Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafit Matris Kompozit Faz Dönüşüm Sıcaklığının Kare Dalga Yük Altındaki Küçük Ölçekli Bir Li-iyon Batarya Paketi Performansına Etkisi

Yıl 2023, Cilt: 28 Sayı: 2, 651 - 666, 31.08.2023
https://doi.org/10.53433/yyufbed.1175411

Öz

Faz değiştiren malzeme (FDM) ilaveli kompozit grafit matris içerisindeki faz değiştiren malzeme erime sıcaklığının küçük ölçekli (3s2p) bir li-iyon paketi performansı üzerindeki etkileri dinamik-kare yük altında deneysel olarak incelenmiştir. FDM olarak parafin (RT35 ve RT42) kullanılmıştır. Grafit matris 75 g l-1 yığın yoğunluğu ile üretilmiştir. Batarya paketi üç farklı konfigürasyon için test edilmiştir: doğal taşınım hava soğutma (referans durum) ve grafit kompozit-RT35 ve RT42. Deneysel çıktılar, grafit matris kompozitin li-iyon batarya paketinin termal yönetimi için önemli bir potansiyele sahip olduğunu ortaya koymaktadır. Referans duruma kıyasla grafit matris kompozit-RT35 ile güvenli çalışma süresinde %140, deşarj ve enerji kapasitesi değerlerinde ise %141 ve %102 oranında bir artış sağlanmıştır. Grafit matris kompozit içerisindeki FDM’lerin erime sıcaklıklarının batarya paketi performansı üzerinde kritik öneme sahip olduğu gözlenmiştir. Grafit matris kompozit-RT35 için çalışma süresi, deşarj kapasitesi ve enerji kapasitesi değerleri grafit matris kompozit-RT42 durumuna kıyasla, sırasıyla, %6, %7 ve %10 artırılmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

2180111

Kaynakça

  • Ahmed, S. F., Rafa, N., Mehnaz, T., Ahmed, B., Islam, N., Mofijur, M., Hoang, A. T., & Shafiullah, G. M. (2022). Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: An overview. Journal of Cleaner Production, 364, 132639. doi:10.1016/j.jclepro.2022.132639
  • Akula, R., & Balaji, C. (2022). Thermal management of 18650 Li-ion battery using novel fins PCM EG composite heat sinks. Applied Energy, 316, 119048. doi:10.1016/j.apenergy.2022.119048
  • Arora, S. (2018). Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging Technologies. Journal of Power Sources, 400, 621 - 640. doi:10.1016/j.jpowsour.2018.08.020
  • Greco, A., Jiang, X., & Cao, D. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 278, 50 - 68. doi:10.1016/j.jpowsour.2014.12.027
  • He, J., Yang, X., & Zhang, G. (2019). A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Applied Thermal Engineering, 148, 984 - 991. doi:10.1016/j.applthermaleng.2018.11.100
  • Jiang, G. W., Huang, J., Fu, Y., Cao, M., & Liu, M. (2016). Thermal optimization of composite phase change material/expanded graphite for Li-Ion battery thermal management. Applied Thermal Engineering, 108, 1119 - 1125. doi:10.1016/j.applthermaleng.2016.07.197
  • Kang, S., Choi, J. Y., & Choi, S. (2019). Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2), 221. doi:10.3390/polym11020221
  • Kizilel, R., Lateef, A., Sabbah, R., Farid, M. M., Selman, J. R., & Al-Hallaj, S. (2008). Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1), 370 - 375. doi:10.1016/j.jpowsour.2008.04.050
  • Kizilel, R., Sabbah, R., Selman, J. R., & Al-Hallaj, S. (2009). An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194, 1105 - 1112. doi:10.1016/j.jpowsour.2009.06.074
  • Li, J., Huang, J., & Cao, M. (2018). Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries. Applied Thermal Engineering, 131, 660 - 668. doi:10.1016/j.applthermaleng.2017.12.023
  • Ling, Z., Wen, X., Zhang, Z., Fang, X., & Gao, X. (2018). Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures. Energy, 144, 977 - 983. doi:10.1016/j.energy.2017.12.098
  • Liu, H., Wei, Z., He, W., & Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150, 304 - 330. doi:10.1016/j.enconman.2017.08.016
  • Lv, Y.,Yang, X., Li, X., Zhang, G., Wang, Z., & Yang, C. (2016). Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Applied Energy, 178, 376 - 382. doi:10.1016/j.apenergy.2016.06.058
  • Mallow, A., Abdelaziz, O., & Graham, S. (2018). Thermal charging performance of enhanced phase change material composites for thermal battery design. International Journal of Thermal Sciences, 127, 19 - 28. doi:10.1016/j.ijthermalsci.2017.12.027
  • Mills, A., Farid, M., Selman, J. R., & Al-Hallaj, S. (2006). Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering, 26, 1652-1661. doi:10.1016/j.applthermaleng.2005.11.022
  • Py, X., Olives, R., & Mauran, S. (2001). Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer, 44(14), 2727 - 2737. doi:10.1016/S0017-9310(00)00309-4
  • Somasundaram, K., Birgersson, E., & Mujumdar, A. S. (2012). Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. Journal of Power Sources, 203, 84 - 96. doi:10.1016/j.jpowsour.2011.11.075
  • Wang, W., Zhang, X., Xin, C., & Rao, Z. (2018). An experimental study on thermal management of lithium-ion battery packs using an improved passive method. Applied Thermal Engineering, 134, 163 - 170. doi:10.1016/j.applthermaleng.2018.02.011
  • Wilke, S., Schweitzer, B., Khateeb, S., & Al-Hallaj, S. (2017). Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 340, 51 - 59. doi:10.1016/j.jpowsour.2016.11.018
  • Wu, W., Yang, X., Zhang, G., Ke, X., Wang, Z., Situ, W., Li, X., & Zhang, J. (2016). An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy, 113, 909 - 916. doi:10.1016/j.energy.2016.07.119
  • Wu, W., Yang, X., Zhang, G., Chen, K., & Wang, S. (2017). Experimental investigation on the thermal performance of heat pipe-assisted phase change material-based battery thermal management system. Energy Conversion and Management, 138, 486 - 492. doi:10.1016/j.enconman.2017.02.022
  • Xin, Q., Xiao, J., Yang, T., Zhang, H., & Long, X. (2022). Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Applied Thermal Engineering, 210, 118230. doi:10.1016/j.applthermaleng.2022.118230
  • Yazici, M. Y., & Saglam M. (2021). Thermal management of small-scale Li-Ion battery module using graphite matrix composite with phase change: Effect of phase transition temperature. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK 2021), Gaziantep.
  • Yazici, M. Y. (2022a). The effect of a new design preheating unit integrated to graphite matrix composite with phase change battery thermal management in low-temperature environment: An experimental study. Thermal Science and Engineering Progress, 29, 101244. doi:10.1016/j.tsep.2022.101244
  • Yazici, M. Y. (2022b). Thermal management of small-scale Li-ion battery module using graphite matrix composite with phase change: Effect of discharge rate. Igdir Universitesi Journal of the Institute of Science and Technology, 12, 389 - 402. doi:10.21597/jist.952021
  • Zhang, S., Feng, D., Shi, L., Wang, L., Jin, Y., Tian, L., Li, Z., Wang, G., Zhao, L., & Yan, Y. (2021). A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 135, 110127. doi:10.1016/j.rser.2020.110127
  • Zichen, W., & Changqing, D. (2021). A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139, 110685. doi:10.1016/j.rser.2020.110685
  • Zou, T., Liang, X., Wang, S., Gao, X., Zhang, Z., & Fang, Y. (2020). Effect of expanded graphite size on performances of modified CaCl2⋅6H2O phase change material for cold energy storage. Microporous and Mesoporous Materials, 305, 110403. doi:10.1016/j.micromeso.2020.110403

The Effect of Phase Change Temperature of Graphite Matrix Composite on Small-Scale Li-Ion Package Performance Under Square Wave Load

Yıl 2023, Cilt: 28 Sayı: 2, 651 - 666, 31.08.2023
https://doi.org/10.53433/yyufbed.1175411

Öz

An experimental study is performed to illustrate the effect of the melting temperature of graphite matrix composite with phase change materials on the performance characteristics of a small-scale li-ion package (3s2p) under dynamic/square wave load. Paraffin (RT35 and RT42) is used as a PCM. Graphite matrix is manufactured with 75 g l-1 bulk density. The battery package is performed for three different configurations: free-air cooling case (reference case), and graphite matrix composites with RT35 and RT42. The experimental outputs present that graphite matrix composite has considerable potential for thermal management of the Li-ion pack. Safe operating time, discharge and energy capacity values are increased by 140%, 141% and 102% with the graphite composite with RT35 in the comparison reference case, respectively. It is observed that the melting temperature of PCM of graphite composite is of critical importance to the performance of the battery pack. For the graphite composite with RT35, operating time, discharge capacity and energy capacity values are enhanced by 6.2 %, 7 % and 10 % compared to the RT42 case, respectively.

Proje Numarası

2180111

Kaynakça

  • Ahmed, S. F., Rafa, N., Mehnaz, T., Ahmed, B., Islam, N., Mofijur, M., Hoang, A. T., & Shafiullah, G. M. (2022). Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: An overview. Journal of Cleaner Production, 364, 132639. doi:10.1016/j.jclepro.2022.132639
  • Akula, R., & Balaji, C. (2022). Thermal management of 18650 Li-ion battery using novel fins PCM EG composite heat sinks. Applied Energy, 316, 119048. doi:10.1016/j.apenergy.2022.119048
  • Arora, S. (2018). Selection of thermal management system for modular battery packs of electric vehicles: A review of existing and emerging Technologies. Journal of Power Sources, 400, 621 - 640. doi:10.1016/j.jpowsour.2018.08.020
  • Greco, A., Jiang, X., & Cao, D. (2015). An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 278, 50 - 68. doi:10.1016/j.jpowsour.2014.12.027
  • He, J., Yang, X., & Zhang, G. (2019). A phase change material with enhanced thermal conductivity and secondary heat dissipation capability by introducing a binary thermal conductive skeleton for battery thermal management. Applied Thermal Engineering, 148, 984 - 991. doi:10.1016/j.applthermaleng.2018.11.100
  • Jiang, G. W., Huang, J., Fu, Y., Cao, M., & Liu, M. (2016). Thermal optimization of composite phase change material/expanded graphite for Li-Ion battery thermal management. Applied Thermal Engineering, 108, 1119 - 1125. doi:10.1016/j.applthermaleng.2016.07.197
  • Kang, S., Choi, J. Y., & Choi, S. (2019). Mechanism of heat transfer through porous media of inorganic intumescent coating in cone calorimeter testing. Polymers, 11(2), 221. doi:10.3390/polym11020221
  • Kizilel, R., Lateef, A., Sabbah, R., Farid, M. M., Selman, J. R., & Al-Hallaj, S. (2008). Passive control of temperature excursion and uniformity in high-energy Li-ion battery packs at high current and ambient temperature. Journal of Power Sources, 183(1), 370 - 375. doi:10.1016/j.jpowsour.2008.04.050
  • Kizilel, R., Sabbah, R., Selman, J. R., & Al-Hallaj, S. (2009). An alternative cooling system to enhance the safety of Li-ion battery packs. Journal of Power Sources, 194, 1105 - 1112. doi:10.1016/j.jpowsour.2009.06.074
  • Li, J., Huang, J., & Cao, M. (2018). Properties enhancement of phase-change materials via silica and Al honeycomb panels for the thermal management of LiFeO4 batteries. Applied Thermal Engineering, 131, 660 - 668. doi:10.1016/j.applthermaleng.2017.12.023
  • Ling, Z., Wen, X., Zhang, Z., Fang, X., & Gao, X. (2018). Thermal management performance of phase change materials with different thermal conductivities for Li-ion battery packs operated at low temperatures. Energy, 144, 977 - 983. doi:10.1016/j.energy.2017.12.098
  • Liu, H., Wei, Z., He, W., & Zhao, J. (2017). Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Conversion and Management, 150, 304 - 330. doi:10.1016/j.enconman.2017.08.016
  • Lv, Y.,Yang, X., Li, X., Zhang, G., Wang, Z., & Yang, C. (2016). Experimental study on a novel battery thermal management technology based on low density polyethylene-enhanced composite phase change materials coupled with low fins. Applied Energy, 178, 376 - 382. doi:10.1016/j.apenergy.2016.06.058
  • Mallow, A., Abdelaziz, O., & Graham, S. (2018). Thermal charging performance of enhanced phase change material composites for thermal battery design. International Journal of Thermal Sciences, 127, 19 - 28. doi:10.1016/j.ijthermalsci.2017.12.027
  • Mills, A., Farid, M., Selman, J. R., & Al-Hallaj, S. (2006). Thermal conductivity enhancement of phase change materials using a graphite matrix. Applied Thermal Engineering, 26, 1652-1661. doi:10.1016/j.applthermaleng.2005.11.022
  • Py, X., Olives, R., & Mauran, S. (2001). Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer, 44(14), 2727 - 2737. doi:10.1016/S0017-9310(00)00309-4
  • Somasundaram, K., Birgersson, E., & Mujumdar, A. S. (2012). Thermal-electrochemical model for passive thermal management of a spiral-wound lithium-ion battery. Journal of Power Sources, 203, 84 - 96. doi:10.1016/j.jpowsour.2011.11.075
  • Wang, W., Zhang, X., Xin, C., & Rao, Z. (2018). An experimental study on thermal management of lithium-ion battery packs using an improved passive method. Applied Thermal Engineering, 134, 163 - 170. doi:10.1016/j.applthermaleng.2018.02.011
  • Wilke, S., Schweitzer, B., Khateeb, S., & Al-Hallaj, S. (2017). Preventing thermal runaway propagation in lithium-ion battery packs using a phase change composite material: An experimental study. Journal of Power Sources, 340, 51 - 59. doi:10.1016/j.jpowsour.2016.11.018
  • Wu, W., Yang, X., Zhang, G., Ke, X., Wang, Z., Situ, W., Li, X., & Zhang, J. (2016). An experimental study of thermal management system using copper mesh-enhanced composite phase change materials for power battery pack. Energy, 113, 909 - 916. doi:10.1016/j.energy.2016.07.119
  • Wu, W., Yang, X., Zhang, G., Chen, K., & Wang, S. (2017). Experimental investigation on the thermal performance of heat pipe-assisted phase change material-based battery thermal management system. Energy Conversion and Management, 138, 486 - 492. doi:10.1016/j.enconman.2017.02.022
  • Xin, Q., Xiao, J., Yang, T., Zhang, H., & Long, X. (2022). Thermal management of lithium-ion batteries under high ambient temperature and rapid discharging using composite PCM and liquid cooling. Applied Thermal Engineering, 210, 118230. doi:10.1016/j.applthermaleng.2022.118230
  • Yazici, M. Y., & Saglam M. (2021). Thermal management of small-scale Li-Ion battery module using graphite matrix composite with phase change: Effect of phase transition temperature. 23rd Congress on Thermal Science and Technology with International Participation (ULIBTK 2021), Gaziantep.
  • Yazici, M. Y. (2022a). The effect of a new design preheating unit integrated to graphite matrix composite with phase change battery thermal management in low-temperature environment: An experimental study. Thermal Science and Engineering Progress, 29, 101244. doi:10.1016/j.tsep.2022.101244
  • Yazici, M. Y. (2022b). Thermal management of small-scale Li-ion battery module using graphite matrix composite with phase change: Effect of discharge rate. Igdir Universitesi Journal of the Institute of Science and Technology, 12, 389 - 402. doi:10.21597/jist.952021
  • Zhang, S., Feng, D., Shi, L., Wang, L., Jin, Y., Tian, L., Li, Z., Wang, G., Zhao, L., & Yan, Y. (2021). A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage. Renewable and Sustainable Energy Reviews, 135, 110127. doi:10.1016/j.rser.2020.110127
  • Zichen, W., & Changqing, D. (2021). A comprehensive review on thermal management systems for power lithium-ion batteries. Renewable and Sustainable Energy Reviews, 139, 110685. doi:10.1016/j.rser.2020.110685
  • Zou, T., Liang, X., Wang, S., Gao, X., Zhang, Z., & Fang, Y. (2020). Effect of expanded graphite size on performances of modified CaCl2⋅6H2O phase change material for cold energy storage. Microporous and Mesoporous Materials, 305, 110403. doi:10.1016/j.micromeso.2020.110403
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Mustafa Yusuf Yazıcı 0000-0002-1076-9265

Proje Numarası 2180111
Yayımlanma Tarihi 31 Ağustos 2023
Gönderilme Tarihi 14 Eylül 2022
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 2

Kaynak Göster

APA Yazıcı, M. Y. (2023). The Effect of Phase Change Temperature of Graphite Matrix Composite on Small-Scale Li-Ion Package Performance Under Square Wave Load. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(2), 651-666. https://doi.org/10.53433/yyufbed.1175411