Dynamic Simulation of a Reactive Distillation Column for Ethyl Acetate Production: Optimization of Operating Conditions Using Response Surface Methodology
Yıl 2022,
Cilt: 27 Sayı: 2, 365 - 379, 30.08.2022
Adnan Aldemir
,
Dilan Ersingün
,
İsmail Bayram
Öz
In this study, we aimed to determine the optimum operating conditions for the production of ethyl acetate (EtAc) through the esterification of ethanol (EtOH) with acetic acid (HAc) in a reactive distillation (RD) column. For this, the designed column was simulated for the production of EtAc. HAc flow rate, EtOH flow rate, HAc feed stage, EtOH feed stage, reflux ratio, and reactive feed temperatures were changed and the effects of these parameters on EtAc production were observed. Central Composite Design was employed to define the optimum operating conditions for the RD column. The determination coefficient R2 was equal to 0.9197 suggesting a good relationship between the predicted and simulated responses. Adjusted R2 and predicted R2 values obtained from the program were 0.8823 and 0.7956, respectively. The optimal conditions for the EtAc production response were HAc flow rate of 120.00 kmol/h, EtOH flow rate of 150.00 kmol/h, HAc feed stage 6, EtOH feed stage 14, reflux ratio 2.2, and feed temperature 70.28 °C, which were designated by the maximum desirability function.
Destekleyen Kurum
Van Yüzüncü Yıl Üniversitesi, Bilimsel Araştırma Projeleri Başkanlığı
Proje Numarası
FYL-2018-6965
Teşekkür
This research is supported by Van Yüzüncü Yıl University, Scientific Research Projects Department (Project Name: Determination of the Optimum Operating Conditions for a Reactive Distillation Column through a Dynamic Simulation by using the Response Surface Methodology, Project Number: FYL-2018-6965)
Kaynakça
- Aqar, D. Y., Rahmanian, N., & Mujtaba, I. M. (2017). Feasibility of integrated batch reactive distillation columns for the optimal synthesis of ethyl benzoate. Chemical Engineering and Processing: Process Intensification, 122(1), 10-20. doi:10.1016/j.cep.2017.08.012
- Bumbac, G., Ene, A., Isopescu, R., & Toma, A. (2009). Process simulation of reactive distillation in dividing wall column for ETBE synthesis process. Chemical Engineering Transactions, 18(1), 487-492. doi:10.3303/CET0918079
- Candioti, L. V., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124(1), 123-138. doi: 10.1016/j.talanta.2014.01.034
- Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S., & Barbosa, D. (2000). Optimization of reactive distillation processes with simulated annealing. Chemical Engineering Science, 55(21), 5059-5078. doi: 10.1016/S0009-2509(00)00119-6
- Carrera-Rodríguez, M., Segovia-Hernández, J. G., Hernández-Escoto, H., Hernández, S., & Bonilla-Petriciolet, A. (2014). A note on an extended short-cut method for the design of multicomponent reactive distillation columns. Chemical Engineering Research and Design, 92(1), 1-12. doi:10.1016/j.cherd.2013.06.018
- Cheng, J. K., Lee, H. Y., Huang, H. P., & Yu, C. C. (2009). Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers, 40(2), 188-196. doi: 10.1016/j.jtice.2008.10.003
- Ciric, A. R., & Gu, D. (1994). Synthesis of nonequilibrium reactive distillation processes by MINLP optimization. American Institute of Chemical Engineers Journal, 40(9), 1479-1487. doi:10.1002/aic.690400907
- Diggelen, R., Kiss, A., & Heemink, A. (2010). Comparison of control strategies for dividing-wall columns. Industrial & Engineering Chemistry Research, 49(1), 288-307. doi:10.1021/ie9010673
- Feyzi, V., & Beheshti, M. (2017). Exergy analysis and optimization of reactive distillation column in acetic acid production process. Chemical Engineering and Processing: Process Intensification, 120(1), 161–172. doi:10.1016/j.cep.2017.06.016
- Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., & Gani, R. (2002). The interactions of design, control and operability in reactive distillation systems. Computers & Chemical Engineering, 26(4-5), 735-746. doi:10.1016/S0098-1354(01)00774-8
- Harvianto, G. R., Ahmad, F., & Lee, M. (2017). A hybrid reactive distillation process with high selectivity pervaporation for butyl acetate production via transesterification. Journal of Membrane Science, 543(1), 49-57. doi:10.1016/j.memsci.2017.08.041
- Huang, W., Li, H., Wang, R., Li, X., & Gao, X. (2017). Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: Kinetics and reactive distillation. Chemical Engineering and Processing: Process Intensification, 120(1), 173-183. doi:10.1016/j.cep.2017.07.004
- Jie, H., Cui, X., Zhang, Y., Feng, T., Li, X., Lin, R., & Xu, L. (2016). Transesterification of methyl acetate with isobutanol in a reactive and extractive distillation column with ionic liquid as catalyst and molecular liquid as entrainer. Industrial & Engineering Chemistry Research, 55(2), 404-419. doi:10.1021/acs.iecr.5b02983
- Kaewwisetkul, P., Simasatitkul, L., & Arpornwichanop, A. (2017). Design and optimization of dimethyl ether production from crude glycerol in a reactive distillation. Chemical Engineering and Processing: Process Intensification, 117(1), 80–88. doi:10.1016/j.cep.2017.03.019
- Komesu, A., Martinez, P. F. M., Lunelli, B. H., Filho, R. M., & Maciel, M. R. W. (2015). Lactic acid purification by reactive distillation system using design of experiments. Chemical Engineering and Processing: Process Intensification, 95(1), 26–30. doi:10.1016/j.cep.2015.05.005
- Lee, H. Y., Huang, H. P., & Chien, I. L. (2007). Control of reactive distillation process for production of ethyl acetate. Journal of Process Control, 17(1), 363–377. doi:10.1016/j.jprocont.2006.10.002
- Li, C., Duan, C., Fang, J., & Li, H. (2019). Process intensification and energy saving of reactive distillation for production of ester compounds. Chinese Journal of Chemical Engineering, 27(6), 1307-1323. doi:10.1016/j.cjche.2018.10.007
- Luyben, W. L., & Yu, C. C. (2009). Reactive Distillation Design and Control. John Wiley & Sons, Inc.
- Masuku, C. M., & Biegler, L. T. (2019). Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation. Current Opinion in Chemical Engineering, 25(1), 95-100. doi:10.1016/j.coche.2018.12.009
- Nguyen, N., & Demirel, Y. (2011). Using thermally coupled reactive distillation columns in biodiesel production. Energy, 36(8), 4838-4847. doi:10.1016/j.energy.2011.05.020
- Norkobilov, A., Gorri, D., & Ortiz, I. (2017). Comparative study of conventional, reactive-distillation and pervaporation integrated hybrid process for ethyl tert-butyl ether production. Chemical Engineering and Processing: Process Intensification, 122(1), 434-446. doi: 10.1016/j.cep.2017.07.003
- Pérez-Cisneros, E. S., Mena-Espino, X., Rodríguez-López, V., Sales-Cruz, M., Viveros-García, T., & Lobo-Oehmichen, R. (2016). An integrated reactive distillation process for biodiesel production. Computers & Chemical Engineering, 91(1), 233-246. doi: 10.1016/j.compchemeng.2016.01.008
- Petchsoongsakul, N., Ngaosuwan, K., Kiatkittipong, W., Aiouache, F., & Assabumrungrat, S. (2017). Process design of biodiesel production: Hybridization of ester-and transesterification in a single reactive distillation. Energy Conversion and Management, 153(1), 493-503. doi: 10.1016/j.enconman.2017.10.013
- Rangaiah, G. P., & Bonilla-Petriciolet, A. (2013). Multi-Objective Optimization in Chemical Engineering: Developments and Applications. John Wiley & Sons, Inc.
- Santaella, M. A., Orjuela, A., & Narváez, P. C. (2015). Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chemical Engineering and Processing: Process Intensification, 96(1), 61-13. doi:10.1016/j.cep.2015.07.027
- Santaella, M. A., Jiménez, L. E., Orjuela, A., & Segovia-Hernández, J. G. (2017). Design of thermally coupled reactive distillation schemes for triethyl citrate production using economic and controllability criteria. Chemical Engineering Journal, 328(1), 368-381. doi: 10.1016/j.cej.2017.07.015
- Segovia-Hernández, J. G., Hernández, S., & Bonilla-Petriciolet, A. (2015). Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification, 97(1), 134-143. doi: 10.1016/j.cep.2015.09.004
- Sundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and Future Directions. Wiley-VCH Verlag GmbH & Co.
- Taylor, R., & Krishna, R. (2000). Modelling reactive distillation. Chemical Engineering Science, 55, 5183. doi:10.1016/S0009-2509(00)00120-2
- Zhang, Q., Guo, T., Yu, C., & Li, Y. (2017). Design and control of different pressure thermally coupled reactive distillation for amyl acetate synthesis. Chemical Engineering and Processing: Process Intensification, 121(1), 170-179. doi:10.1016/j.cep.2017.09.002
- Zhang, Q., Yan, S., Li, H., & Xu, P. (2019). Optimization and control of a reactive and extractive distillation process for the synthesis of isopropyl acetate. Chemical Engineering Communications, 206(5), 559-571. doi:10.1080/00986445.2018.1511982
Etil Asetat Üretimi için Bir Reaktif Distilasyon Kolonunun Dinamik Simülasyonu: Cevap Yüzey Yöntemi ile İşletme Koşullarının Optimizasyonu
Yıl 2022,
Cilt: 27 Sayı: 2, 365 - 379, 30.08.2022
Adnan Aldemir
,
Dilan Ersingün
,
İsmail Bayram
Öz
Bu çalışmada, etanolün (EtOH) asetik asit (HAc) ile reaktif distilasyon (RD) kolonunda, esterleştirilmesi yoluyla etil asetat (EtAc) üretimi için optimum çalışma koşullarının belirlenmesi amaçlanmıştır. Bunun için tasarlanan kolonun EtAc üretimi için simüle edilmiştir. HAc akış hızı, EtOH akış hızı, HAc besleme aşaması, EtOH besleme aşaması, geri akış oranı ve reaktif besleme sıcaklıkları değiştirilmiş ve bu parametrelerin EtAc üretimi üzerindeki etkileri gözlemlenmiştir. RD kolonu için optimum çalışma koşullarını tanımlamak için Merkezi Kompozit Tasarım kullanılmıştır. Regresyon katsayısı R2, 0.9197'ye eşittir ve bu, tahmin edilen ve simüle edilen yanıtlar arasında iyi bir ilişki olduğunu göstermiştir. Programdan elde edilen düzeltilmiş ve tahmin edilen R2 değerleri sırasıyla 0.8823 ve 0.7956'dır. EtAc üretim yanıtı için optimal koşullar, 120.00 kmol/saat HAc akış hızı, 150.00 kmol/saat EtOH akış hızı, HAc besleme aşaması 6, EtOH besleme aşaması 14, geri akış oranı 2.2 ve reaktif besleme sıcaklığı 70.28 °C olarak maksimum istenilirlik fonksiyonu ile belirlenmiştir.
Proje Numarası
FYL-2018-6965
Kaynakça
- Aqar, D. Y., Rahmanian, N., & Mujtaba, I. M. (2017). Feasibility of integrated batch reactive distillation columns for the optimal synthesis of ethyl benzoate. Chemical Engineering and Processing: Process Intensification, 122(1), 10-20. doi:10.1016/j.cep.2017.08.012
- Bumbac, G., Ene, A., Isopescu, R., & Toma, A. (2009). Process simulation of reactive distillation in dividing wall column for ETBE synthesis process. Chemical Engineering Transactions, 18(1), 487-492. doi:10.3303/CET0918079
- Candioti, L. V., De Zan, M. M., Cámara, M. S., & Goicoechea, H. C. (2014). Experimental design and multiple response optimization. Using the desirability function in analytical methods development. Talanta, 124(1), 123-138. doi: 10.1016/j.talanta.2014.01.034
- Cardoso, M. F., Salcedo, R. L., Feyo de Azevedo, S., & Barbosa, D. (2000). Optimization of reactive distillation processes with simulated annealing. Chemical Engineering Science, 55(21), 5059-5078. doi: 10.1016/S0009-2509(00)00119-6
- Carrera-Rodríguez, M., Segovia-Hernández, J. G., Hernández-Escoto, H., Hernández, S., & Bonilla-Petriciolet, A. (2014). A note on an extended short-cut method for the design of multicomponent reactive distillation columns. Chemical Engineering Research and Design, 92(1), 1-12. doi:10.1016/j.cherd.2013.06.018
- Cheng, J. K., Lee, H. Y., Huang, H. P., & Yu, C. C. (2009). Optimal steady-state design of reactive distillation processes using simulated annealing. Journal of the Taiwan Institute of Chemical Engineers, 40(2), 188-196. doi: 10.1016/j.jtice.2008.10.003
- Ciric, A. R., & Gu, D. (1994). Synthesis of nonequilibrium reactive distillation processes by MINLP optimization. American Institute of Chemical Engineers Journal, 40(9), 1479-1487. doi:10.1002/aic.690400907
- Diggelen, R., Kiss, A., & Heemink, A. (2010). Comparison of control strategies for dividing-wall columns. Industrial & Engineering Chemistry Research, 49(1), 288-307. doi:10.1021/ie9010673
- Feyzi, V., & Beheshti, M. (2017). Exergy analysis and optimization of reactive distillation column in acetic acid production process. Chemical Engineering and Processing: Process Intensification, 120(1), 161–172. doi:10.1016/j.cep.2017.06.016
- Georgiadis, M. C., Schenk, M., Pistikopoulos, E. N., & Gani, R. (2002). The interactions of design, control and operability in reactive distillation systems. Computers & Chemical Engineering, 26(4-5), 735-746. doi:10.1016/S0098-1354(01)00774-8
- Harvianto, G. R., Ahmad, F., & Lee, M. (2017). A hybrid reactive distillation process with high selectivity pervaporation for butyl acetate production via transesterification. Journal of Membrane Science, 543(1), 49-57. doi:10.1016/j.memsci.2017.08.041
- Huang, W., Li, H., Wang, R., Li, X., & Gao, X. (2017). Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: Kinetics and reactive distillation. Chemical Engineering and Processing: Process Intensification, 120(1), 173-183. doi:10.1016/j.cep.2017.07.004
- Jie, H., Cui, X., Zhang, Y., Feng, T., Li, X., Lin, R., & Xu, L. (2016). Transesterification of methyl acetate with isobutanol in a reactive and extractive distillation column with ionic liquid as catalyst and molecular liquid as entrainer. Industrial & Engineering Chemistry Research, 55(2), 404-419. doi:10.1021/acs.iecr.5b02983
- Kaewwisetkul, P., Simasatitkul, L., & Arpornwichanop, A. (2017). Design and optimization of dimethyl ether production from crude glycerol in a reactive distillation. Chemical Engineering and Processing: Process Intensification, 117(1), 80–88. doi:10.1016/j.cep.2017.03.019
- Komesu, A., Martinez, P. F. M., Lunelli, B. H., Filho, R. M., & Maciel, M. R. W. (2015). Lactic acid purification by reactive distillation system using design of experiments. Chemical Engineering and Processing: Process Intensification, 95(1), 26–30. doi:10.1016/j.cep.2015.05.005
- Lee, H. Y., Huang, H. P., & Chien, I. L. (2007). Control of reactive distillation process for production of ethyl acetate. Journal of Process Control, 17(1), 363–377. doi:10.1016/j.jprocont.2006.10.002
- Li, C., Duan, C., Fang, J., & Li, H. (2019). Process intensification and energy saving of reactive distillation for production of ester compounds. Chinese Journal of Chemical Engineering, 27(6), 1307-1323. doi:10.1016/j.cjche.2018.10.007
- Luyben, W. L., & Yu, C. C. (2009). Reactive Distillation Design and Control. John Wiley & Sons, Inc.
- Masuku, C. M., & Biegler, L. T. (2019). Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation. Current Opinion in Chemical Engineering, 25(1), 95-100. doi:10.1016/j.coche.2018.12.009
- Nguyen, N., & Demirel, Y. (2011). Using thermally coupled reactive distillation columns in biodiesel production. Energy, 36(8), 4838-4847. doi:10.1016/j.energy.2011.05.020
- Norkobilov, A., Gorri, D., & Ortiz, I. (2017). Comparative study of conventional, reactive-distillation and pervaporation integrated hybrid process for ethyl tert-butyl ether production. Chemical Engineering and Processing: Process Intensification, 122(1), 434-446. doi: 10.1016/j.cep.2017.07.003
- Pérez-Cisneros, E. S., Mena-Espino, X., Rodríguez-López, V., Sales-Cruz, M., Viveros-García, T., & Lobo-Oehmichen, R. (2016). An integrated reactive distillation process for biodiesel production. Computers & Chemical Engineering, 91(1), 233-246. doi: 10.1016/j.compchemeng.2016.01.008
- Petchsoongsakul, N., Ngaosuwan, K., Kiatkittipong, W., Aiouache, F., & Assabumrungrat, S. (2017). Process design of biodiesel production: Hybridization of ester-and transesterification in a single reactive distillation. Energy Conversion and Management, 153(1), 493-503. doi: 10.1016/j.enconman.2017.10.013
- Rangaiah, G. P., & Bonilla-Petriciolet, A. (2013). Multi-Objective Optimization in Chemical Engineering: Developments and Applications. John Wiley & Sons, Inc.
- Santaella, M. A., Orjuela, A., & Narváez, P. C. (2015). Comparison of different reactive distillation schemes for ethyl acetate production using sustainability indicators. Chemical Engineering and Processing: Process Intensification, 96(1), 61-13. doi:10.1016/j.cep.2015.07.027
- Santaella, M. A., Jiménez, L. E., Orjuela, A., & Segovia-Hernández, J. G. (2017). Design of thermally coupled reactive distillation schemes for triethyl citrate production using economic and controllability criteria. Chemical Engineering Journal, 328(1), 368-381. doi: 10.1016/j.cej.2017.07.015
- Segovia-Hernández, J. G., Hernández, S., & Bonilla-Petriciolet, A. (2015). Reactive distillation: A review of optimal design using deterministic and stochastic techniques. Chemical Engineering and Processing: Process Intensification, 97(1), 134-143. doi: 10.1016/j.cep.2015.09.004
- Sundmacher, K., & Kienle, A. (2002). Reactive Distillation: Status and Future Directions. Wiley-VCH Verlag GmbH & Co.
- Taylor, R., & Krishna, R. (2000). Modelling reactive distillation. Chemical Engineering Science, 55, 5183. doi:10.1016/S0009-2509(00)00120-2
- Zhang, Q., Guo, T., Yu, C., & Li, Y. (2017). Design and control of different pressure thermally coupled reactive distillation for amyl acetate synthesis. Chemical Engineering and Processing: Process Intensification, 121(1), 170-179. doi:10.1016/j.cep.2017.09.002
- Zhang, Q., Yan, S., Li, H., & Xu, P. (2019). Optimization and control of a reactive and extractive distillation process for the synthesis of isopropyl acetate. Chemical Engineering Communications, 206(5), 559-571. doi:10.1080/00986445.2018.1511982