Çilekte Botrytis cinerea’ya Karşı Bakterilerin Antagonist Etkilerinin In Vitro Koşullarda Belirlenmesi
Yıl 2022,
Cilt: 27 Sayı: 3, 535 - 547, 25.12.2022
Tuba Genç Kesimci
,
Mesude Figen Dönmez
Öz
Bu çalışmada, çilekte hasat öncesi ve hasat sonrası ürün kayıplarına neden olan Botrytis cinerea’ya karşı Iğdır ilinde tuzlu topraklardan ve Phragmites australis bitkisinden izole edilen bakteri strainlerinin antagonistik özellikleri araştırılmıştır. Yapılan izolasyonlar neticesinde 89 bakteri straini elde edilmiş ve bu bakterilerin tanıları yağ asit metil ester analizi ile yapılmıştır. Elde edilen bakteriler arasında 38 strain in vitro testlerde etkili bulunmuş ve bu strainlerin B. cinerea’nın misel gelişimini farklı oranlarda engelledikleri tespit edilmiştir. Başarılı olan strainler cins düzeyinde değerlendirildiğinde Bacillus ve Paenibacillus cinslerinin daha etkili oldukları belirlenmiştir. Çalışmada kullanılan aday antagonistlerin inhibisyon oranlarına bakıldığında en etkili strainin %71.68 oranı ile Bacillus subtilis MFD2-21 olduğu, bu straini %68.89 oranı ile Paenibacillus polymyxa MFD-15 ve %61.93 oranı ile Paenibacillus apiarus MFD20 straininin takip ettiği belirlenmiştir. B. cinerea’nın misel gelişimini en düşük oranda engelleyen aday antagonist strain ise %17.36 oranı ile Bacillus sphaericus GC subgroup E MFD3-15 olarak saptanmıştır.
Kaynakça
- Abdou, M. M., Mahdy, R. N., Fawzy, M. A., Hafez., & Ahmad, T A. L. (2014). Biological control of gray mould disease caused by Botrytis cinerea on strawberry fruits. Annals of Agricultural Science, Moshtohor, 52(4), 549-558, doi: 10.21608/assjm.2014.111906
- Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. doi: 10.3390/agronomy9030121
- Chen, C., Cao, Z., Li, J., Tao, C., Feng, Y., & Han, Y. (2020). A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biological Control, 148, 104306, doi: 10.1016/j.biocontrol.2020.104306
- Chitarra, G. S., Breeuwer, P., Nout, M. J., van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94(2), 159-166. doi: 10.1046/j.1365-2672.2003.01819.x
- Çubukçu, N. (2007). Biological control options of Verticillium wilt (Verticillium dahliae Kleb.) of cotton by endophytic bacteria. (Master thesis), Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences Aydın, Turkey.
- Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430. doi: 10.1111/j.1364-3703.2011.00783.x
- Donmez, M. F., Esitken, A., Yıldız, H., & Ercisli, S. (2011). Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. The Journal of Animal & Plant Sciences, 21(4), 758-763.
- Eken, C., Genç, T., Tuncer, S., & Kadıoğlu, Z. (2013, Eylül). Çilekte kurşuni küf hastalığı etmeni Botrytis cinerea’ya in vitroda fungal antagonistlerin etkisi. Türkiye 5. Organik Tarım Sempozyumu, Samsun.
- Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis: Biology, Pathology and Control. Berlin/Heidelberg, Germany: Springer Science & Business Media.
- Feliziani, E., & Romanazzi, G. (2016). Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research, 6(1), 47-63. doi: 10.3233/JBR-150113
- Gull, M., & Hafeez, F. Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiolology Research, 6(33), 6308-6318. doi: 10.5897/AJMR12.1285
- Haidar, R., Fermaud, M., Calvo-Garrido, C., Roudet, J., & Deschamps, A. (2016). Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3), 13-34. doi:10.14601/Phytopathol_Mediterr-18079
- Hamdache, A., Ezziyyani, M., & Lamarti, A. (2018). Effect of preventive and simultaneous inoculations of Bacillus amyloliquefaciens [Fukumoto] strains on conidial germination of Botrytis cinerea Pers. Fr. Anales de Biología, 40, 65-72. doi: 10.6018/analesbio.40.08
- Hang, N. T. T., Oh, S. O., Kim, G. H., Hur, J. S., & Koh, Y. J. (2005). Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. The Plant Pathology Journal, 21(1), 59-63. doi: 10.5423/PPJ.2005.21.1.059
- Henry, G., Deleu, M., Jourdan, E., Thonart, P., & Ongena M., (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 13, 1824-1837. doi: 10.1111/j.1462-5822.2011.01664.x
- Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273-290. doi: 10.3923/jbs.2010.273.290
- Ilhan, K., & Karabulut, O. A. (2013). Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. Biocontrol, 58(4), 457-470. doi: 10.1007/s10526-012-9503-x
- Kim, B. S., & Hartmann, R. W. (1985). Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum). Plant Disease, 69, 233-235.
- Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., & Moon, B. J. (2007). Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Journal of Microbiology and Biotechnology, 17(3), 438-444.
- Kim, Y. C., Hur, J. Y., & Park, S. K. (2019). Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. European Journal of Plant Pathology, 155, 253-263. doi: 10.1007/s10658-019-01768-1
- Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M. C. & Moore, L.W. (1990). Inoculation of Plant Tissues. In Z. Klement, K. Rudolph, & D. C. Sands (Eds.), Methods in Phytobacteriology (pp. 99-100). Budapest, Hungary: Akademiai Kiado.
- Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi: 10.1006/bcon.2000.0839
- Lu, Y., Ma, D., He, X., Wang, F., Wu, J., Liu, Y., Jiaoa, J., & Deng, J. (2021). Bacillus subtilis KLBC BS6 induces resistance and defence-related response against Botrytis cinerea in blueberry fruit. Physiological and Molecular Plant Pathology, 114, 101599. doi: 10.1016/j.pmpp.2020.101599
- Mahdy, A. M., Fawzy, R. N., Hafez, M. A., & Ahmad, T. A. L. (2014). Biological control of gray mould disease caused by Botrytis cinerea on strawberry fruits. Annals of Agricultural Sciences, Moshtohor, 52(4), 549-558. doi: 10.21608/assjm.2014.111906
- Maindad, D. V., Kasture, V. M., Chaudhari, H., Dhavale, D. D., Chopade, B. A., & Sachdev, D. (2014). Characterization and fungal inhibition activity of siderophore from wheat rhizosphere associated Acinetobacter calcoaceticus strain HIRFA32. Indian Journal of Microbiology, 54, 315-322. doi: 10.1007/s12088-014-0446-z
- Maung, C. E., Baek, W. S., Choi, T. G., & Kim, K. Y. (2021). Control of grey mould disease on strawberry using the effective agent, Bacillus amyloliquefaciens Y1. Biocontrol Science and Technology, 31(5), 468-482. doi: 10.1080/09583157.2020.1867707
- Mertely, J. C., Oliveira, M. S., & Peres, N. A. (2018). Botrytis Fruit Rot or Gray Mold of Strawberry. Florida, USA: UF/IFAS Extension.
- Nakkeeran, S., Priyanka, R., Rajamanickam, S., & Sivakumar, U. (2020). Bacillus amyloliquefaciens alters the diversity of volatile and non-volatile metabolites and induces the expression of defence genes for the management of Botrytis leaf blight of Lilium under protected conditions. Journal of Plant Pathology, 102, 1179-1189. doi: 10.1007/s42161-020-00602-6
- Narayanasamy, P. (1997). Plant Pathogen Detection and Disease Diagnosis. Coimbatore, India. Taylor and Francis.
- Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H., & Kim, K. Y. (2015). Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Journal of Basic Microbiology, 55(5), 625-634. doi: 10.1002/jobm.201400041
- Nicot, C., Stewart, A., Bardin, M., & Elad, Y. (2015). Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. London, UK: Springer International Publishing.
- Pei, Y. G., Tao, Q. J., Zheng, X. J., Li, Y., Sun, X. F., Li, Z. F., & Gong, G. S. (2019). Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province, China. Plant Disease, 103(4), 748-758. doi: 10.1094/PDIS-04-18-0707-RE
- Pertot, I., Giovannini, O., Benanchi, M., Caffi, T., Rossi, V., & Mugnai, L. (2017). Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection, 97, 85-93. doi: 10.1016/j.cropro.2017.01.010
- Petrasch, S., Knapp, S. J., Van Kan, J. A., & Blanco‐Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877-892. doi: 10.1111/mpp.12794
- Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi: 10.1111/j.1574-6976.2010.00221.x
- Richards, J. K., Xiao, C. L., & Jurick, W. M. (2021). Botrytis spp.: a contemporary perspective and synthesis of recent scientific developments of a widespread genus that threatens global food security. Phytopathology, 111(3), 432-436. doi: 10.1094/PHYTO-10-20-0475-IA
- Sansinenea, E., & Ortiz, A. (2011). Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33, 1523-1538. doi: 10.1007/s10529-011-0617-5
- Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Technical Note #101:1-6.
- Saygılı, H., Şahin, F., & Aysan, Y. (2006). Fitobakteriyoloji. İzmir, Türkiye: Meta Basım Matbaacılık.
- Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria. Minnesota, USA: American Phytopathological Society.
- Shao, W., Zhao, Y., & Ma, Z. (2021). Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology, 111(3), 455-463. doi: 10.1094/PHYTO-07-20-0313-IA
- Shternshis, M. V., Belyaev, A. A., Shpatova, T. V., & Lelyak, A. A. (2015). Influence of Bacillus spp. on strawberry gray-mold causing agent and host plant resistance to disease. Contemporary Problems of Ecology, 8(3), 390-396. doi: 10.1134/S1995425515030130
- Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M., & García, A. F. (2004). Genetic and functional characterization of a Bacillus strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal Applied Microbiology, 97(6), 1247-1256. doi: 10.1111/j.1365-2672.2004.02408.x
- Soylu, S., Sülü, S. M., & Bozkurt, İ. A. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 103-111.
- SPSS. (2008). IBM SPSS Statistics 17.0 for Windows, Armonk, NY.
- Su, Z., Chen, X., Liu, X., Guo, Q., Li, S., Lu, X., Zhang, X., Wang, P., Dong, L., Zhao, W., & Ma, P. (2020). Genome mining and UHPLC–QTOF–MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. BMC Genomics, 21, 767. doi: 10.1186/s12864-020-07160-2
- Sutton, J. C., & Peng, G. (1993). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83(6), 615-621. doi: 10.1094/Phyto-83-615
- Swadling, I. R., & Jeffries, P. (1996). Isolation of microbial antagonists for biocontrol of grey mould disease of strawberries. Biocontrol Science and Technology, 6(1), 125-136. doi: 10.1080/09583159650039584
- Toral, L., Rodríguez, M., Béjar, V., & Sampedro, I. (2020). Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7), 992. doi: 0.3390/microorganisms8070992
- Uygun, N., Ulusoy, M. R., & Satar, S. (2010). Biyolojik mücadele. Türkiye Biyolojik Mücadele Dergisi, 1(1), 1-14.
- Wang, X., Zhou, X., Cai, Z., Guo, L., Chen, X., Chen, X., Liu, J., Feng, M., Qiu, Y., & Zhang, Y. (2021a). A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens,10(1), 22. doi: org/10.3390/pathogens10010022
- Wang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., & Deng, J. (2021b). Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. doi: 10.1016/j.postharvbio.2020.111456
- Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. doi: 10.1111/j.1364-3703.2007.00417.x
- Yıldız, A., & Benlioğlu, S. (2009). Çilek hastalık zararlı ve yabancı otları. Türkiye: Adnan Menderes Üniversitesi Yayınları.
- Zhang, W., Ma, J., Yan, Q., Jiang, Z., & Yang, S. (2021). Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2–4. International Journal of Biological Macromolecules, 182, 1528-1536. doi: 10.1016/j.ijbiomac.2021.05.111
Determining of the Antagonist Effects of Bacteria Againts Botrytis cinerea in Strawberry under In Vitro Conditions
Yıl 2022,
Cilt: 27 Sayı: 3, 535 - 547, 25.12.2022
Tuba Genç Kesimci
,
Mesude Figen Dönmez
Öz
In this study were investigated the antagonistic activities of bacterial strains isolated from salty soils and Phragmites australis plant in Iğdır province against Botrytis cinerea in strawberry. As a result of the isolations, 89 bacterial strains were obtained and the determination of the bacteria was made by fatty acid methyl ester analysis. Among them, 38 bacteria strains were found to be effective in in vitro tests and it was determined that the strains were inhibited mycelial growth of B. cinerea at different rates when successful strains were evaluated at the genus level, it was determined that Bacillus and Pseudomonas were two of the most important genus. Considering the inhibition rates of the putative antagonists were determined that the most effective strains were Bacillus subtilis MFD2-21 (71.68%) Paenibacillus polymyxa MFD-15 (68.89%) and Paenibacillus apiarus MFD20 (61.93%), respectively. The putative antagonist strain that inhibits mycelial growth of B. cinerea at the lowest rate was determined as Bacillus sphaericus GC subgroup E MFD3-15 (17.36%).
Kaynakça
- Abdou, M. M., Mahdy, R. N., Fawzy, M. A., Hafez., & Ahmad, T A. L. (2014). Biological control of gray mould disease caused by Botrytis cinerea on strawberry fruits. Annals of Agricultural Science, Moshtohor, 52(4), 549-558, doi: 10.21608/assjm.2014.111906
- Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito-Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R., & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. doi: 10.3390/agronomy9030121
- Chen, C., Cao, Z., Li, J., Tao, C., Feng, Y., & Han, Y. (2020). A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biological Control, 148, 104306, doi: 10.1016/j.biocontrol.2020.104306
- Chitarra, G. S., Breeuwer, P., Nout, M. J., van Aelst, A. C., Rombouts, F. M., & Abee, T. (2003). An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores. Journal of Applied Microbiology, 94(2), 159-166. doi: 10.1046/j.1365-2672.2003.01819.x
- Çubukçu, N. (2007). Biological control options of Verticillium wilt (Verticillium dahliae Kleb.) of cotton by endophytic bacteria. (Master thesis), Aydın Adnan Menderes University, Graduate School of Natural and Applied Sciences Aydın, Turkey.
- Dean, R., Van Kan, J. A., Pretorius, Z. A., Hammond‐Kosack, K. E., Di Pietro, A., Spanu, P. D., & Foster, G. D. (2012). The Top 10 fungal pathogens in molecular plant pathology. Molecular plant pathology, 13(4), 414-430. doi: 10.1111/j.1364-3703.2011.00783.x
- Donmez, M. F., Esitken, A., Yıldız, H., & Ercisli, S. (2011). Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. The Journal of Animal & Plant Sciences, 21(4), 758-763.
- Eken, C., Genç, T., Tuncer, S., & Kadıoğlu, Z. (2013, Eylül). Çilekte kurşuni küf hastalığı etmeni Botrytis cinerea’ya in vitroda fungal antagonistlerin etkisi. Türkiye 5. Organik Tarım Sempozyumu, Samsun.
- Elad, Y., Williamson, B., Tudzynski, P., & Delen, N. (2004). Botrytis: Biology, Pathology and Control. Berlin/Heidelberg, Germany: Springer Science & Business Media.
- Feliziani, E., & Romanazzi, G. (2016). Postharvest decay of strawberry fruit: Etiology, epidemiology, and disease management. Journal of Berry Research, 6(1), 47-63. doi: 10.3233/JBR-150113
- Gull, M., & Hafeez, F. Y. (2012). Characterization of siderophore producing bacterial strain Pseudomonas fluorescens Mst 8.2 as plant growth promoting and biocontrol agent in wheat. African Journal of Microbiolology Research, 6(33), 6308-6318. doi: 10.5897/AJMR12.1285
- Haidar, R., Fermaud, M., Calvo-Garrido, C., Roudet, J., & Deschamps, A. (2016). Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathologia Mediterranea, 55(3), 13-34. doi:10.14601/Phytopathol_Mediterr-18079
- Hamdache, A., Ezziyyani, M., & Lamarti, A. (2018). Effect of preventive and simultaneous inoculations of Bacillus amyloliquefaciens [Fukumoto] strains on conidial germination of Botrytis cinerea Pers. Fr. Anales de Biología, 40, 65-72. doi: 10.6018/analesbio.40.08
- Hang, N. T. T., Oh, S. O., Kim, G. H., Hur, J. S., & Koh, Y. J. (2005). Bacillus subtilis S1-0210 as a biocontrol agent against Botrytis cinerea in strawberries. The Plant Pathology Journal, 21(1), 59-63. doi: 10.5423/PPJ.2005.21.1.059
- Henry, G., Deleu, M., Jourdan, E., Thonart, P., & Ongena M., (2011). The bacterial lipopeptide surfactin targets the lipid fraction of the plant plasma membrane to trigger immune-related defence responses. Cellular Microbiology, 13, 1824-1837. doi: 10.1111/j.1462-5822.2011.01664.x
- Heydari, A., & Pessarakli, M. (2010). A review on biological control of fungal plant pathogens using microbial antagonists. Journal of Biological Sciences, 10, 273-290. doi: 10.3923/jbs.2010.273.290
- Ilhan, K., & Karabulut, O. A. (2013). Efficacy and population monitoring of bacterial antagonists for gray mold (Botrytis cinerea Pers. ex. Fr.) infecting strawberries. Biocontrol, 58(4), 457-470. doi: 10.1007/s10526-012-9503-x
- Kim, B. S., & Hartmann, R. W. (1985). Inheritance of a gene (Bs3) conferring hypersensitive resistance to Xanthomonas campestris pv. vesicatoria in pepper (Capsicum annuum). Plant Disease, 69, 233-235.
- Kim, H. J., Lee, S. H., Kim, C. S., Lim, E. K., Choi, K. H., Kong, H. G., & Moon, B. J. (2007). Biological control of strawberry gray mold caused by Botrytis cinerea using Bacillus licheniformis N1 formulation. Journal of Microbiology and Biotechnology, 17(3), 438-444.
- Kim, Y. C., Hur, J. Y., & Park, S. K. (2019). Biocontrol of Botrytis cinerea by chitin-based cultures of Paenibacillus elgii HOA73. European Journal of Plant Pathology, 155, 253-263. doi: 10.1007/s10658-019-01768-1
- Klement, Z., Mavridis, A., Rudolph, K., Vidaver, A., Perombelon, M. C. & Moore, L.W. (1990). Inoculation of Plant Tissues. In Z. Klement, K. Rudolph, & D. C. Sands (Eds.), Methods in Phytobacteriology (pp. 99-100). Budapest, Hungary: Akademiai Kiado.
- Kovach, J., Petzoldt, R., & Harman, G. E. (2000). Use of honey bees and bumble bees to disseminate Trichoderma harzianum 1295-22 to strawberries for Botrytis control. Biological Control, 18(3), 235-242. doi: 10.1006/bcon.2000.0839
- Lu, Y., Ma, D., He, X., Wang, F., Wu, J., Liu, Y., Jiaoa, J., & Deng, J. (2021). Bacillus subtilis KLBC BS6 induces resistance and defence-related response against Botrytis cinerea in blueberry fruit. Physiological and Molecular Plant Pathology, 114, 101599. doi: 10.1016/j.pmpp.2020.101599
- Mahdy, A. M., Fawzy, R. N., Hafez, M. A., & Ahmad, T. A. L. (2014). Biological control of gray mould disease caused by Botrytis cinerea on strawberry fruits. Annals of Agricultural Sciences, Moshtohor, 52(4), 549-558. doi: 10.21608/assjm.2014.111906
- Maindad, D. V., Kasture, V. M., Chaudhari, H., Dhavale, D. D., Chopade, B. A., & Sachdev, D. (2014). Characterization and fungal inhibition activity of siderophore from wheat rhizosphere associated Acinetobacter calcoaceticus strain HIRFA32. Indian Journal of Microbiology, 54, 315-322. doi: 10.1007/s12088-014-0446-z
- Maung, C. E., Baek, W. S., Choi, T. G., & Kim, K. Y. (2021). Control of grey mould disease on strawberry using the effective agent, Bacillus amyloliquefaciens Y1. Biocontrol Science and Technology, 31(5), 468-482. doi: 10.1080/09583157.2020.1867707
- Mertely, J. C., Oliveira, M. S., & Peres, N. A. (2018). Botrytis Fruit Rot or Gray Mold of Strawberry. Florida, USA: UF/IFAS Extension.
- Nakkeeran, S., Priyanka, R., Rajamanickam, S., & Sivakumar, U. (2020). Bacillus amyloliquefaciens alters the diversity of volatile and non-volatile metabolites and induces the expression of defence genes for the management of Botrytis leaf blight of Lilium under protected conditions. Journal of Plant Pathology, 102, 1179-1189. doi: 10.1007/s42161-020-00602-6
- Narayanasamy, P. (1997). Plant Pathogen Detection and Disease Diagnosis. Coimbatore, India. Taylor and Francis.
- Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H., & Kim, K. Y. (2015). Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Journal of Basic Microbiology, 55(5), 625-634. doi: 10.1002/jobm.201400041
- Nicot, C., Stewart, A., Bardin, M., & Elad, Y. (2015). Biological Control and Biopesticide Suppression of Botrytis-Incited Diseases. London, UK: Springer International Publishing.
- Pei, Y. G., Tao, Q. J., Zheng, X. J., Li, Y., Sun, X. F., Li, Z. F., & Gong, G. S. (2019). Phenotypic and genetic characterization of Botrytis cinerea population from kiwifruit in Sichuan Province, China. Plant Disease, 103(4), 748-758. doi: 10.1094/PDIS-04-18-0707-RE
- Pertot, I., Giovannini, O., Benanchi, M., Caffi, T., Rossi, V., & Mugnai, L. (2017). Combining biocontrol agents with different mechanisms of action in a strategy to control Botrytis cinerea on grapevine. Crop Protection, 97, 85-93. doi: 10.1016/j.cropro.2017.01.010
- Petrasch, S., Knapp, S. J., Van Kan, J. A., & Blanco‐Ulate, B. (2019). Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea. Molecular Plant Pathology, 20(6), 877-892. doi: 10.1111/mpp.12794
- Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from Bacillus and Pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037-1062. doi: 10.1111/j.1574-6976.2010.00221.x
- Richards, J. K., Xiao, C. L., & Jurick, W. M. (2021). Botrytis spp.: a contemporary perspective and synthesis of recent scientific developments of a widespread genus that threatens global food security. Phytopathology, 111(3), 432-436. doi: 10.1094/PHYTO-10-20-0475-IA
- Sansinenea, E., & Ortiz, A. (2011). Secondary metabolites of soil Bacillus spp. Biotechnology Letters, 33, 1523-1538. doi: 10.1007/s10529-011-0617-5
- Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI, Technical Note #101:1-6.
- Saygılı, H., Şahin, F., & Aysan, Y. (2006). Fitobakteriyoloji. İzmir, Türkiye: Meta Basım Matbaacılık.
- Schaad, N. W., Jones, J. B., & Chun, W. (2001). Laboratory Guide for Identification of Plant Pathogenic Bacteria. Minnesota, USA: American Phytopathological Society.
- Shao, W., Zhao, Y., & Ma, Z. (2021). Advances in understanding fungicide resistance in Botrytis cinerea in China. Phytopathology, 111(3), 455-463. doi: 10.1094/PHYTO-07-20-0313-IA
- Shternshis, M. V., Belyaev, A. A., Shpatova, T. V., & Lelyak, A. A. (2015). Influence of Bacillus spp. on strawberry gray-mold causing agent and host plant resistance to disease. Contemporary Problems of Ecology, 8(3), 390-396. doi: 10.1134/S1995425515030130
- Souto, G. I., Correa, O. S., Montecchia, M. S., Kerber, N. L., Pucheu, N. L., Bachur, M., & García, A. F. (2004). Genetic and functional characterization of a Bacillus strain excreting surfactin and antifungal metabolites partially identified as iturin-like compounds. Journal Applied Microbiology, 97(6), 1247-1256. doi: 10.1111/j.1365-2672.2004.02408.x
- Soylu, S., Sülü, S. M., & Bozkurt, İ. A. (2016). Bitki büyüme düzenleyici ve biyolojik mücadele etmeni olarak bakteriyel endofitler. Mustafa Kemal Üniversitesi Ziraat Fakültesi Dergisi, 21(1), 103-111.
- SPSS. (2008). IBM SPSS Statistics 17.0 for Windows, Armonk, NY.
- Su, Z., Chen, X., Liu, X., Guo, Q., Li, S., Lu, X., Zhang, X., Wang, P., Dong, L., Zhao, W., & Ma, P. (2020). Genome mining and UHPLC–QTOF–MS/MS to identify the potential antimicrobial compounds and determine the specificity of biosynthetic gene clusters in Bacillus subtilis NCD-2. BMC Genomics, 21, 767. doi: 10.1186/s12864-020-07160-2
- Sutton, J. C., & Peng, G. (1993). Biocontrol of Botrytis cinerea in strawberry leaves. Phytopathology 83(6), 615-621. doi: 10.1094/Phyto-83-615
- Swadling, I. R., & Jeffries, P. (1996). Isolation of microbial antagonists for biocontrol of grey mould disease of strawberries. Biocontrol Science and Technology, 6(1), 125-136. doi: 10.1080/09583159650039584
- Toral, L., Rodríguez, M., Béjar, V., & Sampedro, I. (2020). Crop protection against Botrytis cinerea by rhizhosphere biological control agent Bacillus velezensis XT1. Microorganisms, 8(7), 992. doi: 0.3390/microorganisms8070992
- Uygun, N., Ulusoy, M. R., & Satar, S. (2010). Biyolojik mücadele. Türkiye Biyolojik Mücadele Dergisi, 1(1), 1-14.
- Wang, X., Zhou, X., Cai, Z., Guo, L., Chen, X., Chen, X., Liu, J., Feng, M., Qiu, Y., & Zhang, Y. (2021a). A biocontrol strain of Pseudomonas aeruginosa CQ-40 promote growth and control Botrytis cinerea in tomato. Pathogens,10(1), 22. doi: org/10.3390/pathogens10010022
- Wang, F., Xiao, J., Zhang, Y., Li, R., Liu, L., & Deng, J. (2021b). Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mould in postharvest strawberry fruit. Postharvest Biology and Technology, 174, 111456. doi: 10.1016/j.postharvbio.2020.111456
- Williamson, B., Tudzynski, B., Tudzynski, P., & van Kan, J. A. (2007). Botrytis cinerea: the cause of grey mould disease. Molecular Plant Pathology, 8(5), 561-580. doi: 10.1111/j.1364-3703.2007.00417.x
- Yıldız, A., & Benlioğlu, S. (2009). Çilek hastalık zararlı ve yabancı otları. Türkiye: Adnan Menderes Üniversitesi Yayınları.
- Zhang, W., Ma, J., Yan, Q., Jiang, Z., & Yang, S. (2021). Biochemical characterization of a novel acidic chitinase with antifungal activity from Paenibacillus xylanexedens Z2–4. International Journal of Biological Macromolecules, 182, 1528-1536. doi: 10.1016/j.ijbiomac.2021.05.111