Araştırma Makalesi
BibTex RIS Kaynak Göster

Zaman-Değişken Gecikmeli Riemann–Liouville Lineer Olmayan Kesirli Nötr Sistemlerin Asimptotik Kararlılığına LMI Yaklaşımı

Yıl 2023, Cilt: 28 Sayı: 3, 908 - 918, 29.12.2023
https://doi.org/10.53433/yyufbed.1246729

Öz

Bu çalışmada, otonom olmayan ve lineer olmayan kesirli nötr sistemlerin asimptotik kararlılığı üzerine sonuçlar elde edilmiştir. Elde edilen kararlılık sonuçları gecikmeden bağımsızdır ve gecikmeler aynı zamanda hem zaman-değişken olup hem de sınırlı değildir. Ayrıca bu çalışmadaki sonuçlar birer konveks optimizasyon problemi olarak ifade edilmiştir ve sonuçların uygulanabilirliği ve etkinliğini araştırmak için bir örnek kullanılmıştır.

Kaynakça

  • Altun, Y., & Tunç, C. (2020). On the asymptotic stability of a nonlinear fractional-order system with multiple variable delays. Applications and Applied Mathematics, 15(1), 458-468.
  • Chen, L. P., He, Y. G., Chai, Y., & Wu, R. C. (2014). New results on stability stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynamics, 75, 633-641. doi:10.1007/s11071-013-1091-5
  • Chen, L. P., Liu, C., Wu, R. C., He, Y. G., & Chai, Y. (2016). Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Computing and Applications, 27, 549-556. doi:10.1007/s00521-015-1876-1
  • Deng, W. H., Li, C. P., & Lu, J. H. (2007). Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 48, 409-416. doi:10.1007/s11071-006-9094-0
  • Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., & Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22, 650-659. doi:10.1016/j.cnsns.2014.10.008
  • Hale, J. (1977). Theory of Functional Differential Equations. New York, USA: Springer-Verlag.
  • Heymans, N., & Podlubny, I. (2006). Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta, 45(5), 765-771. doi:10.1007/s00397-005-0043-5
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Application of Fractional Differential Equations. New York, USA: Elsevier.
  • Korkmaz, E., & Özdemir, A. (2019). On stability of fractional differential equations with Lyapunov functions. MAUN Fen Bilimleri Dergisi, 7(1), 635-638. doi:10.18586/msufbd.559400
  • Li, H., Zhou, S., & Li, H. (2015). Asymptotic stability analysis of fractional-order neutral systems with time delay. Advances in Continuous and Discrete Models, 2015, 325-335
  • Liu, S., Jiang, W., Li, X., & Zhou, X. F. (2016a). Lyapunov stability analysis of fractional nonlinear systems. Applied Mathematics Letters, 51, 13-19. doi:10.1016/j.aml.2015.06.018
  • Liu, S., Wu, X., Zhou, X. F., & Jiang, W. (2016b). Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nolinear Dynamics, 86, 65-71. doi:10.1007/s11071-016-2872-4
  • Liu, S., Wu, X., Zhang, Y. J., & Yang, R. (2017). Asymptotical stability of Riemann-Liouville fractional neutral systems. Applied Mathematics Letters, 69, 168-173. doi:10.1016/j.aml.2017.02.016
  • Podlubny, I. (1999). Fractional Differential Equations. New York, USA: Academic Press.
  • Qian, D., Li, C., Agarwal, R. P., & Wong, P. J. Y. (2010). Stability analysis of fractional differential system with Riemann-Liouville derivative. Mathematical and Computer Modelling, 52(5-6), 862-874. doi:10.1016/j.mcm.2010.05.016
  • Yang, X., Li, C., Huang, T., & Song, Q. (2017). Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Applied Mathematics and Computation, 293, 416-422. doi:10.1016/j.amc.2016.08.039

LMI Approach for Asymptotical Stability of Riemann–Liouville Nonlinear Fractional Neutral Systems with Time-Varying Delays

Yıl 2023, Cilt: 28 Sayı: 3, 908 - 918, 29.12.2023
https://doi.org/10.53433/yyufbed.1246729

Öz

In this paper, we have delivered asymptotic stability results for solutions to non-autonomous nonlinear neutral systems. The acquired stability results are independent of the delays, and the delays are also both time-variable and unbounded. Additionally, the results were described as a convex optimization problem, and an example was used to examine the results' feasibility and efficacy.

Kaynakça

  • Altun, Y., & Tunç, C. (2020). On the asymptotic stability of a nonlinear fractional-order system with multiple variable delays. Applications and Applied Mathematics, 15(1), 458-468.
  • Chen, L. P., He, Y. G., Chai, Y., & Wu, R. C. (2014). New results on stability stabilization of a class of nonlinear fractional-order systems. Nonlinear Dynamics, 75, 633-641. doi:10.1007/s11071-013-1091-5
  • Chen, L. P., Liu, C., Wu, R. C., He, Y. G., & Chai, Y. (2016). Finite-time stability criteria for a class of fractional-order neural networks with delay. Neural Computing and Applications, 27, 549-556. doi:10.1007/s00521-015-1876-1
  • Deng, W. H., Li, C. P., & Lu, J. H. (2007). Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dynamics, 48, 409-416. doi:10.1007/s11071-006-9094-0
  • Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A., & Castro-Linares, R. (2015). Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Communications in Nonlinear Science and Numerical Simulation, 22, 650-659. doi:10.1016/j.cnsns.2014.10.008
  • Hale, J. (1977). Theory of Functional Differential Equations. New York, USA: Springer-Verlag.
  • Heymans, N., & Podlubny, I. (2006). Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives. Rheologica Acta, 45(5), 765-771. doi:10.1007/s00397-005-0043-5
  • Kilbas, A. A., Srivastava, H. M., & Trujillo, J. J. (2006). Theory and Application of Fractional Differential Equations. New York, USA: Elsevier.
  • Korkmaz, E., & Özdemir, A. (2019). On stability of fractional differential equations with Lyapunov functions. MAUN Fen Bilimleri Dergisi, 7(1), 635-638. doi:10.18586/msufbd.559400
  • Li, H., Zhou, S., & Li, H. (2015). Asymptotic stability analysis of fractional-order neutral systems with time delay. Advances in Continuous and Discrete Models, 2015, 325-335
  • Liu, S., Jiang, W., Li, X., & Zhou, X. F. (2016a). Lyapunov stability analysis of fractional nonlinear systems. Applied Mathematics Letters, 51, 13-19. doi:10.1016/j.aml.2015.06.018
  • Liu, S., Wu, X., Zhou, X. F., & Jiang, W. (2016b). Asymptotical stability of Riemann-Liouville fractional nonlinear systems. Nolinear Dynamics, 86, 65-71. doi:10.1007/s11071-016-2872-4
  • Liu, S., Wu, X., Zhang, Y. J., & Yang, R. (2017). Asymptotical stability of Riemann-Liouville fractional neutral systems. Applied Mathematics Letters, 69, 168-173. doi:10.1016/j.aml.2017.02.016
  • Podlubny, I. (1999). Fractional Differential Equations. New York, USA: Academic Press.
  • Qian, D., Li, C., Agarwal, R. P., & Wong, P. J. Y. (2010). Stability analysis of fractional differential system with Riemann-Liouville derivative. Mathematical and Computer Modelling, 52(5-6), 862-874. doi:10.1016/j.mcm.2010.05.016
  • Yang, X., Li, C., Huang, T., & Song, Q. (2017). Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses. Applied Mathematics and Computation, 293, 416-422. doi:10.1016/j.amc.2016.08.039
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Erdal Korkmaz 0000-0002-6647-9312

Abdulhamit Özdemir 0000-0002-5310-6285

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 2 Şubat 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 3

Kaynak Göster

APA Korkmaz, E., & Özdemir, A. (2023). LMI Approach for Asymptotical Stability of Riemann–Liouville Nonlinear Fractional Neutral Systems with Time-Varying Delays. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 908-918. https://doi.org/10.53433/yyufbed.1246729