Effect of Microbial and Inorganic Fertilizer Applications on Grain Content in Beans (Phaseolus vulgaris L.)
Yıl 2025,
Cilt: 30 Sayı: 3, 1128 - 1141, 24.12.2025
Fatih Erdin
,
Haluk Kulaz
Öz
In this study conducted in 2020 in Van-Tuşba and in 2022 in Van-Gevaş, it was aimed to determine the effects of microbial and inorganic fertilizers applied to beans on potassium, calcium, magnesium, iron, zinc, copper, sodium contents in grain, protein ratio and yield. The study was conducted in three replications according to the split plots experimental design in randomized blocks. Microbial fertilizer applications statistically increased potassium, calcium, magnesium, iron, zinc, copper, sodium contents, protein ratio and yield in both years (P≤0.01). The effect of inorganic fertilizers varied depending on the element and year.
Proje Numarası
FDK-2021-9567
Kaynakça
-
Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Synergistic effect of plant growth-promoting rhizobacteria and organic fertilizers on yield and nutrient uptake of maize. Applied Soil Ecology, 41(3), 336–341. https://doi.org/10.1016/j.apsoil.2008.12.003
-
Afzal, A., & Bano, A. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture & Biology, 10: 85-88.
-
Akman, Y. Ö. (2017). Rhizobium ve mikoriza uygulamalarının fasulye (Phaseolus vulgaris L.)’nin tane verimi ve bazı tarımsal karakterleri üzerine etkileri. (Doktora Tezi). Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. Türkiye.
-
Aldemir, B., Karaman, R., & Kaya, M. (2019). Nohut (Cicer arietinum L.) tarımında gül posası ahır gübresi ve bakteri aşılamanın verim ve bazı verim öğelerine etkileri. Turkish Journal of Agriculture-Food Science and Technology. 7. 121-127. https://doi.org/10.24925/turjaf.v7isp2.121-127.3174
-
Alloway, B.J. (2008a). Micronutrient deficiencies in global crop Production. Springer Science & Business Media, ISBN 978-1-4020-6859-1.
-
Alloway, B. J. (2008b). Zinc in soils and crop nutrition. (2nd ed.). International Zinc Association and International Fertilizer Industry Association.
-
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 11-50. Dordrecht: Springer Netherlands.
-
Basdemir, F., Ipekesen, S., Tunc, M., Elis, S., & Bicer, B. T. (2022). Effects of cow manure and liquid vermicompost applications on growth and seed yield of dry beans. Journal of Elementology, 27(4), 819-830
-
Beebe, S., Rojas, M., & Yan, X. (2000). A guide to bean improvement for the tropics. Centro Internacional de Agricultura Tropical (CIAT) Publications.
-
Bhattacharyya, P.N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
-
Blair, M. W., Astudillo, C., Grusak, M. A., Graham, R., & Beebe, S. E. (2009). Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Molecular Breeding, 23, 197–207. https://doi.org/10.1007/s11032-008-9220-3
-
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2012). Zinc in plants. New Phytologist, 195(2), 441-466.
-
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611
-
Çakmak, I., & Kirkby, E. A. (2008). Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133(4), 692-704. https://doi.org/10.1111/j.1399-3054.2007.01042.x
-
Çığ, F. (2010). Mikrobiyolojik ve inorganik gübrelemenin bazı arpa (Hordeum vulgare L.) çeşitlerinde verim ve verim ile ilgili karakterlere etkilerinin araştırılması. (Doktora Tezi), Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, Türkiye.
-
Çirka, M., Kulaz, H., & Baran, İ. (2024). Nohutta (Cicer arietinum L.) fosfor ve çinko uygulamalarının verim ve verim özellikleri üzerine etkileri. Akademik Ziraat Dergisi, 13(1), 159-168. https://doi.org/10.29278/azd.1443109
-
Demir, K., Yıldırım, S., & Öztürk, N. (2014). Fasulye tane kalitesi üzerine kalsiyumun etkileri. Akademik Tarım Dergisi, 2(3), 45-52.
-
Doğan, S., & Çığ, F. (2023). Effects of chemical organic and microbial fertilization on agronomical growth parameters seed yield and chemical composition of chickpea. Journal of Elementology, 28(4).
-
Egamberdieva, D., Kucharova, Z., & Davranov, K. (2010). Biochemical characterization of root exudates of wheat and their effect on growth of rhizobacteria. Plant and Soil, 330(1–2), 405–412. https://doi.org/10.1007/978-3-319-13401-7_19
-
Egamberdieva, D., Wirth, S.J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 2104. https://doi.org/10.3389/fmicb.2017.02104
-
Fageria, N. K., Baligar, V. C., & Clark, R.B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–268. https://doi.org/10.1016/S0065-2113(02)77015-6
-
Fageria, N. K., Baligar, V. C., & Jones, C. A. (2006). Growth and mineral nutrition of field crops. 3rd ed. CRC Press.
-
Goswami, D., Thakker, J. N., & Saha, S. (2016). Microbial biofertilizers for sustainable agriculture: Current status and future perspectives. Journal of Microbiology and Biotechnology, 26(8), 1200-1209.
-
Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. 3rd ed., CRC Press.
-
Khan, M. S., Zaidi, A., & Musarrat, J. (2014). Plant growth promotion by phosphate solubilizing fungi current perspective. Archives of Agronomy and Soil Science, 60(1), 47-56. https://doi.org/10.1080/03650340902806469
-
Khan, M. S., Zaidi, A., & Wani, P.A. (2009). Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agronomy for Sustainable Development, 29, 21-31. https://doi.org/10.1007/978-90-481-2666-8_34
-
Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., & Ismail, M. (2015). Role of nitrogen and phosphorus in improving yield and quality of mungbean. International Journal of Agronomy and Agricultural Research, 6(5), 27–34.
-
Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
-
Kpomblekou-A, K., & Tabatabai, M. A. (2003). Effect of organic acids on release of phosphorus from phosphate rocks. Communications in Soil Science and Plant Analysis, 34(9-10), 1167–1177.
-
Kucey, R. M. N., & Janzen, H. H. (1987). Effect of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant and Soil, 104: 1, 71 – 78.
-
Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. 3rd ed., Academic Press.
-
Mengel, K., & Kirkby, E.A. (2001). Principles of plant nutrition. 5th Edition. Springer.
-
Mousavi, S.R. (2011). The significance of iron in plant nutrition – A review. African Journal of Agricultural Research, 6(9), 2026-2033.
-
Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2014). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 60(6), 491–498. https://doi.org/10.1139/W09-092
-
Ovacıklı, E., & Tolay, İ. (2020). Morpho-agronomic and cooking quality of common bean (Phaseolus vulgaris L.) grown under different nitrogen sources and nitrogen levels. Applied Ecology and Environmental Research, 18(6).
-
Öden, E. (2012). Soya bitkisinde bakteri aşılaması, fosfor ve demir uygulamalarının nodülasyon ve N2 fiksasyonuna etkisi. (Yüksek Lisans Tezi), Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Antakya, Türkiye.
-
Özsoy Altunkaynak, A., & Ceyhan, E. (2018). The effects of seed yield and yield components of different nitrogen doses and inoculation of Rhizobium on bean (Phaseolus vulgaris L.). Selçuk Journal of Agriculture and Food Sciences, 32(2), 91-98.
-
Öztürk, A., Çağlar, Ö. & Şahin, F. (2003). Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization, Journal of Plant Nutrition Soil Science, 166, 262-266. https://doi.org/10.1002/jpln.200390038
-
Öztürk, C., & Adak, M. S. (2021). Determining the effects of nitrogen fertilizations with irrigation on yield. Yield components and nodulation in bean (Phaseolus vulgaris L.). https://doi.org/10.9734/bpi/rppsr/v2/3047F
-
Rajkumar, M., Ae, N., Prasad, M.N.V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28(3), 142-149.
-
Rokhzadi, A., & Toashih, V. (2011). Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Australian Journal of Crop Science, 5:44–48.
-
Salantur, A. (2003). Erzurum Pasinler ovalarındaki buğdaygil bitkilerinin yetiştiği topraklardan izole edilen asimbiyotik bakteri suşlarının buğday ve arpada gelişme ve verim üzerine etkileri. (Doktora tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye.
-
Sefaoğlu, F., Öztürk, H., Öztürk, E., Sezek, M., Toktay, Z., & Polat, T. (2021). Effect of organic and inorganic fertilizers or their combinations on yield and quality components of oil seed sunflower in a semi-arid environment. Turkish Journal Of Field Crops, 26(1), 87–89. https://doi.org/10.17557/tjfc.869335
-
Singh, B., Kukal, S. S., Kaur, R., Bawa, S. S., & Irmgard, M. (2011). Productivity and sustainability of the rice–wheat cropping system in the Indian Punjab: A review of issues and strategies. Environmentalist, 31(4), 336–349. https://doi.org/10.1007/s10669-011-9341-6
-
Soysal, S., & Erman, M. (2020). Siirt ekolojik koşullarında mikrobiyolojik ve inorganik gübrelemenin Nohut (Cicer arietinum L.)’un verim, verim öğeleri ve nodülasyonu üzerine etkilerinin araştırılması. ISPEC Journal of Agricultural Sciences, 4(3), 649-670. https://doi.org/10.46291/ISPECJASvol4iss3pp649-670
-
Sönmez, F., & Tüfenkçi, Ş. (2015). Investigation the effects of different doses organic fertilizers and phosphate solubilizing bacterias on yield and nutrient contents in chickpea (Cicer arietinum L.). International Journal of Secondary Metabolite, 2(2), 43-52. https://doi.org/10.21448/ijsm.240703
-
Subbarao, G.V., Ito, O., Berry, W.L., & Wheeler, R.M. (2003). Sodium – a functional plant nutrient. Critical Reviews in Plant Sciences, 22(5), 391–416. https://doi.org/10.1080/07352680390243495
-
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014
-
Verma, J.P., Yadav, J., & Tiwari, K.N. (2009). Effect of mesorhizobium and plant growth promoting rhizobacteria on nodulation and yields of chickpea.
-
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893
White, P. J., & Broadley, M.R. (2003). Calcium in plants. Annals of Botany, 92(4), 487-511.
-
Yeşilbaş, C., & Toğay, Y. (2021). The effect of organic and inorganic fertilization on the yield and some yield components of lentil (Lens culinaris Medic.) in Van conditions. ISPEC Journal of Agr. Sciences 5(4): 786-794. https://doi.org/10.46291/ISPECJASvol5iss4pp786-794
-
Zahir, Z. A., Arshad, M., & Frankenberger Jr, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97–168. https://doi.org/10.1016/S0065-2113(03)81003-9
-
Zaidi, A., Khan, M.S., & Rizvi, P.Q. (2009). Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 29(1), 43–54.
-
Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. R. (2016). Nitrogen and phosphorus nutrition and yield responses of crops under elevated CO2: A review. Agricultural Systems, 148, 41–52.
Fasulyede (Phaseolus vulgaris L.) Tane İçeriğine Mikrobiyal ve İnorganik Gübre Uygulamalarının Etkisi
Yıl 2025,
Cilt: 30 Sayı: 3, 1128 - 1141, 24.12.2025
Fatih Erdin
,
Haluk Kulaz
Öz
2020 yılında Van-Tuşba ve 2022 yılında Van-Gevaş’ta yürütülen bu çalışmada, fasulyeye uygulanan mikrobiyal ve inorganik gübrelerin tanedeki potasyum, kalsiyum, magnezyum, demir, çinko, bakır, sodyum içerikleri ile protein oranı ve verimini üzerine etkilerinin belirlenmesi amaçlanmıştır. Çalışma tesadüf bloklarında bölünmüş parseller deneme desenine göre üç tekerrürlü olarak yürütülmüştür. Mikrobiyal gübre uygulamalarının potasyum, kalsiyum, magnezyum, demir, çinko, bakır, sodyum içerikleri ile protein oranı ve verimini her iki yılda da istatistiksel olarak arttırmıştır (P≤0.01). İnorganik gübrelerin etkisi elemente ve yıla bağlı olarak değişmiştir.
Etik Beyan
Bu çalışmanın, özgün bir çalışma olduğunu; çalışmanın hazırlık, veri toplama, analiz
ve bilgilerin sunumu olmak üzere tüm aşamalarından bilimsel etik ilke ve kurallarına uygun
davrandığımı; bu çalışma kapsamında elde edilmeyen tüm veri ve bilgiler için kaynak
gösterdiğimi ve bu kaynaklara kaynakçada yer verdiğimi; kullanılan verilerde herhangi bir
değişiklik yapmadığımı, çalışmanın Committee on Publication Ethics (COPE)' in tüm şartlarını
ve koşullarını kabul ederek etik görev ve sorumluluklara riayet ettiğimi beyan ederim.
Herhangi bir zamanda, çalışmayla ilgili yaptığım bu beyana aykırı bir durumun
saptanması durumunda, ortaya çıkacak tüm ahlaki ve hukuki sonuçlara razı olduğumu
bildiririm.
Destekleyen Kurum
Van Y.Y.Ü Bilimsel Araştırma Projeleri Başkanlığı
Proje Numarası
FDK-2021-9567
Teşekkür
Bu araştırma Van YYÜ Bilimsel Araştırma Projeleri Başkanlığı tarafından FDK-2021-9567 No’lu doktora projesi kapsamında desteklenmiştir. Doktora tez çalışmasına maddi destek sağlayan Van Y.Y.Ü Bilimsel Araştırma Projeleri Başkanlığı’na teşekkür ederim.
Kaynakça
-
Adesemoye, A. O., Torbert, H. A., & Kloepper, J. W. (2009). Synergistic effect of plant growth-promoting rhizobacteria and organic fertilizers on yield and nutrient uptake of maize. Applied Soil Ecology, 41(3), 336–341. https://doi.org/10.1016/j.apsoil.2008.12.003
-
Afzal, A., & Bano, A. (2008). Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). International Journal of Agriculture & Biology, 10: 85-88.
-
Akman, Y. Ö. (2017). Rhizobium ve mikoriza uygulamalarının fasulye (Phaseolus vulgaris L.)’nin tane verimi ve bazı tarımsal karakterleri üzerine etkileri. (Doktora Tezi). Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü. Samsun. Türkiye.
-
Aldemir, B., Karaman, R., & Kaya, M. (2019). Nohut (Cicer arietinum L.) tarımında gül posası ahır gübresi ve bakteri aşılamanın verim ve bazı verim öğelerine etkileri. Turkish Journal of Agriculture-Food Science and Technology. 7. 121-127. https://doi.org/10.24925/turjaf.v7isp2.121-127.3174
-
Alloway, B.J. (2008a). Micronutrient deficiencies in global crop Production. Springer Science & Business Media, ISBN 978-1-4020-6859-1.
-
Alloway, B. J. (2008b). Zinc in soils and crop nutrition. (2nd ed.). International Zinc Association and International Fertilizer Industry Association.
-
Alloway, B. J. (2013). Sources of heavy metals and metalloids in soils. Heavy metals in soils: trace metals and metalloids in soils and their bioavailability, 11-50. Dordrecht: Springer Netherlands.
-
Basdemir, F., Ipekesen, S., Tunc, M., Elis, S., & Bicer, B. T. (2022). Effects of cow manure and liquid vermicompost applications on growth and seed yield of dry beans. Journal of Elementology, 27(4), 819-830
-
Beebe, S., Rojas, M., & Yan, X. (2000). A guide to bean improvement for the tropics. Centro Internacional de Agricultura Tropical (CIAT) Publications.
-
Bhattacharyya, P.N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28(4), 1327–1350. https://doi.org/10.1007/s11274-011-0979-9
-
Blair, M. W., Astudillo, C., Grusak, M. A., Graham, R., & Beebe, S. E. (2009). Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Molecular Breeding, 23, 197–207. https://doi.org/10.1007/s11032-008-9220-3
-
Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., & Lux, A. (2012). Zinc in plants. New Phytologist, 195(2), 441-466.
-
Broughton, W. J., Hernández, G., Blair, M., Beebe, S., Gepts, P., & Vanderleyden, J. (2003). Beans (Phaseolus spp.) model food legumes. Plant and Soil, 252(1), 55–128. https://doi.org/10.1023/A:1024146710611
-
Çakmak, I., & Kirkby, E. A. (2008). Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133(4), 692-704. https://doi.org/10.1111/j.1399-3054.2007.01042.x
-
Çığ, F. (2010). Mikrobiyolojik ve inorganik gübrelemenin bazı arpa (Hordeum vulgare L.) çeşitlerinde verim ve verim ile ilgili karakterlere etkilerinin araştırılması. (Doktora Tezi), Van Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, Türkiye.
-
Çirka, M., Kulaz, H., & Baran, İ. (2024). Nohutta (Cicer arietinum L.) fosfor ve çinko uygulamalarının verim ve verim özellikleri üzerine etkileri. Akademik Ziraat Dergisi, 13(1), 159-168. https://doi.org/10.29278/azd.1443109
-
Demir, K., Yıldırım, S., & Öztürk, N. (2014). Fasulye tane kalitesi üzerine kalsiyumun etkileri. Akademik Tarım Dergisi, 2(3), 45-52.
-
Doğan, S., & Çığ, F. (2023). Effects of chemical organic and microbial fertilization on agronomical growth parameters seed yield and chemical composition of chickpea. Journal of Elementology, 28(4).
-
Egamberdieva, D., Kucharova, Z., & Davranov, K. (2010). Biochemical characterization of root exudates of wheat and their effect on growth of rhizobacteria. Plant and Soil, 330(1–2), 405–412. https://doi.org/10.1007/978-3-319-13401-7_19
-
Egamberdieva, D., Wirth, S.J., Alqarawi, A. A., Abd_Allah, E. F., & Hashem, A. (2017). Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Frontiers in Microbiology, 8, 2104. https://doi.org/10.3389/fmicb.2017.02104
-
Fageria, N. K., Baligar, V. C., & Clark, R.B. (2002). Micronutrients in crop production. Advances in Agronomy, 77, 185–268. https://doi.org/10.1016/S0065-2113(02)77015-6
-
Fageria, N. K., Baligar, V. C., & Jones, C. A. (2006). Growth and mineral nutrition of field crops. 3rd ed. CRC Press.
-
Goswami, D., Thakker, J. N., & Saha, S. (2016). Microbial biofertilizers for sustainable agriculture: Current status and future perspectives. Journal of Microbiology and Biotechnology, 26(8), 1200-1209.
-
Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants. 3rd ed., CRC Press.
-
Khan, M. S., Zaidi, A., & Musarrat, J. (2014). Plant growth promotion by phosphate solubilizing fungi current perspective. Archives of Agronomy and Soil Science, 60(1), 47-56. https://doi.org/10.1080/03650340902806469
-
Khan, M. S., Zaidi, A., & Wani, P.A. (2009). Role of phosphate-solubilizing microorganisms in sustainable agriculture—a review. Agronomy for Sustainable Development, 29, 21-31. https://doi.org/10.1007/978-90-481-2666-8_34
-
Khan, N., Ali, S., Zandi, P., Mehmood, A., Ullah, S., Ikram, M., & Ismail, M. (2015). Role of nitrogen and phosphorus in improving yield and quality of mungbean. International Journal of Agronomy and Agricultural Research, 6(5), 27–34.
-
Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94(11), 1259–1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
-
Kpomblekou-A, K., & Tabatabai, M. A. (2003). Effect of organic acids on release of phosphorus from phosphate rocks. Communications in Soil Science and Plant Analysis, 34(9-10), 1167–1177.
-
Kucey, R. M. N., & Janzen, H. H. (1987). Effect of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant and Soil, 104: 1, 71 – 78.
-
Marschner, P. (2012). Marschner’s mineral nutrition of higher plants. 3rd ed., Academic Press.
-
Mengel, K., & Kirkby, E.A. (2001). Principles of plant nutrition. 5th Edition. Springer.
-
Mousavi, S.R. (2011). The significance of iron in plant nutrition – A review. African Journal of Agricultural Research, 6(9), 2026-2033.
-
Nadeem, S. M., Zahir, Z. A., Naveed, M., & Arshad, M. (2014). Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt-affected fields. Canadian Journal of Microbiology, 60(6), 491–498. https://doi.org/10.1139/W09-092
-
Ovacıklı, E., & Tolay, İ. (2020). Morpho-agronomic and cooking quality of common bean (Phaseolus vulgaris L.) grown under different nitrogen sources and nitrogen levels. Applied Ecology and Environmental Research, 18(6).
-
Öden, E. (2012). Soya bitkisinde bakteri aşılaması, fosfor ve demir uygulamalarının nodülasyon ve N2 fiksasyonuna etkisi. (Yüksek Lisans Tezi), Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Antakya, Türkiye.
-
Özsoy Altunkaynak, A., & Ceyhan, E. (2018). The effects of seed yield and yield components of different nitrogen doses and inoculation of Rhizobium on bean (Phaseolus vulgaris L.). Selçuk Journal of Agriculture and Food Sciences, 32(2), 91-98.
-
Öztürk, A., Çağlar, Ö. & Şahin, F. (2003). Yield response of wheat and barley to inoculation of plant growth promoting rhizobacteria at various levels of nitrogen fertilization, Journal of Plant Nutrition Soil Science, 166, 262-266. https://doi.org/10.1002/jpln.200390038
-
Öztürk, C., & Adak, M. S. (2021). Determining the effects of nitrogen fertilizations with irrigation on yield. Yield components and nodulation in bean (Phaseolus vulgaris L.). https://doi.org/10.9734/bpi/rppsr/v2/3047F
-
Rajkumar, M., Ae, N., Prasad, M.N.V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28(3), 142-149.
-
Rokhzadi, A., & Toashih, V. (2011). Nutrient uptake and yield of chickpea (Cicer arietinum L.) inoculated with plant growth-promoting rhizobacteria. Australian Journal of Crop Science, 5:44–48.
-
Salantur, A. (2003). Erzurum Pasinler ovalarındaki buğdaygil bitkilerinin yetiştiği topraklardan izole edilen asimbiyotik bakteri suşlarının buğday ve arpada gelişme ve verim üzerine etkileri. (Doktora tezi), Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, Türkiye.
-
Sefaoğlu, F., Öztürk, H., Öztürk, E., Sezek, M., Toktay, Z., & Polat, T. (2021). Effect of organic and inorganic fertilizers or their combinations on yield and quality components of oil seed sunflower in a semi-arid environment. Turkish Journal Of Field Crops, 26(1), 87–89. https://doi.org/10.17557/tjfc.869335
-
Singh, B., Kukal, S. S., Kaur, R., Bawa, S. S., & Irmgard, M. (2011). Productivity and sustainability of the rice–wheat cropping system in the Indian Punjab: A review of issues and strategies. Environmentalist, 31(4), 336–349. https://doi.org/10.1007/s10669-011-9341-6
-
Soysal, S., & Erman, M. (2020). Siirt ekolojik koşullarında mikrobiyolojik ve inorganik gübrelemenin Nohut (Cicer arietinum L.)’un verim, verim öğeleri ve nodülasyonu üzerine etkilerinin araştırılması. ISPEC Journal of Agricultural Sciences, 4(3), 649-670. https://doi.org/10.46291/ISPECJASvol4iss3pp649-670
-
Sönmez, F., & Tüfenkçi, Ş. (2015). Investigation the effects of different doses organic fertilizers and phosphate solubilizing bacterias on yield and nutrient contents in chickpea (Cicer arietinum L.). International Journal of Secondary Metabolite, 2(2), 43-52. https://doi.org/10.21448/ijsm.240703
-
Subbarao, G.V., Ito, O., Berry, W.L., & Wheeler, R.M. (2003). Sodium – a functional plant nutrient. Critical Reviews in Plant Sciences, 22(5), 391–416. https://doi.org/10.1080/07352680390243495
-
Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. https://doi.org/10.1038/nature01014
-
Verma, J.P., Yadav, J., & Tiwari, K.N. (2009). Effect of mesorhizobium and plant growth promoting rhizobacteria on nodulation and yields of chickpea.
-
Vessey, J. K. (2003). Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 255(2), 571–586. https://doi.org/10.1023/A:1026037216893
White, P. J., & Broadley, M.R. (2003). Calcium in plants. Annals of Botany, 92(4), 487-511.
-
Yeşilbaş, C., & Toğay, Y. (2021). The effect of organic and inorganic fertilization on the yield and some yield components of lentil (Lens culinaris Medic.) in Van conditions. ISPEC Journal of Agr. Sciences 5(4): 786-794. https://doi.org/10.46291/ISPECJASvol5iss4pp786-794
-
Zahir, Z. A., Arshad, M., & Frankenberger Jr, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97–168. https://doi.org/10.1016/S0065-2113(03)81003-9
-
Zaidi, A., Khan, M.S., & Rizvi, P.Q. (2009). Role of phosphate-solubilizing microorganisms in sustainable agriculture – A review. Agronomy for Sustainable Development, 29(1), 43–54.
-
Zhao, D., Reddy, K. R., Kakani, V. G., & Reddy, V. R. (2016). Nitrogen and phosphorus nutrition and yield responses of crops under elevated CO2: A review. Agricultural Systems, 148, 41–52.