/catal15010066
  • Aspillaga, L., Jan Bautista, D., Daluz, S. N., Hernandez, K., Renta, J. A., & Lopez, E. C. R. (2023). Nucleation and crystal growth: recent advances and future trends. Engineering Proceedings, 56(1), 22. https://doi.org/10.3390/ASEC2023-15281
  • Ateş, H., & Bahçeci, E. (2015). Nano malzemeler için üretim yöntemleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 3(2), 483–499.
  • Barakat, M. A., Anjum, M., Kumar, R., Alafif, Z. O., Oves, M., & Ansari, M. O. (2020). Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. Journal of Cleaner Production, 258, 120588. https://doi.org/10.1016/j.jclepro.2020.12058
  • Bobrova, N. O., Vazhnychaya, E. M., Ananieva, M. M., Faustova, M. O., Lugova, L. O., Dobrovolska, O. V., & Dobrovolskyi, O. V. (2024). Antimicrobial properties of metal/metal oxide nanoparticles and their possibilities in dental implantology. Bulletin of Problems Biology and Medicine, (2), 17-23. https://doi.org/10.29254/2077-4214-2024-2-173-17-23
  • Boruah, J. S., Devi, C., Hazarika, U., Reddy, P. V. B., Chowdhury, D., Barthakur, M., & Kalita, P. (2021). Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Advances, 11(45), 28029-28041. https://doi.org/10.1039/D1RA02669K
  • Chatterjee, S., Das, A., Datta, P., Thomas, S., & Ghosal, K. (2025). Medium molecular weight chitosan and magnetite based bead as a nanocomposite for delivery of anticancer drug: Development, evaluation and biocompatibility study. International Journal of Biological Macromolecules, 293, 139246. https://doi.org/10.1016/j.ijbiomac.2024.139246
  • Chaudhari, A., Vadodariya, P., Vyas, A., Patel, D., & Teli, D. (2024). Composition of nanoparticles. nanocarrier vaccines, Biopharmaceutics‐Based Fast Track Development, 25-62. https://doi.org/10.1002/9781394175482.ch2
  • Chavda, V. P., & Apostolopoulos, V. (Eds.). (2024). Nanocarrier vaccines: biopharmaceutics-based fast track development. John Wiley & Sons.
  • Correia, A. C., Monteiro, A. R., Silva, R., Moreira, J. N., Lobo, J. S., & Silva, A. C. (2022). Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Advanced Drug Delivery Reviews, 189, 114485. https://doi.org/10.1016/j.addr.2022.114485
  • Das, S., Dwivedi, A., Tiwari, V., Yadav, V., Satpathy, S., Mohapatra, D., & Patra, A. (2024). Microwave-based rapid green synthesis of gold nanoparticles utilizing a notorious weed (Mikania micrantha) extract and evaluation of their biomedical properties. Waste and Biomass Valorization, 1-18. https://doi.org/10.1007/s12649-024-02787-8
  • Das, U., Das, A., Das, R., & Das, A. K. (2025). Nanotechnology of colour: quantum dots (QDs), photonic crystals (PCs) and plasmonic nanoparticles. Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2024-0043
  • Dubadi, R., Huang, S. D., & Jaroniec, M. (2023). Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials, 16(4), 1460. https:// doi.org/10.3390/ma16041460
  • El-Hawwary, S. S., Abd Almaksoud, H. M., Saber, F. R., Elimam, H., Sayed, A. M., El Raey, M. A., & Abdelmohsen, U. R. (2021). Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances, 11(29), 18009-18025. https://doi.org/10.1039/D1RA01725J
  • Elliott, J. A., Shibuta, Y., Amara, H., Bichara, C., & Neyts, E. C. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 5(15), 6662. https:// doi.org/10.1039/c3nr01925j
  • Elmarsafy, S. M. (2025). A comprehensive narrative review of nanomaterial applications in restorative dentistry: reinforcement and therapeutic applications (part II). Cureus, 17(3).
  • Elmitwalli, O. S. M. M. S., Kassim, D. A. K., Algahiny, A. T., & Henari, F. Z. (2025). Green synthesis of metal nanoparticles using cinnamomum-based extracts and their applications. Nanotechnology, Science and Applications, 93-114. https://doi.org/10.2147/NSA.S489274
  • Fariq, A., Khan, T., & Yasmin, A. (2017). Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 15(4), 241–248. https:// doi.org/10.1016/j.jab.2017.03.004
  • Fehse, S., Nowag, S., Quadir, M., Kim, K. S., Haag, R., & Multhaup, G. (2014). Copper transport mediated by nanocarrier systems in a blood–brain barrier in vitro model. Biomacromolecules, 15(5), 1910-1919. https://doi.org/10.1021/bm500400k
  • Frederickson, C. J., Koh, J. Y., & Bush, A. I. (2005). The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 6(6), 449-462. https://doi.org/10.1038/nrn1671
  • Gvozdeva, Y. (2025). Nanotechnology-based delivery systems for enhanced targeting of tyrosine kinase ınhibitors: exploring ınorganic and organic nanoparticles as targeted carriers. Kinases and Phosphatases, 3(2), 9. https://doi.org/10.3390/kinasesphosphatases3020009
  • Halıcı, A., Seyrek, A., Aykan, K., Ünal, F., & Yüzbaşıoğlu, D. (2021). Nanopartiküllerin genotoksik etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(2), 19-38.
  • Harish, V., Ansari, M. M., Tewari, D., Gaur, M., Yadav, A. B., García-Betancourt, M. L., & Barhoum, A. (2022). Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials, 12(18), 3226. https://doi.org/10.3390/ nano12183226
  • Khadrawy, Y. A., Hosny, E. N., & Mohamed, H. S. E. (2024). Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iranian Journal of Basic Medical Sciences, 27(1), 81. doi: 10.22038/IJBMS.2023.73124.15892
  • Lawal, H., Saeed, S. I., Gaddafi, M. S., & Kamaruzzaman, N. F. (2025). Green nanotechnology: naturally sourced nanoparticles as antibiofilm and antivirulence agents against infectious diseases. International Journal of Microbiology, 2025(1), 8746754. https://doi.org/10.1155/ijm/8746754
  • Lemus-De la Cruz, J., Trejo-Hurtado, M., Landa-Moreno, C., Peña-Montes, D., Landeros-Páramo, J. L., Cortés-Rojo, C., & Saavedra-Molina, A. (2023). Antioxidant effects of silver nanoparticles obtained by green synthesis from the aqueous extract of Eryngium carlinae on the brain mitochondria of streptozotocin-induced diabetic rats. Journal of Bioenergetics and Biomembranes, 55(2), 123-135. https://doi.org/10.1007/s10863-023-09963-w
  • Liang, X., Wang, Z., Wang, D., Du, J., Qin, J., & Shen, R. (2024). Green synthesis, chemical characterization, and protective potentials of silver nanoparticles on the development of cerebrovascular diseases in rat cerebral ischemia reperfusion injury. Inorganic Chemistry Communications, 162, 112264. https://doi.org/10.1016/j.inoche.2024.112264
  • Lim, Z. Z. J., Li, J. E. J., Ng, C. T., Yung, L. Y. L., & Bay, B. H. (2011). Gold nanoparticles in cancer therapy. Acta Pharmacologica Sinica, 32(8), 983-990. https://doi.org/10.1038/aps.2011.82
  • Maghimaa, M., Sagadevan, S., Suryadevara, P. R., Sudhan, H. H., Burle, G. S. R., Ruokolainen, J., & Kesari, K. K. (2025). Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral cancer: A Review. Inorganic Chemistry Communications, 173, 113806. https://doi.org/10.1016/j.inoche.2024.113806
  • Maisa, W., & Awwad, A. M. (2021). A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chemistry International, 7(1), 71–78. https://doi.org/10.5281/zenodo.4042902
  • Majd, N. E., Tabandeh, M. R., Hosseinifar, S., & Zarneh, S. R. (2021). Chemical and green ZnO nanoparticles ameliorated adverse effects of cisplatin on histological structure, antioxidant defense system and neurotrophins expression in rat hippocampus. Journal of Chemical Neuroanatomy, 116, 101990. 21. https://doi.org/10.1016/j.jchemneu.2021.101990
  • Mani, R., Ezhumalai, D., Muthusamy, G., & Namasivayam, E. (2024). Neuroprotective effect of biogenically synthesized ZnO nanoparticles against oxidative stress and β‐amyloid toxicity in transgenic Caenorhabditis elegans. Biotechnology and Applied Biochemistry, 71(1), 132-146. https://doi.org/10.1002/bab.2527
  • Manzari‐Tavakoli, A., Babajani, A., Tavakoli, M. M., Safaeinejad, F., & Jafari, A. (2024). Integrating natural compounds and nanoparticle‐based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Medicine, 13(5), e7010. https://doi.org/10.1002/cam4.7010
  • Matsumoto, R., Adachi, S., Sadki, E. H. S., Yamamoto, S., Tanaka, H., Takeya, H., & Takano, Y. (2020). Maskless patterning of gallium-irradiated superconducting silicon using focused ion beam. ACS Applied Electronic Materials, 2(3), 677-682. https://doi.org/10.1021/acsaelm.9b00781
  • Muthu, K., & Priya, S. (2017). Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 66–72. https://doi.org/10.1016/j.saa.2017.02.024
  • Nagori, K., Nakhate, K. T., Yadav, K., Thakur, A., Ajazuddin, M., & Pradhan, M. (2024). Innovative strategies for overcoming blood-brain barrier challenges in Alzheimer’s disease: a focus on green-synthesized metallic nanoparticles. Inorganic Chemistry Communications, 113604. https://doi.org/10.1016/j.inoche.2024.113604
  • Naser, H., Alghoul, M. A., Hossain, M. K., Asim, N., Abdullah, M. F., Ali, M. S., Amin, N. (2019). The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. Journal of Nanoparticle Research, 21(11). https:// doi.org/10.1007/s11051-019-4690-3
  • Naveed, M., Mahmood, S., Aziz, T., Azeem, A., Rajpoot, Z., Rehman, S. U., & Alshareef, S. A. (2024). Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions. Scientific Reports, 14(1), 25489. https://doi.org/10.1038/s41598-024-75820-4
  • Nkentsha, Z., & Rambharose, S. (2025). Green-synthesized gold nanoparticles exhibit neuroprotective activity against oxidative stress-induced damage in SH-SY5Y cells. Journal of Nanoparticle Research, 27(7), 197. https://doi.org/10.1007/s11051-025-06387-y
  • Park, T. J., Lee, K. G., & Lee, S. Y. (2015). Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology, 100(2), 521–534. https:// doi.org/10.1007/s00253-015-6904-7
  • Peluffo, H., Unzueta, U., Negro-Demontel, M. L., Xu, Z., Váquez, E., Ferrer-Miralles, N., & Villaverde, A. (2015). BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnology Advances, 33(2), 277-287. https://doi.org/10.1016/j.biotechadv.2015.02.004
  • Peng, B., Mohammed, F. S., Tang, X., Liu, J., Sheth, K. N., & Zhou, J. (2025). Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioactive Materials, 43, 145-161. https://doi.org/10.1016/j.bioactmat.2024.09.016
  • Polat, H. K., Aytekin, E., Karakuyu, N. F., Kurt, N., & Yazıksız, Y. (2024). Oküler ilaç taşıyıcı sistem olarak lipit bazlı nanopartiküller. Journal of Faculty of Pharmacy of Ankara University, 48(2), 28-28. https://doi.org/10.33483/jfpau.1420064
  • Puri, A., Mohite, P., Maitra, S., Subramaniyan, V., Kumarasamy, V., Uti, D. E., & Atangwho, I. J. (2024). From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomedicine & Pharmacotherapy, 170, 116083. https://doi.org/10.1016/j.biopha.2023.116083
  • Qu, B., Xiao, Z., & Luo, Y. (2025). sustainable nanotechnology for food preservation: synthesis, mechanisms, and applications of Zinc Oxide nanoparticles. Journal of Agriculture and Food Research, 101743. https://doi.org/10.1016/j.jafr.2025.101743
  • Rasool, A., Sri, S., Zulfajri, M., & Krismastuti, F. S. H. (2024). Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. Inorganic Chemistry Communications, 112954. https://doi.org/10.1016/j.inoche.2024.112954
  • Ross, A. M., Cahalane, R. M., Walsh, D. R., Grabrucker, A. M., Marcar, L., & Mulvihill, J. J. (2023). Identification of nanoparticle properties for optimal drug delivery across a physiological cell barrier. Pharmaceutics, 15(1), 200. https://doi.org/10.3390/pharmaceutics15010200
  • Serin, H. (2023). Encapsulation of extract prepared from plant wastes with chitosan nanoparticles and in vitro investigation (PhD), Sakarya University, Institute of Science, Sakarya, Turkey.
  • Sethi, B., Kumar, V., Mahato, K., Coulter, D. W., & Mahato, R. I. (2022). Recent advances in drug delivery and targeting to the brain. Journal of Controlled Release, 350, 668-687. https://doi.org/10.1016/j.jconrel.2022.08.051
  • Shafiee, M., Fard, E. S., Taghvimi, S., Movahedpour, A., Mousavi, P., Rezaeijo, S. M., & Azadbakht, O. (2025). Nanoparticle-based sensitizers in prostate cancer treatment: Enhancing radiotherapy efficacy through innovative nanotechnology: narrative review. Applied Radiation and Isotopes, 111671. https://doi.org/10.1016/j.apradiso.2025.111671
  • Sikiru, S., Abiodun, O. A., Sanusi, Y. K., Sikiru, Y. A., Soleimani, H., Yekeen, N., & Haslija, A. A. (2022). A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. Journal of Environmental Chemical Engineering, 10(4), 108065. https://doi.org/10.1016/j.jece.2022.108065
  • Song, Q., Li, J., Li, T., & Li, H. W. (2024). Nanomaterials that aid in the diagnosis and treatment of alzheimer's disease, resolving blood–brain barrier crossing ability. Advanced Science, 11(38), 2403473. https://doi.org/10.1002/advs.202403473
  • Şensoy Gün, B., Aytimur, A., Karagöl, Ç., & Gurbanov, R. (2025). Plant-derived Edible Nanocomposite Films with Antimicrobial Silver Nanoparticles: Harnessing Quince Seed Extract for Green Food Preservation. Food and Bioprocess Technology, 1-15. https://doi.org/10.1007/s11947-025-03990-8
  • Swilam, N., & Nematallah, K. A. (2020). Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71847-5
  • Thatyana, M., Dube, N. P., Kemboi, D., Manicum, A. L. E., Mokgalaka-Fleischmann, N. S., & Tembu, J. V. (2023). Advances in phytonanotechnology: a plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials, 13(19), 2616. https://doi.org/10.3390/ nano13192616
  • Topal, G. R. (2021). Alzheimer tedavisine yönelik ilaç taşıyıcı sistemlerin geliştirilmesi karakterizasyonu ve etkinliğinin incelenmesi (PhD), Ankara University, Health Sciences Institute, Ankara, Turkey.
  • Vali, R., Shirvanian, K., Farkhondeh, T., Aschner, M., Samini, F., & Samarghandian, S. (2025). A review study on the effect of zinc on oxidative stress-related neurological disorders. Journal of Trace Elements in Medicine and Biology, 127618. https://doi.org/10.1016/j.jtemb.2025.127618
  • Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Advances, 11(5), 2804-2837. https://doi.org/10.1039/D0RA09941D
  • Varalli, L., Berlet, R., Abenojar, E. C., McDaid, J., Gascoigne, D. A., Bailes, J., & Aksenov, D. P. (2025). Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics, 17(4), 499. https://doi.org/10.3390/pharmaceutics17040499
  • Vinukonda, A., Bolledla, N., Jadi, R. K., Chinthala, R., & Devadasu, V. R. (2025). Synthesis of nanoparticles using advanced techniques. Next Nanotechnology, 8, 100169. https://doi.org/10.1016/j.nxnano.2025.100169
  • Wang, G., Li, Z., Wang, G., Sun, Q., Lin, P., Wang, Q., & Zhong, Z. (2024). Advances in engineered nanoparticles for the treatment of ischemic stroke by enhancing angiogenesis. International Journal of Nanomedicine, 19, 4377-4409. https://doi.org/10.2147/IJN.S463333
  • Xu, Z., Zhang, R., Zhang, T., Niu, Z., Zhang, M., & Shi, F. (2025). Study on the preparation of sterile noble metal nanoparticles and hydrotalcite layered nanoparticles by innovative high pressure sterilization method. Scientific Reports, 15(1), 1-14. https://doi.org/10.1038/s41598-025-99577-6
  • Yan, Q., Yang, Z., & Chen, Z. (2025). Recent advances in microbial nanomaterials/nanoparticles synthesis and rare earth elements recovery from rare earth mine wastewater: A review. Chemical Engineering Journal, 161647. https://doi.org/10.1016/j.cej.2025.161647
  • Yang, H., Zhu, M. & Li, Y. (2020). Sol–gel research in China: a brief history and recent research trends in synthesis of sol–gel derived materials and their applications. J Sol-Gel Sci Technol 106, 406–42. https://doi.org/10.1007/s10971-022-05750-y
  • Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik sistemli nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108.
  • Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental technology & innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
  • Zhang, J., Yang, T., Huang, W., Yu, Y., & Sun, T. (2022). Applications of gold nanoparticles in brain diseases across the blood-brain barrier. Current Medicinal Chemistry, 29(39), 6063–6083. https://doi.org/10.2174/0929867329666220527121943
  • Zhunushova, A. (2020). Kan beyin bariyeri ve ilaç geçiş modulasyonu. Manas Journal of Agriculture Veterinary and Life Sciences, 10(2), 115-121.

Kan Beyin Bariyeri Hedefli Yeşil Sentezle Üretilen Metal/Metal Oksit Nanopartiküller

Yıl 2025, Cilt: 30 Sayı: 3, 1188 - 1202, 24.12.2025
https://doi.org/10.53433/yyufbed.1702653

Öz

Kan-beyin bariyeri (KBB), merkezi sinir sistemini (MSS) zararlı maddelerden koruyan seçici geçirgen yapısıyla, nörolojik hastalıkların tedavisinde önemli bir engel oluşturmaktadır. Son yıllarda, bu bariyeri aşmak amacıyla geliştirilen nanoteknolojik taşıyıcı sistemler büyük ilgi görmektedir. Özellikle yeşil sentez yöntemleriyle çevre dostu koşullarda üretilen metal ve metal oksit nanopartiküller (ZnO, FeO, Ag, Au), KBB’yi geçmeye uygun boyut, yüzey yükü ve biyouyumluluk özellikleriyle öne çıkmaktadır. Bitkisel özütler, mikroorganizmalar veya biyomoleküller aracılığıyla sentezlenen bu biyojenik nanoyapılar; düşük toksisite, uzun dolaşım süresi ve hedefe yönelik taşıma potansiyeli sunarak, nörodejeneratif hastalıkların tedavisinde umut vadetmektedir. Bu derlemede, yeşil sentezli metal ve metal oksit nanopartiküllerin üretimi ve beyne hedefli kullanım alanını kapsayan araştırmalar incelenmiştir. Elde edilen bulgular, bu nanoyapıların beyin hedefli ilaç taşıma ve tanı sistemlerinde güvenli ve etkili alternatifler sunabileceğini göstermektedir.

Kaynakça

  • Aftenieva, O., Schletz, D., Offenhäußer, T., Riesterer, J., Schmalzriedt, S., & König, T. A. (2024). Expanding the plasmonic color palette: enhancing nanotechnology education through a user-friendly teaching platform. Journal of Chemical Education, 101(8), 3311-3317. https://doi.org/10.1021/acs.jchemed.4c00329
  • Ahmaruzzaman, M., Roy, S., Singha, A., Rtimi, S., & Aminabhavi, T. M. (2025). Emerging nanotechnologies in adsorption of dyes: a comprehensive review of carbon and metal oxide-based nanomaterials. Adsorption, 31(2), 34. https://doi.org/10.1007/s10450-024-00588-y
  • Ahmed, A. A., Alegret, N., Almeida, B., Alvarez-Puebla, R., Andrews, A. M., Ballerini, L., & Parak, W. J. (2025). Interfacing with the brain: how nanotechnology can contribute. ACS Nano, 19(11), 10630-10717. https://doi.org/10.1021/acsnano.4c10525
  • Ahmed, T. A. E., Suso, H., Maqbool, A., & Hincke, M. T. (2019). Processed eggshell membrane powder: bioinspiration for an ınnovative wound healing product. Mater. Sci. Eng., 95, 192–203.
  • Al-Harbi, N., & Abd-Elrahman, N. K. (2025). Physical methods for preparation of nanomaterials, their characterization and applications: a review. Journal of Umm Al-Qura University for Applied Sciences, 11(2), 356-377. https://doi.org/10.1016/j.msec.2018.10.054
  • Alex, A. M., Subburaman, S., Chauhan, S., Ahuja, V., Abdi, G., & Tarighat, M. A. (2024). Green synthesis of silver nanoparticle prepared with ocimum species and assessment of anticancer potential. Scientific Reports, 14(1), 11707. https://doi.org/10.1038/s41598-024-61946-y
  • Aliero, A. S., Hasmoni, S. H., Haruna, A., Isah, M., Malek, N. A. N. N., & Zawawi, N. A. (2025). Bibliometric exploration of green synthesized silver nanoparticles for antibacterial activity. Emerging Contaminants, 11(1), 100411. https://doi.org/10.1016/j.emcon.2024.100411
  • Altınsoy, C., & Dikmen, D. (2023). Kan beyin bariyeri modülasyonuna yeni bir bakış açısı: beslenme ve çevresel faktörlerin etkisi. İzmir Katip Çelebi Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 8(1), 183-192.
  • Anirud, U. A. (2025). Overcoming the blood-brain barrier, strategies and advances in therapeutic delivery: a literature review. Undergraduate Research in Natural and Clinical Science and Technology Journal, 9, 1-9. https://doi.org/10.26685/urncst.774
  • Arain, S., Usman, M., Saeed, F., Feng, S., Rehman, W., Liu, X., & Dai, H. (2025). Microemulsion-based synthesis of highly efficient Ag-doped fibrous SiO2-TiO2 photoanodes for photoelectrochemical water splitting. Catalysts, 15(1), 66. https://doi.org/10.3390/catal15010066
  • Aspillaga, L., Jan Bautista, D., Daluz, S. N., Hernandez, K., Renta, J. A., & Lopez, E. C. R. (2023). Nucleation and crystal growth: recent advances and future trends. Engineering Proceedings, 56(1), 22. https://doi.org/10.3390/ASEC2023-15281
  • Ateş, H., & Bahçeci, E. (2015). Nano malzemeler için üretim yöntemleri. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 3(2), 483–499.
  • Barakat, M. A., Anjum, M., Kumar, R., Alafif, Z. O., Oves, M., & Ansari, M. O. (2020). Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. Journal of Cleaner Production, 258, 120588. https://doi.org/10.1016/j.jclepro.2020.12058
  • Bobrova, N. O., Vazhnychaya, E. M., Ananieva, M. M., Faustova, M. O., Lugova, L. O., Dobrovolska, O. V., & Dobrovolskyi, O. V. (2024). Antimicrobial properties of metal/metal oxide nanoparticles and their possibilities in dental implantology. Bulletin of Problems Biology and Medicine, (2), 17-23. https://doi.org/10.29254/2077-4214-2024-2-173-17-23
  • Boruah, J. S., Devi, C., Hazarika, U., Reddy, P. V. B., Chowdhury, D., Barthakur, M., & Kalita, P. (2021). Green synthesis of gold nanoparticles using an antiepileptic plant extract: in vitro biological and photo-catalytic activities. RSC Advances, 11(45), 28029-28041. https://doi.org/10.1039/D1RA02669K
  • Chatterjee, S., Das, A., Datta, P., Thomas, S., & Ghosal, K. (2025). Medium molecular weight chitosan and magnetite based bead as a nanocomposite for delivery of anticancer drug: Development, evaluation and biocompatibility study. International Journal of Biological Macromolecules, 293, 139246. https://doi.org/10.1016/j.ijbiomac.2024.139246
  • Chaudhari, A., Vadodariya, P., Vyas, A., Patel, D., & Teli, D. (2024). Composition of nanoparticles. nanocarrier vaccines, Biopharmaceutics‐Based Fast Track Development, 25-62. https://doi.org/10.1002/9781394175482.ch2
  • Chavda, V. P., & Apostolopoulos, V. (Eds.). (2024). Nanocarrier vaccines: biopharmaceutics-based fast track development. John Wiley & Sons.
  • Correia, A. C., Monteiro, A. R., Silva, R., Moreira, J. N., Lobo, J. S., & Silva, A. C. (2022). Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Advanced Drug Delivery Reviews, 189, 114485. https://doi.org/10.1016/j.addr.2022.114485
  • Das, S., Dwivedi, A., Tiwari, V., Yadav, V., Satpathy, S., Mohapatra, D., & Patra, A. (2024). Microwave-based rapid green synthesis of gold nanoparticles utilizing a notorious weed (Mikania micrantha) extract and evaluation of their biomedical properties. Waste and Biomass Valorization, 1-18. https://doi.org/10.1007/s12649-024-02787-8
  • Das, U., Das, A., Das, R., & Das, A. K. (2025). Nanotechnology of colour: quantum dots (QDs), photonic crystals (PCs) and plasmonic nanoparticles. Reviews in Inorganic Chemistry. https://doi.org/10.1515/revic-2024-0043
  • Dubadi, R., Huang, S. D., & Jaroniec, M. (2023). Mechanochemical synthesis of nanoparticles for potential antimicrobial applications. Materials, 16(4), 1460. https:// doi.org/10.3390/ma16041460
  • El-Hawwary, S. S., Abd Almaksoud, H. M., Saber, F. R., Elimam, H., Sayed, A. M., El Raey, M. A., & Abdelmohsen, U. R. (2021). Green-synthesized zinc oxide nanoparticles, anti-Alzheimer potential and the metabolic profiling of Sabal blackburniana grown in Egypt supported by molecular modelling. RSC Advances, 11(29), 18009-18025. https://doi.org/10.1039/D1RA01725J
  • Elliott, J. A., Shibuta, Y., Amara, H., Bichara, C., & Neyts, E. C. (2013). Atomistic modelling of CVD synthesis of carbon nanotubes and graphene. Nanoscale, 5(15), 6662. https:// doi.org/10.1039/c3nr01925j
  • Elmarsafy, S. M. (2025). A comprehensive narrative review of nanomaterial applications in restorative dentistry: reinforcement and therapeutic applications (part II). Cureus, 17(3).
  • Elmitwalli, O. S. M. M. S., Kassim, D. A. K., Algahiny, A. T., & Henari, F. Z. (2025). Green synthesis of metal nanoparticles using cinnamomum-based extracts and their applications. Nanotechnology, Science and Applications, 93-114. https://doi.org/10.2147/NSA.S489274
  • Fariq, A., Khan, T., & Yasmin, A. (2017). Microbial synthesis of nanoparticles and their potential applications in biomedicine. Journal of Applied Biomedicine, 15(4), 241–248. https:// doi.org/10.1016/j.jab.2017.03.004
  • Fehse, S., Nowag, S., Quadir, M., Kim, K. S., Haag, R., & Multhaup, G. (2014). Copper transport mediated by nanocarrier systems in a blood–brain barrier in vitro model. Biomacromolecules, 15(5), 1910-1919. https://doi.org/10.1021/bm500400k
  • Frederickson, C. J., Koh, J. Y., & Bush, A. I. (2005). The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 6(6), 449-462. https://doi.org/10.1038/nrn1671
  • Gvozdeva, Y. (2025). Nanotechnology-based delivery systems for enhanced targeting of tyrosine kinase ınhibitors: exploring ınorganic and organic nanoparticles as targeted carriers. Kinases and Phosphatases, 3(2), 9. https://doi.org/10.3390/kinasesphosphatases3020009
  • Halıcı, A., Seyrek, A., Aykan, K., Ünal, F., & Yüzbaşıoğlu, D. (2021). Nanopartiküllerin genotoksik etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(2), 19-38.
  • Harish, V., Ansari, M. M., Tewari, D., Gaur, M., Yadav, A. B., García-Betancourt, M. L., & Barhoum, A. (2022). Nanoparticle and nanostructure synthesis and controlled growth methods. Nanomaterials, 12(18), 3226. https://doi.org/10.3390/ nano12183226
  • Khadrawy, Y. A., Hosny, E. N., & Mohamed, H. S. E. (2024). Assessment of the neuroprotective effect of green synthesized iron oxide nanoparticles capped with curcumin against a rat model of Parkinson’s disease. Iranian Journal of Basic Medical Sciences, 27(1), 81. doi: 10.22038/IJBMS.2023.73124.15892
  • Lawal, H., Saeed, S. I., Gaddafi, M. S., & Kamaruzzaman, N. F. (2025). Green nanotechnology: naturally sourced nanoparticles as antibiofilm and antivirulence agents against infectious diseases. International Journal of Microbiology, 2025(1), 8746754. https://doi.org/10.1155/ijm/8746754
  • Lemus-De la Cruz, J., Trejo-Hurtado, M., Landa-Moreno, C., Peña-Montes, D., Landeros-Páramo, J. L., Cortés-Rojo, C., & Saavedra-Molina, A. (2023). Antioxidant effects of silver nanoparticles obtained by green synthesis from the aqueous extract of Eryngium carlinae on the brain mitochondria of streptozotocin-induced diabetic rats. Journal of Bioenergetics and Biomembranes, 55(2), 123-135. https://doi.org/10.1007/s10863-023-09963-w
  • Liang, X., Wang, Z., Wang, D., Du, J., Qin, J., & Shen, R. (2024). Green synthesis, chemical characterization, and protective potentials of silver nanoparticles on the development of cerebrovascular diseases in rat cerebral ischemia reperfusion injury. Inorganic Chemistry Communications, 162, 112264. https://doi.org/10.1016/j.inoche.2024.112264
  • Lim, Z. Z. J., Li, J. E. J., Ng, C. T., Yung, L. Y. L., & Bay, B. H. (2011). Gold nanoparticles in cancer therapy. Acta Pharmacologica Sinica, 32(8), 983-990. https://doi.org/10.1038/aps.2011.82
  • Maghimaa, M., Sagadevan, S., Suryadevara, P. R., Sudhan, H. H., Burle, G. S. R., Ruokolainen, J., & Kesari, K. K. (2025). Cytotoxicity and targeted drug delivery of green synthesized metallic nanoparticles against oral cancer: A Review. Inorganic Chemistry Communications, 173, 113806. https://doi.org/10.1016/j.inoche.2024.113806
  • Maisa, W., & Awwad, A. M. (2021). A novel route for the synthesis of copper oxide nanoparticles using Bougainvillea plant flowers extract and antifungal activity evaluation. Chemistry International, 7(1), 71–78. https://doi.org/10.5281/zenodo.4042902
  • Majd, N. E., Tabandeh, M. R., Hosseinifar, S., & Zarneh, S. R. (2021). Chemical and green ZnO nanoparticles ameliorated adverse effects of cisplatin on histological structure, antioxidant defense system and neurotrophins expression in rat hippocampus. Journal of Chemical Neuroanatomy, 116, 101990. 21. https://doi.org/10.1016/j.jchemneu.2021.101990
  • Mani, R., Ezhumalai, D., Muthusamy, G., & Namasivayam, E. (2024). Neuroprotective effect of biogenically synthesized ZnO nanoparticles against oxidative stress and β‐amyloid toxicity in transgenic Caenorhabditis elegans. Biotechnology and Applied Biochemistry, 71(1), 132-146. https://doi.org/10.1002/bab.2527
  • Manzari‐Tavakoli, A., Babajani, A., Tavakoli, M. M., Safaeinejad, F., & Jafari, A. (2024). Integrating natural compounds and nanoparticle‐based drug delivery systems: A novel strategy for enhanced efficacy and selectivity in cancer therapy. Cancer Medicine, 13(5), e7010. https://doi.org/10.1002/cam4.7010
  • Matsumoto, R., Adachi, S., Sadki, E. H. S., Yamamoto, S., Tanaka, H., Takeya, H., & Takano, Y. (2020). Maskless patterning of gallium-irradiated superconducting silicon using focused ion beam. ACS Applied Electronic Materials, 2(3), 677-682. https://doi.org/10.1021/acsaelm.9b00781
  • Muthu, K., & Priya, S. (2017). Green synthesis, characterization and catalytic activity of silver nanoparticles using Cassia auriculata flower extract separated fraction. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 179, 66–72. https://doi.org/10.1016/j.saa.2017.02.024
  • Nagori, K., Nakhate, K. T., Yadav, K., Thakur, A., Ajazuddin, M., & Pradhan, M. (2024). Innovative strategies for overcoming blood-brain barrier challenges in Alzheimer’s disease: a focus on green-synthesized metallic nanoparticles. Inorganic Chemistry Communications, 113604. https://doi.org/10.1016/j.inoche.2024.113604
  • Naser, H., Alghoul, M. A., Hossain, M. K., Asim, N., Abdullah, M. F., Ali, M. S., Amin, N. (2019). The role of laser ablation technique parameters in synthesis of nanoparticles from different target types. Journal of Nanoparticle Research, 21(11). https:// doi.org/10.1007/s11051-019-4690-3
  • Naveed, M., Mahmood, S., Aziz, T., Azeem, A., Rajpoot, Z., Rehman, S. U., & Alshareef, S. A. (2024). Green-synthesis of silver nanoparticles AgNPs from Podocarpus macrophyllus for targeting GBM and LGG brain cancers via NOTCH2 gene interactions. Scientific Reports, 14(1), 25489. https://doi.org/10.1038/s41598-024-75820-4
  • Nkentsha, Z., & Rambharose, S. (2025). Green-synthesized gold nanoparticles exhibit neuroprotective activity against oxidative stress-induced damage in SH-SY5Y cells. Journal of Nanoparticle Research, 27(7), 197. https://doi.org/10.1007/s11051-025-06387-y
  • Park, T. J., Lee, K. G., & Lee, S. Y. (2015). Advances in microbial biosynthesis of metal nanoparticles. Applied Microbiology and Biotechnology, 100(2), 521–534. https:// doi.org/10.1007/s00253-015-6904-7
  • Peluffo, H., Unzueta, U., Negro-Demontel, M. L., Xu, Z., Váquez, E., Ferrer-Miralles, N., & Villaverde, A. (2015). BBB-targeting, protein-based nanomedicines for drug and nucleic acid delivery to the CNS. Biotechnology Advances, 33(2), 277-287. https://doi.org/10.1016/j.biotechadv.2015.02.004
  • Peng, B., Mohammed, F. S., Tang, X., Liu, J., Sheth, K. N., & Zhou, J. (2025). Nanotechnology approaches to drug delivery for the treatment of ischemic stroke. Bioactive Materials, 43, 145-161. https://doi.org/10.1016/j.bioactmat.2024.09.016
  • Polat, H. K., Aytekin, E., Karakuyu, N. F., Kurt, N., & Yazıksız, Y. (2024). Oküler ilaç taşıyıcı sistem olarak lipit bazlı nanopartiküller. Journal of Faculty of Pharmacy of Ankara University, 48(2), 28-28. https://doi.org/10.33483/jfpau.1420064
  • Puri, A., Mohite, P., Maitra, S., Subramaniyan, V., Kumarasamy, V., Uti, D. E., & Atangwho, I. J. (2024). From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomedicine & Pharmacotherapy, 170, 116083. https://doi.org/10.1016/j.biopha.2023.116083
  • Qu, B., Xiao, Z., & Luo, Y. (2025). sustainable nanotechnology for food preservation: synthesis, mechanisms, and applications of Zinc Oxide nanoparticles. Journal of Agriculture and Food Research, 101743. https://doi.org/10.1016/j.jafr.2025.101743
  • Rasool, A., Sri, S., Zulfajri, M., & Krismastuti, F. S. H. (2024). Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. Inorganic Chemistry Communications, 112954. https://doi.org/10.1016/j.inoche.2024.112954
  • Ross, A. M., Cahalane, R. M., Walsh, D. R., Grabrucker, A. M., Marcar, L., & Mulvihill, J. J. (2023). Identification of nanoparticle properties for optimal drug delivery across a physiological cell barrier. Pharmaceutics, 15(1), 200. https://doi.org/10.3390/pharmaceutics15010200
  • Serin, H. (2023). Encapsulation of extract prepared from plant wastes with chitosan nanoparticles and in vitro investigation (PhD), Sakarya University, Institute of Science, Sakarya, Turkey.
  • Sethi, B., Kumar, V., Mahato, K., Coulter, D. W., & Mahato, R. I. (2022). Recent advances in drug delivery and targeting to the brain. Journal of Controlled Release, 350, 668-687. https://doi.org/10.1016/j.jconrel.2022.08.051
  • Shafiee, M., Fard, E. S., Taghvimi, S., Movahedpour, A., Mousavi, P., Rezaeijo, S. M., & Azadbakht, O. (2025). Nanoparticle-based sensitizers in prostate cancer treatment: Enhancing radiotherapy efficacy through innovative nanotechnology: narrative review. Applied Radiation and Isotopes, 111671. https://doi.org/10.1016/j.apradiso.2025.111671
  • Sikiru, S., Abiodun, O. A., Sanusi, Y. K., Sikiru, Y. A., Soleimani, H., Yekeen, N., & Haslija, A. A. (2022). A comprehensive review on nanotechnology application in wastewater treatment a case study of metal-based using green synthesis. Journal of Environmental Chemical Engineering, 10(4), 108065. https://doi.org/10.1016/j.jece.2022.108065
  • Song, Q., Li, J., Li, T., & Li, H. W. (2024). Nanomaterials that aid in the diagnosis and treatment of alzheimer's disease, resolving blood–brain barrier crossing ability. Advanced Science, 11(38), 2403473. https://doi.org/10.1002/advs.202403473
  • Şensoy Gün, B., Aytimur, A., Karagöl, Ç., & Gurbanov, R. (2025). Plant-derived Edible Nanocomposite Films with Antimicrobial Silver Nanoparticles: Harnessing Quince Seed Extract for Green Food Preservation. Food and Bioprocess Technology, 1-15. https://doi.org/10.1007/s11947-025-03990-8
  • Swilam, N., & Nematallah, K. A. (2020). Polyphenols profile of pomegranate leaves and their role in green synthesis of silver nanoparticles. Scientific Reports, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71847-5
  • Thatyana, M., Dube, N. P., Kemboi, D., Manicum, A. L. E., Mokgalaka-Fleischmann, N. S., & Tembu, J. V. (2023). Advances in phytonanotechnology: a plant-mediated green synthesis of metal nanoparticles using phyllanthus plant extracts and their antimicrobial and anticancer applications. Nanomaterials, 13(19), 2616. https://doi.org/10.3390/ nano13192616
  • Topal, G. R. (2021). Alzheimer tedavisine yönelik ilaç taşıyıcı sistemlerin geliştirilmesi karakterizasyonu ve etkinliğinin incelenmesi (PhD), Ankara University, Health Sciences Institute, Ankara, Turkey.
  • Vali, R., Shirvanian, K., Farkhondeh, T., Aschner, M., Samini, F., & Samarghandian, S. (2025). A review study on the effect of zinc on oxidative stress-related neurological disorders. Journal of Trace Elements in Medicine and Biology, 127618. https://doi.org/10.1016/j.jtemb.2025.127618
  • Vanlalveni, C., Lallianrawna, S., Biswas, A., Selvaraj, M., Changmai, B., & Rokhum, S. L. (2021). Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: a review of recent literature. RSC Advances, 11(5), 2804-2837. https://doi.org/10.1039/D0RA09941D
  • Varalli, L., Berlet, R., Abenojar, E. C., McDaid, J., Gascoigne, D. A., Bailes, J., & Aksenov, D. P. (2025). Applications and Efficacy of Iron Oxide Nanoparticles in the Treatment of Brain Tumors. Pharmaceutics, 17(4), 499. https://doi.org/10.3390/pharmaceutics17040499
  • Vinukonda, A., Bolledla, N., Jadi, R. K., Chinthala, R., & Devadasu, V. R. (2025). Synthesis of nanoparticles using advanced techniques. Next Nanotechnology, 8, 100169. https://doi.org/10.1016/j.nxnano.2025.100169
  • Wang, G., Li, Z., Wang, G., Sun, Q., Lin, P., Wang, Q., & Zhong, Z. (2024). Advances in engineered nanoparticles for the treatment of ischemic stroke by enhancing angiogenesis. International Journal of Nanomedicine, 19, 4377-4409. https://doi.org/10.2147/IJN.S463333
  • Xu, Z., Zhang, R., Zhang, T., Niu, Z., Zhang, M., & Shi, F. (2025). Study on the preparation of sterile noble metal nanoparticles and hydrotalcite layered nanoparticles by innovative high pressure sterilization method. Scientific Reports, 15(1), 1-14. https://doi.org/10.1038/s41598-025-99577-6
  • Yan, Q., Yang, Z., & Chen, Z. (2025). Recent advances in microbial nanomaterials/nanoparticles synthesis and rare earth elements recovery from rare earth mine wastewater: A review. Chemical Engineering Journal, 161647. https://doi.org/10.1016/j.cej.2025.161647
  • Yang, H., Zhu, M. & Li, Y. (2020). Sol–gel research in China: a brief history and recent research trends in synthesis of sol–gel derived materials and their applications. J Sol-Gel Sci Technol 106, 406–42. https://doi.org/10.1007/s10971-022-05750-y
  • Yavuz, İ., & Yılmaz, E. Ş. (2021). Biyolojik sistemli nanopartiküller. Gazi Üniversitesi Fen Fakültesi Dergisi, 2(1), 93-108.
  • Ying, S., Guan, Z., Ofoegbu, P. C., Clubb, P., Rico, C., He, F., & Hong, J. (2022). Green synthesis of nanoparticles: Current developments and limitations. Environmental technology & innovation, 26, 102336. https://doi.org/10.1016/j.eti.2022.102336
  • Zhang, J., Yang, T., Huang, W., Yu, Y., & Sun, T. (2022). Applications of gold nanoparticles in brain diseases across the blood-brain barrier. Current Medicinal Chemistry, 29(39), 6063–6083. https://doi.org/10.2174/0929867329666220527121943
  • Zhunushova, A. (2020). Kan beyin bariyeri ve ilaç geçiş modulasyonu. Manas Journal of Agriculture Veterinary and Life Sciences, 10(2), 115-121.
Toplam 77 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nanobiyoteknoloji, Nanomalzemeler
Bölüm Derleme
Yazarlar

Büşra Şensoy Gün 0000-0001-5190-9490

Mustafa Çiftçi 0009-0001-8123-8613

Gönderilme Tarihi 20 Mayıs 2025
Kabul Tarihi 8 Eylül 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Şensoy Gün, B., & Çiftçi, M. (2025). Kan Beyin Bariyeri Hedefli Yeşil Sentezle Üretilen Metal/Metal Oksit Nanopartiküller. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(3), 1188-1202. https://doi.org/10.53433/yyufbed.1702653