Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of Corrugated Plates on Separation Performance

Yıl 2022, Cilt: 27 Sayı: 2, 286 - 302, 30.08.2022
https://doi.org/10.53433/yyufbed.1094330

Öz

There are water, gas and some solid materials in mixtures extracted from underground. The method commonly used for separating the extracted mixtures of crude oil from water is the use of corrugated plates. The plates are used for gravity separation usually. In this study, the effects of three Re numbers of mixtures (3500, 4800, 6100), three values for the ratio of diameter of the hole to the width of the plate (d/w) (0.017, 0.025, 0.033) and three mounting angles of the plates to the separation unit (10, 30, 50 degrees) on the separation performance were investigated. With less experimentation and no impact on separation performance, the optimization process was carried out utilizing the design of Box-Behnken and the Response Surface Method (RSM). In addition, the same system was designed in the Computational Fluid Dynamics (CFD) program, and the optimum experiment was carried out numerically. The experimental and numerical results were compatible with one another. The ultimate separation performance was achieved as 99.25% when the mounting angle was 27 degrees, the d/w was 0.029 and the Re number was 4850.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

120M786

Teşekkür

The authors acknowledge the financial support of The Scientific and Technological Research Council of Turkey (TUBITAK) for funding under project No: 120M786 and the Scientific Research Projects Coordinator of Van Yüzüncü Yıl University with project numbered FOA-2019-7591.

Kaynakça

  • Agency USEP. (1998). Effects of Benzene: An Update. National Center for Environmental Assessment–Washington Office of Research and Development, Washington, DC.
  • Andresen, P., Arntzen, R., & Sjøblom, J., (2000). Stability of model emulsions and determination of droplet size distributions in a gravity separator with different inlet characteristics. Colloid Surface A., 170(1), 33–44.
  • Cooper, S., & Coronellat, C. J. (2005). Cfd simulations of particle mixing in a binary fluidized bed. Powder Technology, 151, 27–36. doi: 10.1016/j.powtec.2004.11.041
  • Escobar, O. M. (2005). The graduate school performance evaluation of modified liquid-liquid cylindrical cyclone. Petroleum Engineering the Graduate School the University of Tulsa.
  • Fleischer, A. (1984). Separation of oily wastewaters. The Annual Technical Conference Canadian Institute of Marine Engineers (The State-Of-The-Art, Mari-Tech 84), Ottawa.
  • Gu, Y. (2001). Separation of produced petroleum fluids using a coalescer column. Research Proposal Submitted to Petroleum Technology Research Centre (PTRC), 15, 53-61.
  • Guerin, T. F. (2002). Heavy equipment maintenance wastes and environmental management in the mining industry. Journal of Environmental Management, 66, 185–199. doi:10.1006/jema.2002.0583
  • Güreşçi, K., Yesildal, F., Karabey, A., Yakut, R., & Yakut, K. (2017). Numerical analysis with experimental comparison in duct flow using optimized heat sinks. Journal of Radiation Research and Applied Sciences, 11(2), 116-123. doi: 11. 10.1016/j.jrras.2017.10.008
  • Halliburton, (2010). Water management. http://www.halliburton.com Erişim tarihi: 10.05.2018.
  • Hashim, R., Abdolhamid, A., & Mars, E. (2009). Evaluation of bio-surfactants enhancement on bioremediation process performance for crude oil contaminated soil at oilfield. Strategic Study, 20, 25-30.
  • Ivanenko, A., Yablokova, Y., & Petrov, S. (2010). Simulation of the separation of emulsified oil products from water in an apparatus with sinusoidal profiled oleophilic plates. Theoretical Foundations of Chemical Engineering, 44(5), 729-741.
  • James, P., & Rainer, E. F. (1993). Produced Water: Technological/Environmental Issue and Solutions. In Environmental Science Research. USA, Springer.
  • Kenawy, F. A., Kandil, M. E., Fouad, M. A., & Aboarab, T. W. (1997). Produced-water treatment technology—A study of oil/water separation in gravity-type crossflow pack separators for qualitative separation. SPE Production & Facilities, 12(02), 112-115. doi:10.2118/36056-PA
  • Khatib, Z., & Verbeek, P. (2002, March). Water to value-produced water management for sustainable field development of mature and green fields. Paper presented at the SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Kuala Lumpur, Malaysia. doi:10.2118/73853-MS
  • Klasson, K. T., Taylor, P. A., Walker, J. F., Jones, S. A., Cummins, R. L., & Richardson, S. A. (2005). Modification of a centrifugal separator for in-well oil-water separation. Separation Science and Technology, 40(1–3), 453–462. doi:10.1081/SS-200042503
  • Liu Y. H. (2009). The study of high performance inclined separator for free-water. (M.Sc.), Tianjin University, Tijanjin, China.
  • Myers, R. H., & Montgomery, D. C. (2002). Response Surface Methodology. New York: John Wiley.
  • Oruç, M., & Yayla, S. (2020). Petrol-su ayrışma sistemlerindeki birleştirilmiş plakaların ayrışma verimliliği üzerindeki etkisinin deneysel olarak incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7 (Milli Mücadele ve TBMM'nin Açılışının 100. Yılı Anısına-100. Yıl Özel Sayısı), 163-174. doi: 10.35193/bseufbd.658231
  • Oruç, M., & Yayla, S. (2022). Experimental investigation of oil-in water separation using corrugated plates and optimization of separation system. Separation Science and Technology, 57(5), 788-800. doi: 10.1080/01496395.2021.1939377
  • Ostrovskii, G. M. (2003). Theory of gravity separation of particles from liquid in cocurrent and countercurrent thin-layer settlers. Theoretical Foundations of Chemical Engineering, 37(5), 503-509. doi:10.1023/A:1026050910949
  • Rao, T. C., & Patil, D. P. (1998). Developments in gravity separation. Journal of Mines Metals &Fuels, 46, 383.
  • Razi, F. A, Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530-551.
  • Razi, F. A., Alireza, P., Zainal, A. Z., Chuah, A. L., Awang, B. D. A., & Siavash, M. S. (2010). Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Bio Resource Technology, 101(18), 6942-6949.
  • Reusser, D. E., & Field, J. A. (2002). Determination of benzyl succinic acid in gasoline-contaminated ground water by solid-phase extraction coupled with gas chromatography. Mass Spectrometry, 953, 215-225.
  • Ruiz, M. C., & Padilla, R. (1996). Separation of liquid-liquid dispersion in a deep-layer American chemical society gravity settler. Part II Mathematical Modeling of the Settler, Hydrometallurgy, 42, 281.
  • Sahin, S., Durhasan, T., Pinar, E., & Akilli, H. (2021). Experimental study on passive flow control of circular cylinder via perforated splitter plate. Wind and Structures, 32, 613-621. doi:10.12989/WAS.2021.32.6.613
  • Teksin, S., & Yayla, S. (2017). Effects of flexible plate attached to the rear of the cylinder on flow structure. Journal of Mechanical Science and Technology. 31(3), 1195-1201. doi:10.1007/s12206-017-0218-y
  • Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. U.S.: Department of Energy. https://doi.org/10.2172/821666
  • Wang, Y., & James, P., W. (1998). Calculation of wave-plate demister efficiencies using numerical simulation of the flow field and droplet motion. Chemical Engineering Research and Design, 76(48), 980–985.
  • Yayla, S., Ibrahim, S. S., & Olcay, A. A. (2017). Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry. Engineering Applications of Computational Fluid Mechanics, 11(1), 184-192. doi:10.1080/19942060.2016.1273137
  • Yayla, S., Kamal, K., Bayraktar, S., & Oruç, M. (2019). Two phase flow separation in a horizontal separator by inlet diverter plate in oilfield industries. International Journal of Mechanical and Production Engineering, 5, 97-100.
  • Yılmaz, Ş., Ecer, Ü., & Şahan, T. (2021). An optimization study for bio-removal of lead from aqueous environments by alkali modified Polyporus Squamosus. MANAS Journal of Engineering, 9, 1-9. doi: 10.51354/mjen.804338
  • Zhao, Y., Hua, W., Wang, Y. J., Ma, S. C., & Yan, J. (2005). Numerical simulation of separation performance of demisters with serrated baffles in wet flue gas desulfurization towers. Chinese Journal of Power Engineering, 25, 293-297.
  • Zhaohui, X., Ashok, M., & Wilfred, C. (2003). Detection of benzene, toluene, ethylbenzene, and xylenes (btex) using toluene dioxygenase-peroxidase coupling reactions. Biotechnology Progress, 19(6), 1812-1815.
  • Zhong, W. Q., Xiong, Y. Q., Yuan, Z. L., & Zhang, M. (2006). DEM simulation of gas-solid flow in a spout-fluid bed. Chemical Engineering, 61, 1571-1584.

Birleştirilmiş Plakaların Ayrıştırma Verimliliği Üzerine Etkileri

Yıl 2022, Cilt: 27 Sayı: 2, 286 - 302, 30.08.2022
https://doi.org/10.53433/yyufbed.1094330

Öz

Yeraltından çıkarılan karşımın içinde su, gaz ve bazı katı maddeler mevcuttur. Ham petrol olarak çıkartılan karışımın sudan ayrıştırılmasında en yaygın olarak kullanılan yöntem, yerçekimsel ayrışma metotlarından biri olan oluklu levhaların kullanıldığı ayrışma yöntemidir. Bu çalışma kapsamında, ele alınan petrol-su karışım numunesinin 3 farklı Re sayısı (3500, 4800, 6100), oluklu levhaların 3 farklı delik çapının levha genişliğine oranı (0.017, 0.025, 0.033) ve oluklu levhaların ayrışma sistemine 3 farklı montaj (10, 30, 50 derece) açısı parametrelerinin ayrışma verimliliğine etkisi incelenmiştir. Yapılması gereken deney sayısını azaltmak ve böylece maliyet ve deney süresinden tasarruf sağlamak amacıyla, ayırma veriminin en yüksek değerini bulma olasılığını etkilemeden, Box-Behnken tasarımı ile Yanıt Yüzey Yöntemi (RSM) kullanılıp optimizasyon işlemi gerçekleştirilmiştir. Ayrıca Hesaplamalı Akışkanlar Dinamiği (CFD) programında aynı sistem tasarlanarak optimum deney, sayısal olarak gerçekleştirilmiş ve deneysel ve sayısal sonuçların birbiriyle uyumlu olduğu görülmüştür. En yüksek ayırma verimi %99.25 olarak montaj açısı 27 derece, d/w 0.029 ve Re sayısı 4850 olduğunda elde edilmiştir.

Proje Numarası

120M786

Kaynakça

  • Agency USEP. (1998). Effects of Benzene: An Update. National Center for Environmental Assessment–Washington Office of Research and Development, Washington, DC.
  • Andresen, P., Arntzen, R., & Sjøblom, J., (2000). Stability of model emulsions and determination of droplet size distributions in a gravity separator with different inlet characteristics. Colloid Surface A., 170(1), 33–44.
  • Cooper, S., & Coronellat, C. J. (2005). Cfd simulations of particle mixing in a binary fluidized bed. Powder Technology, 151, 27–36. doi: 10.1016/j.powtec.2004.11.041
  • Escobar, O. M. (2005). The graduate school performance evaluation of modified liquid-liquid cylindrical cyclone. Petroleum Engineering the Graduate School the University of Tulsa.
  • Fleischer, A. (1984). Separation of oily wastewaters. The Annual Technical Conference Canadian Institute of Marine Engineers (The State-Of-The-Art, Mari-Tech 84), Ottawa.
  • Gu, Y. (2001). Separation of produced petroleum fluids using a coalescer column. Research Proposal Submitted to Petroleum Technology Research Centre (PTRC), 15, 53-61.
  • Guerin, T. F. (2002). Heavy equipment maintenance wastes and environmental management in the mining industry. Journal of Environmental Management, 66, 185–199. doi:10.1006/jema.2002.0583
  • Güreşçi, K., Yesildal, F., Karabey, A., Yakut, R., & Yakut, K. (2017). Numerical analysis with experimental comparison in duct flow using optimized heat sinks. Journal of Radiation Research and Applied Sciences, 11(2), 116-123. doi: 11. 10.1016/j.jrras.2017.10.008
  • Halliburton, (2010). Water management. http://www.halliburton.com Erişim tarihi: 10.05.2018.
  • Hashim, R., Abdolhamid, A., & Mars, E. (2009). Evaluation of bio-surfactants enhancement on bioremediation process performance for crude oil contaminated soil at oilfield. Strategic Study, 20, 25-30.
  • Ivanenko, A., Yablokova, Y., & Petrov, S. (2010). Simulation of the separation of emulsified oil products from water in an apparatus with sinusoidal profiled oleophilic plates. Theoretical Foundations of Chemical Engineering, 44(5), 729-741.
  • James, P., & Rainer, E. F. (1993). Produced Water: Technological/Environmental Issue and Solutions. In Environmental Science Research. USA, Springer.
  • Kenawy, F. A., Kandil, M. E., Fouad, M. A., & Aboarab, T. W. (1997). Produced-water treatment technology—A study of oil/water separation in gravity-type crossflow pack separators for qualitative separation. SPE Production & Facilities, 12(02), 112-115. doi:10.2118/36056-PA
  • Khatib, Z., & Verbeek, P. (2002, March). Water to value-produced water management for sustainable field development of mature and green fields. Paper presented at the SPE International Conference on Health, Safety and Environment in Oil and Gas Exploration and Production, Kuala Lumpur, Malaysia. doi:10.2118/73853-MS
  • Klasson, K. T., Taylor, P. A., Walker, J. F., Jones, S. A., Cummins, R. L., & Richardson, S. A. (2005). Modification of a centrifugal separator for in-well oil-water separation. Separation Science and Technology, 40(1–3), 453–462. doi:10.1081/SS-200042503
  • Liu Y. H. (2009). The study of high performance inclined separator for free-water. (M.Sc.), Tianjin University, Tijanjin, China.
  • Myers, R. H., & Montgomery, D. C. (2002). Response Surface Methodology. New York: John Wiley.
  • Oruç, M., & Yayla, S. (2020). Petrol-su ayrışma sistemlerindeki birleştirilmiş plakaların ayrışma verimliliği üzerindeki etkisinin deneysel olarak incelenmesi. Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, 7 (Milli Mücadele ve TBMM'nin Açılışının 100. Yılı Anısına-100. Yıl Özel Sayısı), 163-174. doi: 10.35193/bseufbd.658231
  • Oruç, M., & Yayla, S. (2022). Experimental investigation of oil-in water separation using corrugated plates and optimization of separation system. Separation Science and Technology, 57(5), 788-800. doi: 10.1080/01496395.2021.1939377
  • Ostrovskii, G. M. (2003). Theory of gravity separation of particles from liquid in cocurrent and countercurrent thin-layer settlers. Theoretical Foundations of Chemical Engineering, 37(5), 503-509. doi:10.1023/A:1026050910949
  • Rao, T. C., & Patil, D. P. (1998). Developments in gravity separation. Journal of Mines Metals &Fuels, 46, 383.
  • Razi, F. A, Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530-551.
  • Razi, F. A., Alireza, P., Zainal, A. Z., Chuah, A. L., Awang, B. D. A., & Siavash, M. S. (2010). Application of membrane-coupled sequencing batch reactor for oilfield produced water recycle and beneficial re-use. Bio Resource Technology, 101(18), 6942-6949.
  • Reusser, D. E., & Field, J. A. (2002). Determination of benzyl succinic acid in gasoline-contaminated ground water by solid-phase extraction coupled with gas chromatography. Mass Spectrometry, 953, 215-225.
  • Ruiz, M. C., & Padilla, R. (1996). Separation of liquid-liquid dispersion in a deep-layer American chemical society gravity settler. Part II Mathematical Modeling of the Settler, Hydrometallurgy, 42, 281.
  • Sahin, S., Durhasan, T., Pinar, E., & Akilli, H. (2021). Experimental study on passive flow control of circular cylinder via perforated splitter plate. Wind and Structures, 32, 613-621. doi:10.12989/WAS.2021.32.6.613
  • Teksin, S., & Yayla, S. (2017). Effects of flexible plate attached to the rear of the cylinder on flow structure. Journal of Mechanical Science and Technology. 31(3), 1195-1201. doi:10.1007/s12206-017-0218-y
  • Veil, J. A., Puder, M. G., Elcock, D., & Redweik, R. J. (2004). A white paper describing produced water from production of crude oil, natural gas, and coal bed methane. U.S.: Department of Energy. https://doi.org/10.2172/821666
  • Wang, Y., & James, P., W. (1998). Calculation of wave-plate demister efficiencies using numerical simulation of the flow field and droplet motion. Chemical Engineering Research and Design, 76(48), 980–985.
  • Yayla, S., Ibrahim, S. S., & Olcay, A. A. (2017). Numerical investigation of coalescing plate system to understand the separation of water and oil in water treatment plant of petroleum industry. Engineering Applications of Computational Fluid Mechanics, 11(1), 184-192. doi:10.1080/19942060.2016.1273137
  • Yayla, S., Kamal, K., Bayraktar, S., & Oruç, M. (2019). Two phase flow separation in a horizontal separator by inlet diverter plate in oilfield industries. International Journal of Mechanical and Production Engineering, 5, 97-100.
  • Yılmaz, Ş., Ecer, Ü., & Şahan, T. (2021). An optimization study for bio-removal of lead from aqueous environments by alkali modified Polyporus Squamosus. MANAS Journal of Engineering, 9, 1-9. doi: 10.51354/mjen.804338
  • Zhao, Y., Hua, W., Wang, Y. J., Ma, S. C., & Yan, J. (2005). Numerical simulation of separation performance of demisters with serrated baffles in wet flue gas desulfurization towers. Chinese Journal of Power Engineering, 25, 293-297.
  • Zhaohui, X., Ashok, M., & Wilfred, C. (2003). Detection of benzene, toluene, ethylbenzene, and xylenes (btex) using toluene dioxygenase-peroxidase coupling reactions. Biotechnology Progress, 19(6), 1812-1815.
  • Zhong, W. Q., Xiong, Y. Q., Yuan, Z. L., & Zhang, M. (2006). DEM simulation of gas-solid flow in a spout-fluid bed. Chemical Engineering, 61, 1571-1584.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Oruç 0000-0001-7497-7613

Sedat Yayla 0000-0001-6640-6511

Proje Numarası 120M786
Erken Görünüm Tarihi 25 Ağustos 2022
Yayımlanma Tarihi 30 Ağustos 2022
Gönderilme Tarihi 28 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 27 Sayı: 2

Kaynak Göster

APA Oruç, M., & Yayla, S. (2022). Effects of Corrugated Plates on Separation Performance. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 27(2), 286-302. https://doi.org/10.53433/yyufbed.1094330