NbSbO4 kristalinin yapısal, elastik ve piezoelektrik özellikleri, yoğunluk fonksiyonel teorisine dayalı olarak hesaplandı. Bu özellikler için hesaplamalar hem genelleştirilmiş gradyent hem de yerel yoğunluk yaklaşımı altında ABINIT paket programı kullanılarak yapılmıştır. NbSbO4 kristali için elastik sertlik tensörü ve elastik uyum tensörü, temel durumda hesaplanmıştır. Elastik sertlik ve elastik uyum tensörü kullanılarak NbSbO4 kristali için Voigt Bulk Modülü, Reuss Bulk Modülü, Hill Bulk Modülü, Voigt Shear Modülü, Reuss Shear Modülü, Hill Shear Modülü, Young Modülü, Poisson Oranı, Esneklik Katsayısı, Debye sıcaklığı, boyuna ses dalgası hızı, enine ses dalgası hızı ve ortalama ses hızı hesaplanmıştır. Daha sonra NbSbO4 kristalinin temel durumda piezoelektrik tensörü hesaplandı. Buna bağlı olarak, MTEX yazılımı kullanılarak piezoelektrik tensörünün 2 boyutta boyuna yüzeyleri ve 3 boyutta temsil yüzeyleri elde edilmiştir. Hem genelleştirilmiş gradyent yaklaşımı hem de yerel yoğunluk yaklaşımları ile elde edilen özellikler karşılaştırılmıştır. Yapılan hesaplamalar sonucunda malzemenin her iki yaklaşım için de esnek ve şekillendirilebilir bir malzeme olduğu anlaşılmıştır.
Ayyub, P., Multani, M. S., Palkar, V. R., & Vijayaraghavan, R. (1986). Vibrational spectroscopic study of ferroelectric SbNbO4, antiferroelectric BiNbO4, and their solid solutions. Physical Review B, 34(11), 8137. doi:10.1103/PhysRevB.34.8137
Bachmann, F., Hielscher, R., & Schaeben, H. (2010). Texture analysis with MTEX–free and open-source software toolbox. Solid State Phenomena, 160, 63-68. doi:10.4028/www.scientific.net/SSP.160.63
Bouty, E. (1883). Ueber die aktino-und piezo-elektrischen Eigenschaften des Bergkrystalles und ihre Beziehung zu den thermo-elektrischen (Sur les propriétés actino et piézo-électriques du quartz et leur relation avec ses propriétés pyro-électriques); Abh. der Sächs. Gesellschaft der Wissenschaften, t. XX, p. 459; 1881. Journal of Physics: Theories and Applications, 2(1), 89-93. doi:10.1051/jphystap:01883002008901
Chattopadhyay, S., Ayyub, P., Multani, M., & Pinto, R. (1998). Synthesis of oriented thin films of ferroelectric SbNbO4 on Si by pulsed laser ablation. Journal of Applied Physics, 83(7), 3911-3913. doi:10.1063/1.366625
Curie, J., & Curie, P. (1880). Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 3(4), 90-93. doi:10.3406/bulmi.1880
De Jong, M., Chen, W., Geerlings, H., Asta, M., & Persson, K. A. (2015). A database to enable discovery and design of piezoelectric materials. Scientific Data, 2(1), 1-13. doi:10.1038/sdata.2015.53
Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials (pp. 7-32). Springer, Cham. doi:10.1007/978-3-319-03961-9_2
Dulian, P., Piz, M., Filipek, E., & Wieczorek-Ciurowa, K. (2014). Comparative study of phases forming in niobium-antimony oxides system upon high temperature treatment and high-energy ball milling. Acta Physica Polonica A, 126(4), 938-942. doi:10.12693/APhysPolA.126.938
El-Fadl, A. A., Mohamad, G. A., & Yamazaki, T. (2003). Variation of the absorption spectra and optical energy gap with γ-ray irradiation and heat treatment in SbNbO4 films deposited on MgO and quartz substrates. Materials Chemistry and Physics, 80(1), 239-249. doi:10.1016/S0254-0584(02)00464-9
Fuchs, M., & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119(1), 67-98. doi:10.1016/S0010-4655(98)00201-X
Fukunaga, O., & Yamaoka, S. (1979). Phase transformations in ABO4 type compounds under high pressure. Physics and Chemistry of Minerals, 5(2), 167-177. doi:10.1007/BF00307551
Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., … & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 25(3), 478-492. doi:10.1016/S0927-0256(02)00325-7
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … & Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
Kim, S. H., Park, S., Lee, C. W., Han, B. S., Seo, S. W., Kim, J. S., Cho, I. S., & Hong, K. S. (2012). Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M= Nb, Ta). International Journal of Hydrogen Energy, 37(22), 16895-16902. doi:10.1016/j.ijhydene.2012.08.123
Knauth, P., & Schwitzgebel, G. (1988). Calorimetric investigations on the SbNbO4-SbSbO4 system. Journal of Thermal Analysis, 33(3), 619-623. doi:10.1007/BF02138564
Knauth, P., & Schwitzgebel, G. (1990). Thermodynamic properties of antimony (III) niobate (V). The Journal of Chemical Thermodynamics, 22(5), 481-485. doi:10.1016/0021-9614(90)90140-L
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133. doi:10.1103/PhysRev.140.A1133
Köster, W., & Franz, H. (1961). Poisson's ratio for metals and alloys. Metallurgical Reviews, 6(1), 1-56. doi:10.1179/mtlr.1961.6.1.1
Mainprice, D., Bachmann, F., Hielscher, R., Schaeben, H., & Lloyd, G. E. (2015). Calculating anisotropic piezoelectric properties from texture data using the MTEX open-source package. Geological Society, London, Special Publications, 409(1), 223-249. https://doi.org/10.1144/SP409.2
Mohamed, G. A., Yamazaki, T., Nakatani, N., Yuhara, J., & Morita, K. (1998). Growth and optical properties of SbNbO4 films. Ferroelectrics, 218(1), 199-208. doi:10.1080/00150199808227147
Mohamad, G. A., El-Fadl, A. A., & Yamazaki, T. (2001). Effect of gamma irradiation and heat treatment on the optical properties of SbNbO4 ferroelectric thin films. Radiation Effects and Defects in Solids, 154(2), 165-178. doi:10.1080/10420150108214050
The MathWorks Inc. (2020). MATLAB version: 9.9.0.1 (R2020b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com
Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/S0021889811038970
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. doi:10.1103/PhysRevB.13.5188
Müller, O., & Roy, R. (1973). Phase transitions among the ABX4 compounds. Zeitschrift für Kristallographie-Crystalline Materials, 138(1-6), 237-253. doi:10.1524/zkri.1973.138.jg.237
Newnham, R. E. (2005). Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press.
Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.
Popolitov, V. I., Ivanova, L. A., Stephanovitch, S. Y., Chetchkin, V. V., Lobachev, A. N., & Venevtsev, Y. N. (1974). Ferroelectrics abo4: Synthesis of single crystals and ceramics; dielectric and nonlinear optical properties. Ferroelectrics, 8(1), 519-520. doi:10.1080/00150197408234145
Popolitov, V. I., Lobachev, A. N., & Peskin, V. F. (1982). Antiferroelectrics, ferroelectrics and pyroelectrics of a stibiotantalite structure. Ferroelectrics, 40(1), 9-16. doi:10.1080/00150198208210591
Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496
Qu, X. X., & Lévy, F. (1995). Textured ferroelectric SbNbO4 thin films deposited by ion-beam sputtering. Ferroelectrics Letters Section, 20(3-4), 83-88. doi:10.1080/07315179508204287
Rannev, N. V., Shchedrin, B. M., & Venevtsev, Y. N. (1976). Crystal structure of ferrielectric stibiumniobite SbNbO4. Ferroelectrics, 13(1), 523-525. doi:10.1080/00150197608236657
Saritha, D. (2018). Electrochemical reaction of lithium with SbNbO4-ReO3 structure type phase. Materials Today: Proceedings, 5(9), 17579-17584. doi:10.1016/j.matpr.2018.06.075
Shaldin, Y. V. (2002). Spontaneous polarization of Fe-doped SbNbO4 crystals. Crystallography Reports, 47(3), 484-488. doi:10.1134/1.1481939
Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. doi:10.1103/PhysRevB.43.1993
Investigation of Structural, Elastic, and Piezoelectric Properties of NbSbO4 Crystal
The structural, elastic, and piezoelectric properties of the NbSbO4 crystal were calculated based on the density functional theory. These properties were calculated using the ABINIT package program under both the generalized gradient approximation and the local density approximation. The elastic stiffness tensor and the elastic compliance tensor for the NbSbO4 crystal were calculated in the ground state. Voigt Bulk Modulus, Reuss Bulk Modulus, Hill Bulk Modulus, Voigt Shear Modulus, Reuss Shear Modulus, Hill Shear Modulus, Young Modulus, Poisson Ratio, Flexibility Coefficient, Debye temperature, Longitudinal sound wave velocity for NbSbO4 crystal using elastic stiffness and elastic compliance tensor, Transverse sound wave velocity and Average speed of sound were calculated. Then, the ground state piezoelectric tensor of the NbSbO4 crystal was calculated. Accordingly, 2D longitudinal surfaces and 3D representation surfaces of the piezoelectric tensor were obtained using MTEX software. The properties obtained with both the generalized gradient approximation and the local density approximation are compared. As a result of the calculations, it was understood that the material was a flexible and formable material in both approximations.
Ayyub, P., Multani, M. S., Palkar, V. R., & Vijayaraghavan, R. (1986). Vibrational spectroscopic study of ferroelectric SbNbO4, antiferroelectric BiNbO4, and their solid solutions. Physical Review B, 34(11), 8137. doi:10.1103/PhysRevB.34.8137
Bachmann, F., Hielscher, R., & Schaeben, H. (2010). Texture analysis with MTEX–free and open-source software toolbox. Solid State Phenomena, 160, 63-68. doi:10.4028/www.scientific.net/SSP.160.63
Bouty, E. (1883). Ueber die aktino-und piezo-elektrischen Eigenschaften des Bergkrystalles und ihre Beziehung zu den thermo-elektrischen (Sur les propriétés actino et piézo-électriques du quartz et leur relation avec ses propriétés pyro-électriques); Abh. der Sächs. Gesellschaft der Wissenschaften, t. XX, p. 459; 1881. Journal of Physics: Theories and Applications, 2(1), 89-93. doi:10.1051/jphystap:01883002008901
Chattopadhyay, S., Ayyub, P., Multani, M., & Pinto, R. (1998). Synthesis of oriented thin films of ferroelectric SbNbO4 on Si by pulsed laser ablation. Journal of Applied Physics, 83(7), 3911-3913. doi:10.1063/1.366625
Curie, J., & Curie, P. (1880). Développement par compression de l'électricité polaire dans les cristaux hémièdres à faces inclinées. Bulletin de Minéralogie, 3(4), 90-93. doi:10.3406/bulmi.1880
De Jong, M., Chen, W., Geerlings, H., Asta, M., & Persson, K. A. (2015). A database to enable discovery and design of piezoelectric materials. Scientific Data, 2(1), 1-13. doi:10.1038/sdata.2015.53
Dineva, P., Gross, D., Müller, R., & Rangelov, T. (2014). Piezoelectric materials. In Dynamic Fracture of Piezoelectric Materials (pp. 7-32). Springer, Cham. doi:10.1007/978-3-319-03961-9_2
Dulian, P., Piz, M., Filipek, E., & Wieczorek-Ciurowa, K. (2014). Comparative study of phases forming in niobium-antimony oxides system upon high temperature treatment and high-energy ball milling. Acta Physica Polonica A, 126(4), 938-942. doi:10.12693/APhysPolA.126.938
El-Fadl, A. A., Mohamad, G. A., & Yamazaki, T. (2003). Variation of the absorption spectra and optical energy gap with γ-ray irradiation and heat treatment in SbNbO4 films deposited on MgO and quartz substrates. Materials Chemistry and Physics, 80(1), 239-249. doi:10.1016/S0254-0584(02)00464-9
Fuchs, M., & Scheffler, M. (1999). Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Computer Physics Communications, 119(1), 67-98. doi:10.1016/S0010-4655(98)00201-X
Fukunaga, O., & Yamaoka, S. (1979). Phase transformations in ABO4 type compounds under high pressure. Physics and Chemistry of Minerals, 5(2), 167-177. doi:10.1007/BF00307551
Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rignanese, G. M., … & Allan, D. C. (2002). First-principles computation of material properties: the ABINIT software project. Computational Materials Science, 25(3), 478-492. doi:10.1016/S0927-0256(02)00325-7
Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., … & Persson, K. A. (2013). Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. doi:10.1063/1.4812323
Kim, S. H., Park, S., Lee, C. W., Han, B. S., Seo, S. W., Kim, J. S., Cho, I. S., & Hong, K. S. (2012). Photophysical and photocatalytic water splitting performance of stibiotantalite type-structure compounds, SbMO4 (M= Nb, Ta). International Journal of Hydrogen Energy, 37(22), 16895-16902. doi:10.1016/j.ijhydene.2012.08.123
Knauth, P., & Schwitzgebel, G. (1988). Calorimetric investigations on the SbNbO4-SbSbO4 system. Journal of Thermal Analysis, 33(3), 619-623. doi:10.1007/BF02138564
Knauth, P., & Schwitzgebel, G. (1990). Thermodynamic properties of antimony (III) niobate (V). The Journal of Chemical Thermodynamics, 22(5), 481-485. doi:10.1016/0021-9614(90)90140-L
Kohn, W., & Sham, L. J. (1965). Self-consistent equations including exchange and correlation effects. Physical Review, 140(4A), A1133. doi:10.1103/PhysRev.140.A1133
Köster, W., & Franz, H. (1961). Poisson's ratio for metals and alloys. Metallurgical Reviews, 6(1), 1-56. doi:10.1179/mtlr.1961.6.1.1
Mainprice, D., Bachmann, F., Hielscher, R., Schaeben, H., & Lloyd, G. E. (2015). Calculating anisotropic piezoelectric properties from texture data using the MTEX open-source package. Geological Society, London, Special Publications, 409(1), 223-249. https://doi.org/10.1144/SP409.2
Mohamed, G. A., Yamazaki, T., Nakatani, N., Yuhara, J., & Morita, K. (1998). Growth and optical properties of SbNbO4 films. Ferroelectrics, 218(1), 199-208. doi:10.1080/00150199808227147
Mohamad, G. A., El-Fadl, A. A., & Yamazaki, T. (2001). Effect of gamma irradiation and heat treatment on the optical properties of SbNbO4 ferroelectric thin films. Radiation Effects and Defects in Solids, 154(2), 165-178. doi:10.1080/10420150108214050
The MathWorks Inc. (2020). MATLAB version: 9.9.0.1 (R2020b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com
Momma, K., & Izumi, F. (2011). VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44(6), 1272-1276. doi:10.1107/S0021889811038970
Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188. doi:10.1103/PhysRevB.13.5188
Müller, O., & Roy, R. (1973). Phase transitions among the ABX4 compounds. Zeitschrift für Kristallographie-Crystalline Materials, 138(1-6), 237-253. doi:10.1524/zkri.1973.138.jg.237
Newnham, R. E. (2005). Properties of Materials: Anisotropy, Symmetry, Structure. Oxford University Press.
Nye, J. F. (1985). Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press.
Popolitov, V. I., Ivanova, L. A., Stephanovitch, S. Y., Chetchkin, V. V., Lobachev, A. N., & Venevtsev, Y. N. (1974). Ferroelectrics abo4: Synthesis of single crystals and ceramics; dielectric and nonlinear optical properties. Ferroelectrics, 8(1), 519-520. doi:10.1080/00150197408234145
Popolitov, V. I., Lobachev, A. N., & Peskin, V. F. (1982). Antiferroelectrics, ferroelectrics and pyroelectrics of a stibiotantalite structure. Ferroelectrics, 40(1), 9-16. doi:10.1080/00150198208210591
Pugh, S. F. (1954). XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 45(367), 823-843. doi:10.1080/14786440808520496
Qu, X. X., & Lévy, F. (1995). Textured ferroelectric SbNbO4 thin films deposited by ion-beam sputtering. Ferroelectrics Letters Section, 20(3-4), 83-88. doi:10.1080/07315179508204287
Rannev, N. V., Shchedrin, B. M., & Venevtsev, Y. N. (1976). Crystal structure of ferrielectric stibiumniobite SbNbO4. Ferroelectrics, 13(1), 523-525. doi:10.1080/00150197608236657
Saritha, D. (2018). Electrochemical reaction of lithium with SbNbO4-ReO3 structure type phase. Materials Today: Proceedings, 5(9), 17579-17584. doi:10.1016/j.matpr.2018.06.075
Shaldin, Y. V. (2002). Spontaneous polarization of Fe-doped SbNbO4 crystals. Crystallography Reports, 47(3), 484-488. doi:10.1134/1.1481939
Troullier, N., & Martins, J. L. (1991). Efficient pseudopotentials for plane-wave calculations. Physical Review B, 43(3), 1993. doi:10.1103/PhysRevB.43.1993
Toplam 35 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
İngilizce
Konular
Yoğun Madde Modellemesi ve Yoğunluk Fonksiyonel Teorisi
Bölüm
Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Erzen, M. (2023). Investigation of Structural, Elastic, and Piezoelectric Properties of NbSbO4 Crystal. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 370-382. https://doi.org/10.53433/yyufbed.1146717