Araştırma Makalesi
BibTex RIS Kaynak Göster

Alevli Atomik Absorpsiyon Spektrometresi ile Atık Su Matrisinde Kobalt(II) Tayini için Hiyerarşik MnSb₂O₆ Parçacıklarının Dağılımlı Katı Faz Ekstraksiyonunda Kullanımı

Yıl 2025, Cilt: 30 Sayı: 3, 907 - 921, 24.12.2025
https://doi.org/10.53433/yyufbed.1718800
https://izlik.org/JA76WR68NT

Öz

Bu çalışmada, hiyerarşik yapılı MnSb₂O₆ manyetik çiçek-şekilli parçacıkların (MFSP) alevli atomik absorpsiyon spektrometresi (AAAS) ile metal iyonlarının tayininde adsorban olarak etkinliği, dağılımlı katı faz ekstraksiyonu (DKFE) yöntemi kapsamında değerlendirilmiştir. pH, adsorban miktarı, karıştırma türü ve süresi, elüent tipi ve hacmi ile adsorban türü (manyetik ve manyetik olmayan) gibi parametreler optimize edilerek DKFE–AAAS performansı iyileştirilmiştir. MFSP–DKFE–AAAS yöntemi, Co²⁺ iyonları için 5.0–100 ng mL⁻¹ aralığında dinamik bir doğrusal çalışma aralığı sunmuş ve korelasyon katsayısı 0.9996 olarak elde edilmiştir. Ayrıca, manyetik adsorban kullanılan yöntem doğrudan AAAS’a kıyasla 86 kat daha yüksek duyarlılık göstermiştir. Van Su ve Kanalizasyon İdaresi’nden (VASKİ) temin edilen atık su (evsel atıksu) örneği ile yapılan geri kazanım çalışmasında %94–108 aralığında başarılı sonuçlar elde edilmiştir. Bu çalışma, ilk kez manyetik MnSb₂O₆ ve manyetik olmayan SbO₂ çiçek şeklindeki parçacıkların birlikte kullanımını, manyetik özelliklerin DSPE performansındaki rolünü ortaya koymak ve gerçek atıksu analizlerinde uygulanabilirliğini doğrulamak için rapor etmektedir. Geliştirilen yöntem, çevresel matrislerin analizinde karşılaşılan zorlukları aşmada etkili olmuş ve manyetik özelliklerin metal iyonlarının seçici ve verimli adsorpsiyonundaki belirleyici rolünü ortaya koymuştur.

Proje Numarası

FHD-2024-11276

Kaynakça

  • Ahmadi, M., Elmongy, H., Madrakian, T., & Abdel-Rehim, M. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958, 1-21. https://doi.org/10.1016/j.aca.2016.11.062
  • Alav, A., Kutlu, N., Kına, E., & Meral, R. (2024). A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience, 62, 105043. https://doi.org/10.1016/j.fbio.2024.105043
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. https://doi.org/10.1155/2019/6730305
  • Ali, O. I., & Azzam, A. B. (2023). Functional Ag-EDTA-modified MnO2 nanocoral reef for rapid removal of hazardous copper from wastewater. Environmental Science and Pollution Research, 30(59), 123751-123769. https://doi.org/10.1007/s11356-023-30805-0
  • Azzouz, A., Kailasa, S. K., Lee, S. S., Rascón, A. J., Ballesteros, E., Zhang, M., & Kim, K.-H. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry, 108, 347-369. https://doi.org/10.1016/j.trac.2018.08.009
  • Baskin, D. (2025a). Preconcentration and Determination of Copper (II) in Water and Tea Infusion Samples Using Hierarchical MnSb2O6@ Fe3O4 Nanoparticles and Magnetic Solid Phase Extraction–FAAS. ACS Omega, 10(9), 9537-9546. https://doi.org/10.1021/acsomega.4c10772
  • Baskin, D. (2025b). Spinel ZnFe2O4 Nanoparticles Doped with Ba2+ for High-Performance Cu (II) Extraction via d-SPE–FAAS. ACS Omega. https://doi.org/10.1021/acsomega.5c07865
  • Baskın, D., Yılmaz, Ö., Islam, M. N., Tülü, M., Koyuncu, İ., & Eren, T. (2021). Metal adsorption properties of multi‐functional PAMAM dendrimer based gels. Journal of Polymer Science, 59(14), 1540-1555. https://doi.org/10.1002/pol.20210210
  • Bhargava, P., Gupta, N., Vats, S., & Goel, R. (2017). Health issues and heavy metals. Austin J Environ Toxicol, 3(1), 3018.
  • Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051
  • Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020a). Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. TrAC Trends in Analytical Chemistry, 127, 115893. https://doi.org/10.1016/j.trac.2020.115893
  • Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020b). Modern age of analytical chemistry: nanomaterials. In Handbook of nanomaterials in analytical chemistry (pp. 29-40). Elsevier. https://doi.org/10.1016/B978-0-12-816699-4.00002-5
  • Cimboláková, I., Uher, I., Laktičová, K. V., Vargová, M., Kimáková, T., & Papajová, I. (2020). Heavy metals and the environment. Environ. Factors Affect. Hum. Heal, 10. https://doi.org/10.5772/intechopen.86876
  • da Costa, M. A. J. L., Costa, M. F., Sorrentino, R., Carvalho, N. M., & de Gois, J. S. (2024). A new approach for the determination of As, Cu, and Pb in seawater samples using manganese oxide octahedral molecular sieve as a sorbent for dispersive solid-phase microextraction. Talanta, 268, 125320. https://doi.org/10.1016/j.talanta.2023.125320
  • Diriba, F., Amde, M., & Teju, E. (2025). Sulfide-modified magnetic titanium dioxide microparticles for the adsorption and solid-phase extraction of toxic metals in aqueous samples. Journal of Dispersion Science and Technology, 46(5), 699-712. https://doi.org/10.1080/01932691.2023.2298872
  • González, A. G., & Herrador, M. Á. (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends in Analytical Chemistry, 26(3), 227-238. https://doi.org/10.1016/j.trac.2007.01.009
  • Gu, T., Teng, W., Liu, A., Deng, Z., Ling, L., & Zhang, W.-x. (2021). Transformation of nanoscale zero-valent iron with antimony: Effects of the Sb spatial configuration. Chemical Engineering Journal, 416, 129073. https://doi.org/10.1016/j.cej.2021.129073
  • Hagarová, I., & Nemček, L. (2021). Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview. Frontiers in Chemistry, 9, 672755. https://doi.org/10.3389/fchem.2021.672755
  • Haghighi, S. M. N., & Kazemi, N. M. (2021). Separation and determination of lithium and manganese ions in healthy humans and multiple sclerosis patients based on Nano graphene oxide by Ultrasound assisted-dispersive-micro solid-phase extraction. Analytical Methods in Environmental Chemistry Journal, 4(04), 20-35. https://doi.org/10.24200/amecj.v4.i04.158
  • Han, Z., Zheng, J., Kong, F., Tao, S., & Qian, B. (2021). One dimensional SbO2/Sb2O3@ NC microrod as anode for lithium‐ion and sodium‐ion batteries. Nano Select, 2(2), 425-432. https://doi.org/10.1002/nano.202000092
  • Hu, Y., Zhang, H., & Yang, H. (2007). Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of alloys and compounds, 428(1-2), 327-331. https://doi.org/10.1016/j.jallcom.2006.03.057
  • Huang, D., Wu, J., Wang, L., Liu, X., Meng, J., Tang, X.,…& Xu, J. (2019). Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chemical Engineering Journal, 358, 1399-1409. https://doi.org/10.1016/j.cej.2018.10.138
  • İnce, M. N., Serbest, H., & Bakirdere, S. (2024). Microwave-assisted synthesis of antimony oxide nanoparticles for the determination of trace cadmium in mulberry leaf tea matrices by flame atomic absorption spectrophotometry. Journal of Analytical Science and Technology, 15(1), 55. https://doi.org/10.1186/s40543-024-00469-7
  • Keçili, R., & Hussain, C. M. (2018). Recent progress of imprinted nanomaterials in analytical chemistry. International journal of analytical chemistry, 2018. https://doi.org/10.1155/2018/8503853
  • Korkmaz, Ş., Hasanoğlu Özkan, E., Uzun, D., Kurnaz Yetim, N., & Özcan, C. (2025). Magnetic Solid Phase Extraction of Lead (II) and Cadmium (II) From Water Samples Using ZnO@Fe3O4 Nanoparticles Combined With Flame Atomic Absorption Spectrometry Determination. Journal of Separation Science, 48(3), e70115. https://doi.org/10.1002/jssc.70115
  • Li, Q., He, Y., Yang, A., Hu, X., Liu, F., Mu, J.,…& Yang, L.-P. (2023). Antimony (III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms. Environmental Science and Pollution Research, 30(43), 97102-97114. https://doi.org/10.1007/s11356-023-29277-z
  • Liao, Y., He, L., Zhao, M., & Ye, D. (2017). Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation. Journal of environmental chemical engineering, 5(5), 5054-5060. https://doi.org/10.1016/j.jece.2017.09.037
  • Lin, S., Pan, X., Meng, D., & Zhang, T. (2021). Electric conversion treatment of cobalt-containing wastewater. Water Science and Technology, 83(8), 1973-1986. https://doi.org/10.2166/wst.2021.101
  • Mafakheri, N., Shamsipur, M., & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples. Microchemical Journal, 199, 110010. https://doi.org/10.1016/j.microc.2024.110010
  • Mara, D. (2013). Domestic wastewater treatment in developing countries. Routledge. https://doi.org/10.4324/9781849771023
  • Nalbandyan, V. B., Zvereva, E. A., Nikulin, A. Y., Shukaev, I. L., Whangbo, M.-H., Koo, H.-J.,…& Vasiliev, A. N. (2015). New phase of MnSb2O6 prepared by ion exchange: Structural, magnetic, and thermodynamic properties. Inorganic Chemistry, 54(4), 1705-1711. https://doi.org/10.1021/ic502666c
  • Oviedo, M. N., Luján, C. E., Lemos, A. A., Botella, M. B., Llaver, M., & Wuilloud, R. G. (2024). An overview of preconcentration techniques combined with inductively coupled plasma mass spectrometry for trace element determination in biological studies. Analytical and Bioanalytical Chemistry, 416(11), 2641-2656. https://doi.org/10.1007/s00216-024-05124-z
  • Öner, M., Demir, C., Çetin, G., & Bakırdere, S. (2023). Development of a rapid and efficient analytical method for trace lead determination: Manganese dioxide nanoflower based dispersive solid-phase extraction. Measurement, 211, 112606. https://doi.org/10.1016/j.measurement.2023.112606
  • Qi, W., Guo, S., Sun, H., Liu, Q., Hu, H., Liu, P.,… & Zhang, M. (2022). Synthesis and characterization of Sb2O3 nanoparticles by liquid phase method under acidic condition. Journal of Crystal Growth, 588, 126642. https://doi.org/10.1016/j.jcrysgro.2022.126642
  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of cellular biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
  • Ren, J., Zhu, Z., Qiu, Y., Yu, F., Ma, J., & Zhao, J. (2021). Magnetic field assisted adsorption of pollutants from an aqueous solution: A review. Journal of Hazardous Materials, 408, 124846. https://doi.org/10.1016/j.jhazmat.2020.124846
  • Sadıqov, E., Elyas Sodan, N., Siyal, A. N., Elçi, A., & Elçi, L. (2022). Determination of cobalt and copper in water, plant, and soil samples by magnetite nanoparticle-based solid-phase microextraction (SPME) coupled with microsample injection system-flame atomic absorption spectrometry (MIS-FAAS). Instrumentation Science & Technology, 50(4), 351-369. https://doi.org/10.1080/10739149.2021.2002891
  • Salamat, Q., & Soylak, M. (2024). Magnetic covalent organic frameworks-based adsorbents in solid phase extraction of trace analytes in environmental samples. Trends in Environmental Analytical Chemistry, 41, e00222. https://doi.org/10.1016/j.teac.2023.e00222
  • Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (1996). Fundamentals of analytical chemistry (Vol. 33). Saunders College Pub. Fort Worth.
  • Sohrabi-Gilani, N., Ghayournezhad, A., & Rostamzadeh Mansour, S. (2022). Determination of ultratrace levels of cobalt (II) and chromium (III) by magnetic dispersive solid-phase extraction (SPE) using urea-formaldehyde polymer/magnetite nanoparticles with flame atomic absorption spectrometry (FAAS). Analytical Letters, 55(16), 2650-2667. https://doi.org/10.1080/00032719.2022.2067863
  • Sürme, Y., Kahve Yıldırım, G., Uçan, M., & Narin, İ. (2024). Ultrasound-enhanced dispersive solid phase extraction of Cd (II), Co (II), and Ni (II) using magnetic Pinus pinea. Microchemical Journal, 196, 109648. https://doi.org/https://doi.org/10.1016/j.microc.2023.109648
  • Şaylan, M., Demirel, R., Ayyıldız, M. F., Chormey, D. S., Çetin, G., & Bakırdere, S. (2023). Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environmental Monitoring and Assessment, 195(1), 133. https://doi.org/10.1007/s10661-022-10653-0
  • Tao, J., Xiong, P., Wang, R., Ma, Q., Li, B., Li, H.,…& Zhang, C. (2025). A facile synthesis of MnSb2O6 anode material with enhanced Li-storage performance. Journal of Alloys and Compounds, 1014, 178797. https://doi.org/10.1016/j.jallcom.2025.178797
  • Tong, Y., Liu, X., & Zhang, L. (2019). One-pot fabrication of magnetic porous Fe 3 C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC. Microchimica Acta, 186, 1-9. https://doi.org/10.1007/s00604-019-3358-0
  • Unceta, N., Séby, F., Malherbe, J., & Donard, O. F. X. (2010). Chromium speciation in solid matrices and regulation: a review. Analytical and Bioanalytical Chemistry, 397, 1097-1111. https://doi.org/10.1007/s00216-009-3417-1
  • Wagner, C., Riggs, W., Davis, L., Moulder, J., & Muilenberg, G. (1979). Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp. Eden Prairie, MN, 38.
  • Wehmeier, S., Preihs, M., Dressler, J., Raab, A., & Feldmann, J. (2024). Detection of inorganic arsenic in rice using a field-deployable method with Cola extraction. Analytical and Bioanalytical Chemistry, 416(11), 2677-2682. https://doi.org/10.1007/s00216-023-05041-7
  • Yan, H., Yang, H., Li, A., & Cheng, R. (2016). pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chemical Engineering Journal, 284, 1397-1405. https://doi.org/10.1016/j.cej.2015.06.030
  • Zhang, L., Cao, W., Alvarez, P. J., Qu, X., Fu, H., Zheng, S.,…& Zhu, D. (2018). Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid. Applied Surface Science, 440, 821-829. https://doi.org/10.1016/j.apsusc.2018.01.211

Hierarchical MnSb₂O₆ Particles for Dispersive Solid-Phase Extraction of Co(II) from Wastewater by Flame Atomic Absorption Spectrometry

Yıl 2025, Cilt: 30 Sayı: 3, 907 - 921, 24.12.2025
https://doi.org/10.53433/yyufbed.1718800
https://izlik.org/JA76WR68NT

Öz

The efficacy of hierarchical MnSb₂O₆ magnetic flower-shaped particles (MFSP) as adsorbents for the determination of metal ions using flame atomic absorption spectrometry (FAAS) was evaluated through dispersive solid-phase extraction (DSPE) in this study. Key parameters, including pH, sorbent amount, mixing type and duration, eluent type and volume, and sorbent type (magnetic and non-magnetic) were optimized to improve DSPE–FAAS performance. The MFSP–DSPE–FAAS method demonstrated a dynamic linear range of 5.0–100 ng mL⁻¹ for Co²⁺ ions with a correlation coefficient of 0.9996. Moreover, the magnetic sorbent–DSPE–FAAS method exhibited an 86-fold increase in sensitivity for Co²⁺ compared to FAAS alone, underscoring the significant contribution of the hierarchical magnetic flower-shaped particles in achieving selective and efficient adsorption. A recovery study using a wastewater (domestic effluent) sample from the General Directorate of VASKİ (Van Water and Sewerage Administration) yielded recoveries between 94% and 108%. This study highlights, for the first time, the combined use of magnetic MnSb₂O₆ and non-magnetic SbO₂ flower-shaped particles to reveal the role of magnetic properties in DSPE performance and to validate their applicability in real wastewater analysis. The developed method not only addressed the challenges posed by complex environmental matrices but also demonstrated the crucial role of magnetic properties in facilitating efficient metal ion adsorption.

Etik Beyan

The author declares that the research and publication ethics were fully observed throughout the study.

Destekleyen Kurum

This study was supported by Van Yüzüncü Yıl University Scientific Research Projects Coordination Unit under the project number FHD-2024-11276.

Proje Numarası

FHD-2024-11276

Teşekkür

The authors gratefully acknowledge the support provided by the Van Yüzüncü Yıl University Science Research and Application Centre (https://www.yyu.edu.tr/images/files/Lab_Catalogue_Final.pdf) for material characterization analyses.

Kaynakça

  • Ahmadi, M., Elmongy, H., Madrakian, T., & Abdel-Rehim, M. (2017). Nanomaterials as sorbents for sample preparation in bioanalysis: A review. Analytica Chimica Acta, 958, 1-21. https://doi.org/10.1016/j.aca.2016.11.062
  • Alav, A., Kutlu, N., Kına, E., & Meral, R. (2024). A novel green tea extract-loaded nanofiber coating for kiwi fruit: Improved microbial stability and nutritional quality. Food Bioscience, 62, 105043. https://doi.org/10.1016/j.fbio.2024.105043
  • Ali, H., Khan, E., & Ilahi, I. (2019). Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. Journal of chemistry, 2019. https://doi.org/10.1155/2019/6730305
  • Ali, O. I., & Azzam, A. B. (2023). Functional Ag-EDTA-modified MnO2 nanocoral reef for rapid removal of hazardous copper from wastewater. Environmental Science and Pollution Research, 30(59), 123751-123769. https://doi.org/10.1007/s11356-023-30805-0
  • Azzouz, A., Kailasa, S. K., Lee, S. S., Rascón, A. J., Ballesteros, E., Zhang, M., & Kim, K.-H. (2018). Review of nanomaterials as sorbents in solid-phase extraction for environmental samples. TrAC Trends in Analytical Chemistry, 108, 347-369. https://doi.org/10.1016/j.trac.2018.08.009
  • Baskin, D. (2025a). Preconcentration and Determination of Copper (II) in Water and Tea Infusion Samples Using Hierarchical MnSb2O6@ Fe3O4 Nanoparticles and Magnetic Solid Phase Extraction–FAAS. ACS Omega, 10(9), 9537-9546. https://doi.org/10.1021/acsomega.4c10772
  • Baskin, D. (2025b). Spinel ZnFe2O4 Nanoparticles Doped with Ba2+ for High-Performance Cu (II) Extraction via d-SPE–FAAS. ACS Omega. https://doi.org/10.1021/acsomega.5c07865
  • Baskın, D., Yılmaz, Ö., Islam, M. N., Tülü, M., Koyuncu, İ., & Eren, T. (2021). Metal adsorption properties of multi‐functional PAMAM dendrimer based gels. Journal of Polymer Science, 59(14), 1540-1555. https://doi.org/10.1002/pol.20210210
  • Bhargava, P., Gupta, N., Vats, S., & Goel, R. (2017). Health issues and heavy metals. Austin J Environ Toxicol, 3(1), 3018.
  • Biesinger, M. C., Payne, B. P., Grosvenor, A. P., Lau, L. W., Gerson, A. R., & Smart, R. S. C. (2011). Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 257(7), 2717-2730. https://doi.org/10.1016/j.apsusc.2010.10.051
  • Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020a). Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. TrAC Trends in Analytical Chemistry, 127, 115893. https://doi.org/10.1016/j.trac.2020.115893
  • Büyüktiryaki, S., Keçili, R., & Hussain, C. M. (2020b). Modern age of analytical chemistry: nanomaterials. In Handbook of nanomaterials in analytical chemistry (pp. 29-40). Elsevier. https://doi.org/10.1016/B978-0-12-816699-4.00002-5
  • Cimboláková, I., Uher, I., Laktičová, K. V., Vargová, M., Kimáková, T., & Papajová, I. (2020). Heavy metals and the environment. Environ. Factors Affect. Hum. Heal, 10. https://doi.org/10.5772/intechopen.86876
  • da Costa, M. A. J. L., Costa, M. F., Sorrentino, R., Carvalho, N. M., & de Gois, J. S. (2024). A new approach for the determination of As, Cu, and Pb in seawater samples using manganese oxide octahedral molecular sieve as a sorbent for dispersive solid-phase microextraction. Talanta, 268, 125320. https://doi.org/10.1016/j.talanta.2023.125320
  • Diriba, F., Amde, M., & Teju, E. (2025). Sulfide-modified magnetic titanium dioxide microparticles for the adsorption and solid-phase extraction of toxic metals in aqueous samples. Journal of Dispersion Science and Technology, 46(5), 699-712. https://doi.org/10.1080/01932691.2023.2298872
  • González, A. G., & Herrador, M. Á. (2007). A practical guide to analytical method validation, including measurement uncertainty and accuracy profiles. TrAC Trends in Analytical Chemistry, 26(3), 227-238. https://doi.org/10.1016/j.trac.2007.01.009
  • Gu, T., Teng, W., Liu, A., Deng, Z., Ling, L., & Zhang, W.-x. (2021). Transformation of nanoscale zero-valent iron with antimony: Effects of the Sb spatial configuration. Chemical Engineering Journal, 416, 129073. https://doi.org/10.1016/j.cej.2021.129073
  • Hagarová, I., & Nemček, L. (2021). Application of metallic nanoparticles and their hybrids as innovative sorbents for separation and pre-concentration of trace elements by dispersive micro-solid phase extraction: A minireview. Frontiers in Chemistry, 9, 672755. https://doi.org/10.3389/fchem.2021.672755
  • Haghighi, S. M. N., & Kazemi, N. M. (2021). Separation and determination of lithium and manganese ions in healthy humans and multiple sclerosis patients based on Nano graphene oxide by Ultrasound assisted-dispersive-micro solid-phase extraction. Analytical Methods in Environmental Chemistry Journal, 4(04), 20-35. https://doi.org/10.24200/amecj.v4.i04.158
  • Han, Z., Zheng, J., Kong, F., Tao, S., & Qian, B. (2021). One dimensional SbO2/Sb2O3@ NC microrod as anode for lithium‐ion and sodium‐ion batteries. Nano Select, 2(2), 425-432. https://doi.org/10.1002/nano.202000092
  • Hu, Y., Zhang, H., & Yang, H. (2007). Direct synthesis of Sb2O3 nanoparticles via hydrolysis-precipitation method. Journal of alloys and compounds, 428(1-2), 327-331. https://doi.org/10.1016/j.jallcom.2006.03.057
  • Huang, D., Wu, J., Wang, L., Liu, X., Meng, J., Tang, X.,…& Xu, J. (2019). Novel insight into adsorption and co-adsorption of heavy metal ions and an organic pollutant by magnetic graphene nanomaterials in water. Chemical Engineering Journal, 358, 1399-1409. https://doi.org/10.1016/j.cej.2018.10.138
  • İnce, M. N., Serbest, H., & Bakirdere, S. (2024). Microwave-assisted synthesis of antimony oxide nanoparticles for the determination of trace cadmium in mulberry leaf tea matrices by flame atomic absorption spectrophotometry. Journal of Analytical Science and Technology, 15(1), 55. https://doi.org/10.1186/s40543-024-00469-7
  • Keçili, R., & Hussain, C. M. (2018). Recent progress of imprinted nanomaterials in analytical chemistry. International journal of analytical chemistry, 2018. https://doi.org/10.1155/2018/8503853
  • Korkmaz, Ş., Hasanoğlu Özkan, E., Uzun, D., Kurnaz Yetim, N., & Özcan, C. (2025). Magnetic Solid Phase Extraction of Lead (II) and Cadmium (II) From Water Samples Using ZnO@Fe3O4 Nanoparticles Combined With Flame Atomic Absorption Spectrometry Determination. Journal of Separation Science, 48(3), e70115. https://doi.org/10.1002/jssc.70115
  • Li, Q., He, Y., Yang, A., Hu, X., Liu, F., Mu, J.,…& Yang, L.-P. (2023). Antimony (III) removal by biogenic manganese oxides formed by Pseudomonas aeruginosa PA-1: kinetics and mechanisms. Environmental Science and Pollution Research, 30(43), 97102-97114. https://doi.org/10.1007/s11356-023-29277-z
  • Liao, Y., He, L., Zhao, M., & Ye, D. (2017). Ultrasonic-assisted hydrothermal synthesis of ceria nanorods and their catalytic properties for toluene oxidation. Journal of environmental chemical engineering, 5(5), 5054-5060. https://doi.org/10.1016/j.jece.2017.09.037
  • Lin, S., Pan, X., Meng, D., & Zhang, T. (2021). Electric conversion treatment of cobalt-containing wastewater. Water Science and Technology, 83(8), 1973-1986. https://doi.org/10.2166/wst.2021.101
  • Mafakheri, N., Shamsipur, M., & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples. Microchemical Journal, 199, 110010. https://doi.org/10.1016/j.microc.2024.110010
  • Mara, D. (2013). Domestic wastewater treatment in developing countries. Routledge. https://doi.org/10.4324/9781849771023
  • Nalbandyan, V. B., Zvereva, E. A., Nikulin, A. Y., Shukaev, I. L., Whangbo, M.-H., Koo, H.-J.,…& Vasiliev, A. N. (2015). New phase of MnSb2O6 prepared by ion exchange: Structural, magnetic, and thermodynamic properties. Inorganic Chemistry, 54(4), 1705-1711. https://doi.org/10.1021/ic502666c
  • Oviedo, M. N., Luján, C. E., Lemos, A. A., Botella, M. B., Llaver, M., & Wuilloud, R. G. (2024). An overview of preconcentration techniques combined with inductively coupled plasma mass spectrometry for trace element determination in biological studies. Analytical and Bioanalytical Chemistry, 416(11), 2641-2656. https://doi.org/10.1007/s00216-024-05124-z
  • Öner, M., Demir, C., Çetin, G., & Bakırdere, S. (2023). Development of a rapid and efficient analytical method for trace lead determination: Manganese dioxide nanoflower based dispersive solid-phase extraction. Measurement, 211, 112606. https://doi.org/10.1016/j.measurement.2023.112606
  • Qi, W., Guo, S., Sun, H., Liu, Q., Hu, H., Liu, P.,… & Zhang, M. (2022). Synthesis and characterization of Sb2O3 nanoparticles by liquid phase method under acidic condition. Journal of Crystal Growth, 588, 126642. https://doi.org/10.1016/j.jcrysgro.2022.126642
  • Rehman, K., Fatima, F., Waheed, I., & Akash, M. S. H. (2018). Prevalence of exposure of heavy metals and their impact on health consequences. Journal of cellular biochemistry, 119(1), 157-184. https://doi.org/10.1002/jcb.26234
  • Ren, J., Zhu, Z., Qiu, Y., Yu, F., Ma, J., & Zhao, J. (2021). Magnetic field assisted adsorption of pollutants from an aqueous solution: A review. Journal of Hazardous Materials, 408, 124846. https://doi.org/10.1016/j.jhazmat.2020.124846
  • Sadıqov, E., Elyas Sodan, N., Siyal, A. N., Elçi, A., & Elçi, L. (2022). Determination of cobalt and copper in water, plant, and soil samples by magnetite nanoparticle-based solid-phase microextraction (SPME) coupled with microsample injection system-flame atomic absorption spectrometry (MIS-FAAS). Instrumentation Science & Technology, 50(4), 351-369. https://doi.org/10.1080/10739149.2021.2002891
  • Salamat, Q., & Soylak, M. (2024). Magnetic covalent organic frameworks-based adsorbents in solid phase extraction of trace analytes in environmental samples. Trends in Environmental Analytical Chemistry, 41, e00222. https://doi.org/10.1016/j.teac.2023.e00222
  • Skoog, D. A., West, D. M., Holler, F. J., & Crouch, S. R. (1996). Fundamentals of analytical chemistry (Vol. 33). Saunders College Pub. Fort Worth.
  • Sohrabi-Gilani, N., Ghayournezhad, A., & Rostamzadeh Mansour, S. (2022). Determination of ultratrace levels of cobalt (II) and chromium (III) by magnetic dispersive solid-phase extraction (SPE) using urea-formaldehyde polymer/magnetite nanoparticles with flame atomic absorption spectrometry (FAAS). Analytical Letters, 55(16), 2650-2667. https://doi.org/10.1080/00032719.2022.2067863
  • Sürme, Y., Kahve Yıldırım, G., Uçan, M., & Narin, İ. (2024). Ultrasound-enhanced dispersive solid phase extraction of Cd (II), Co (II), and Ni (II) using magnetic Pinus pinea. Microchemical Journal, 196, 109648. https://doi.org/https://doi.org/10.1016/j.microc.2023.109648
  • Şaylan, M., Demirel, R., Ayyıldız, M. F., Chormey, D. S., Çetin, G., & Bakırdere, S. (2023). Nickel hydroxide nanoflower–based dispersive solid-phase extraction of copper from water matrix. Environmental Monitoring and Assessment, 195(1), 133. https://doi.org/10.1007/s10661-022-10653-0
  • Tao, J., Xiong, P., Wang, R., Ma, Q., Li, B., Li, H.,…& Zhang, C. (2025). A facile synthesis of MnSb2O6 anode material with enhanced Li-storage performance. Journal of Alloys and Compounds, 1014, 178797. https://doi.org/10.1016/j.jallcom.2025.178797
  • Tong, Y., Liu, X., & Zhang, L. (2019). One-pot fabrication of magnetic porous Fe 3 C/MnO/graphitic carbon microspheres for dispersive solid-phase extraction of herbicides prior to their quantification by HPLC. Microchimica Acta, 186, 1-9. https://doi.org/10.1007/s00604-019-3358-0
  • Unceta, N., Séby, F., Malherbe, J., & Donard, O. F. X. (2010). Chromium speciation in solid matrices and regulation: a review. Analytical and Bioanalytical Chemistry, 397, 1097-1111. https://doi.org/10.1007/s00216-009-3417-1
  • Wagner, C., Riggs, W., Davis, L., Moulder, J., & Muilenberg, G. (1979). Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corp. Eden Prairie, MN, 38.
  • Wehmeier, S., Preihs, M., Dressler, J., Raab, A., & Feldmann, J. (2024). Detection of inorganic arsenic in rice using a field-deployable method with Cola extraction. Analytical and Bioanalytical Chemistry, 416(11), 2677-2682. https://doi.org/10.1007/s00216-023-05041-7
  • Yan, H., Yang, H., Li, A., & Cheng, R. (2016). pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water. Chemical Engineering Journal, 284, 1397-1405. https://doi.org/10.1016/j.cej.2015.06.030
  • Zhang, L., Cao, W., Alvarez, P. J., Qu, X., Fu, H., Zheng, S.,…& Zhu, D. (2018). Oxidized template-synthesized mesoporous carbon with pH-dependent adsorption activity: A promising adsorbent for removal of hydrophilic ionic liquid. Applied Surface Science, 440, 821-829. https://doi.org/10.1016/j.apsusc.2018.01.211
Toplam 49 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Analitik Spektrometri, Analitik Kimya (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Dilges Baskin 0000-0001-7099-3763

Proje Numarası FHD-2024-11276
Gönderilme Tarihi 13 Haziran 2025
Kabul Tarihi 29 Ekim 2025
Yayımlanma Tarihi 24 Aralık 2025
DOI https://doi.org/10.53433/yyufbed.1718800
IZ https://izlik.org/JA76WR68NT
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 3

Kaynak Göster

APA Baskin, D. (2025). Hierarchical MnSb₂O₆ Particles for Dispersive Solid-Phase Extraction of Co(II) from Wastewater by Flame Atomic Absorption Spectrometry. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(3), 907-921. https://doi.org/10.53433/yyufbed.1718800