Araştırma Makalesi
BibTex RIS Kaynak Göster

Fe2O3 Nanoparçacıkların Yeşil Sentezi ve Karakterizasyonu

Yıl 2023, Cilt: 28 Sayı: 3, 1059 - 1067, 29.12.2023
https://doi.org/10.53433/yyufbed.1276192

Öz

Bu çalışmanın amacı geniş uygulama alanları nedeniyle demir III oksit (Fe2O3) nanoparçacıkları üretmektir. Birçok avantajı nedeniyle sentez yönteminde zerdeçalın etanolik ekstraktı kullanılmıştır. Bu avantajlar arasında ucuz olması, yaygın olarak erişilebilir olması, ekstaksiyonlarının basit olması ve kontaminasyona daha az eğilimli olması yer alır. Üretilen parçacıklar, taramalı elektron mikroskobu (SEM), enerji dağılımlı X-Ray analizi (EDX) ve geçirimli elektron mikroskobu (TEM) ile analiz edildi. Ayrıca Fe2O3 partiküllerinin zeta potansiyeli belirlendi, ultraviyole-görünür bölge spektroskopisi (UV) analizi ve fourier dönüşümlü kızılötesi spektroskopisi (FTIR) analizi yapıldı. Elde edilen sonuçlara göre tanecik boyutu 30 ile 80 nm arasında değişen granüler şekilli nanopartiküller sentezlendi ve yeterince kararlı oldukları tespit edildi.

Kaynakça

  • Ali, H. R., Nassar H. N., & El-Gendy, N. S. (2017). Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(13), 1425-1434. doi:10.1080/15567036.2017.1336818
  • Alshamsi, H. A., Hussein, B. S. (2018). Synthesis, characterization and photocatalysis of g-Fe2O3 nanoparticles for degradation of cibacron brilliant yellow 3G-P. Asian Journal of Chemistry, 30(2), 273-279. doi:10.14233/ajchem.2018.20888
  • Ateş, M. (2018). Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews, 11(1), 63-69.
  • Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., … & Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115-6124. doi:10.1016/j.jmrt.2019.10.006
  • Chandransekar, N., Kumar, K. M. M., Balasubramnian, K. S., Karrunamurthy, K., & Varadharajan, R. (2013). Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their antimicrobial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures, 8(2), 765-775.
  • Gomez-Zavaglia, A., Cassani, L., Hebert, E. M., & Gerbino, E. (2022). Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International, 155, 111097. doi:10.1016/j.foodres.2022.111097
  • Huang, B. (2010). Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology, 14(1), 10-14. doi:10.1016/j.cbpa.2009.10.013
  • Janusz, W., Sworska, A., & Szczypa, J. (1999). Electrical double layer at the a-Fe2O3–mixed electrolyte (ethanol–aqueous) interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149(1-3), 421-426. doi:10.1016/S0927-7757(98)00561-5
  • Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007-3015. doi:10.1016/j.rinp.2017.07.066
  • Luna, C., Cuan-Guerra, A. D., Barriga-Castro, E. D., Núñez, N. O., & Mendoza-Reséndez, R. (2016). Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals. Materials Research Bulletin, 80, 44-52. doi:10.1016/j.materresbull.2016.03.029
  • Meng, X., Ryu, J., Kim, B., & Ko, S. (2016). Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clinical Nutrition Research, 5(3), 172-179. doi:10.7762/cnr.2016.5.3.172
  • Mohammadi, S. Z., Khorasani-Motlagh, M., Jahani, S., & Yousefi, M. (2012). Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. International Journal of Nanoscience and Nanotechnology, 8(2), 87-92.
  • Parthasarathy, V., Selvi, J., Senthil Kumar, P., Anbarasan, R., & Mahalakshmi, S. (2020). Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition. Polymer Bulletin, 78(4), 2191-2210. doi:10.1007/s00289-020-03206-3
  • Patra, D., & El Kurdi, R. (2021). Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chemistry Letters and Reviews, 14(3), 474-487. doi:10.1080/17518253.2021.1941306
  • Qin, W., Yang, C., Yi, R., & Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline -Fe2O3 nanocubes. Journal of Nanomaterials, 2011, 1-5. doi:10.1155/2011/159259
  • Rizvi, M., Bhatia, T., & Gupta, R. (2022). Green & sustainable synthetic route of obtaining iron oxide nanoparticles using Hylocereus undantus (pitaya or dragon fruit). Materials Today: Proceedings, 50, 1100-1106. doi:10.1016/j.matpr.2021.07.469
  • Rufus, A., N, S., & Philip, D. (2016). Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Advances, 6(96), 94206-94217. doi:10.1039/C6RA20240C
  • Rydz, J., Šišková, A., & Andicsová Eckstein, A. (2019). Scanning electron microscopy and atomic force microscopy: Topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Advances in Materials Science and Engineering, 2019, 1-16. doi:10.1155/2019/6871785
  • Sarkar, J., Mollick, M. M., Chattopadhyay, D., & Acharya, K. (2017). An eco-friendly route of gamma-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-gamma-Fe2O3 nanocomposites. Bioprocess and Biosystems Engineering, 40(3), 351-359. doi:10.1007/s00449-016-1702-x
  • Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 308(Pt2), 136331. doi:10.1016/j.chemosphere.2022.136331
  • Tcnnesen, H. H., & Greenhill, J. V. (1992). Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger. International Journal of Pharmaceutics, 87, 79-87.
  • Vo, T. S., Vo, T. T. B. C., Vo, T. T. T. N., & Lai, T. N. H. (2021). Turmeric (Curcuma longa L.): chemical components and their effective clinical applications. Journal of the Turkish Chemical Society Section A: Chemistry, 8(3), 883-898. doi:10.18596/jotcsa.913136
  • Wang, C., & Huang, Z. (2016). Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Materials Letters, 164, 194-197. doi:10.1016/j.matlet.2015.10.152
  • Wei, S., Xing, P., Tang, Z., Wang, Y., & Dai, L. (2023). Spindle-shaped cobalt-doped iron phosphide anchored on three-dimensional graphene electrocatalysis for hydrogen evolution reactions in both acidic and alkaline media. Journal of Power Sources, 555, 232414. doi:10.1016/j.jpowsour.2022.232414

Green Synthesis and Characterization of Fe2O3 Nanoparticles

Yıl 2023, Cilt: 28 Sayı: 3, 1059 - 1067, 29.12.2023
https://doi.org/10.53433/yyufbed.1276192

Öz

The aim of this study is to produce iron III oxide (Fe2O3) nanoparticles due to their wide application area. The ethanolic extract of curcuma was used in the synthesis method due to number of advantages. These benefits include being inexpensive, widely accessible, simple to extract, and less prone to contamination. The produced particles were analyzed via scanning electron microscope (SEM), energy dispersive analysis (EDX), and transmission electron microscope (TEM). Furthermore, the zeta potential of Fe2O3 particles was determined, ultraviolet–visible spectroscopy (UV) analysis and fourier transform infrared spectroscopy (FTIR) analysis were done. According to the results obtained, granular nanoparticles with particle sizes ranging from 30 to 80 nm were synthesized and it was determined that they were sufficiently stable.

Kaynakça

  • Ali, H. R., Nassar H. N., & El-Gendy, N. S. (2017). Green synthesis of α-Fe2O3 using Citrus reticulum peels extract and water decontamination from different organic pollutants. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(13), 1425-1434. doi:10.1080/15567036.2017.1336818
  • Alshamsi, H. A., Hussein, B. S. (2018). Synthesis, characterization and photocatalysis of g-Fe2O3 nanoparticles for degradation of cibacron brilliant yellow 3G-P. Asian Journal of Chemistry, 30(2), 273-279. doi:10.14233/ajchem.2018.20888
  • Ateş, M. (2018). Nanoparçacıkların ölçme ve inceleme teknikleri. Turkish Journal of Scientific Reviews, 11(1), 63-69.
  • Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., … & Iqbal, M. (2019). Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. Journal of Materials Research and Technology, 8(6), 6115-6124. doi:10.1016/j.jmrt.2019.10.006
  • Chandransekar, N., Kumar, K. M. M., Balasubramnian, K. S., Karrunamurthy, K., & Varadharajan, R. (2013). Facile synthesis of iron oxide, iron-cobalt and zero valent iron nanoparticles and evaluation of their antimicrobial activity, free radicle scavenginging activity and antioxidant assay. Digest Journal of Nanomaterials and Biostructures, 8(2), 765-775.
  • Gomez-Zavaglia, A., Cassani, L., Hebert, E. M., & Gerbino, E. (2022). Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Research International, 155, 111097. doi:10.1016/j.foodres.2022.111097
  • Huang, B. (2010). Super-resolution optical microscopy: multiple choices. Current Opinion in Chemical Biology, 14(1), 10-14. doi:10.1016/j.cbpa.2009.10.013
  • Janusz, W., Sworska, A., & Szczypa, J. (1999). Electrical double layer at the a-Fe2O3–mixed electrolyte (ethanol–aqueous) interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 149(1-3), 421-426. doi:10.1016/S0927-7757(98)00561-5
  • Lassoued, A., Dkhil, B., Gadri, A., & Ammar, S. (2017). Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results in Physics, 7, 3007-3015. doi:10.1016/j.rinp.2017.07.066
  • Luna, C., Cuan-Guerra, A. D., Barriga-Castro, E. D., Núñez, N. O., & Mendoza-Reséndez, R. (2016). Confinement and surface effects on the physical properties of rhombohedral-shape hematite (α-Fe2O3) nanocrystals. Materials Research Bulletin, 80, 44-52. doi:10.1016/j.materresbull.2016.03.029
  • Meng, X., Ryu, J., Kim, B., & Ko, S. (2016). Application of iron oxide as a pH-dependent indicator for improving the nutritional quality. Clinical Nutrition Research, 5(3), 172-179. doi:10.7762/cnr.2016.5.3.172
  • Mohammadi, S. Z., Khorasani-Motlagh, M., Jahani, S., & Yousefi, M. (2012). Synthesis and characterization of α-Fe2O3 nanoparticles by microwave method. International Journal of Nanoscience and Nanotechnology, 8(2), 87-92.
  • Parthasarathy, V., Selvi, J., Senthil Kumar, P., Anbarasan, R., & Mahalakshmi, S. (2020). Evaluation of mechanical, optical and thermal properties of PVA nanocomposites embedded with Fe2O3 nanofillers and the investigation of their thermal decomposition characteristics under non-isothermal heating condition. Polymer Bulletin, 78(4), 2191-2210. doi:10.1007/s00289-020-03206-3
  • Patra, D., & El Kurdi, R. (2021). Curcumin as a novel reducing and stabilizing agent for the green synthesis of metallic nanoparticles. Green Chemistry Letters and Reviews, 14(3), 474-487. doi:10.1080/17518253.2021.1941306
  • Qin, W., Yang, C., Yi, R., & Gao, G. (2011). Hydrothermal synthesis and characterization of single-crystalline -Fe2O3 nanocubes. Journal of Nanomaterials, 2011, 1-5. doi:10.1155/2011/159259
  • Rizvi, M., Bhatia, T., & Gupta, R. (2022). Green & sustainable synthetic route of obtaining iron oxide nanoparticles using Hylocereus undantus (pitaya or dragon fruit). Materials Today: Proceedings, 50, 1100-1106. doi:10.1016/j.matpr.2021.07.469
  • Rufus, A., N, S., & Philip, D. (2016). Synthesis of biogenic hematite (α-Fe2O3) nanoparticles for antibacterial and nanofluid applications. RSC Advances, 6(96), 94206-94217. doi:10.1039/C6RA20240C
  • Rydz, J., Šišková, A., & Andicsová Eckstein, A. (2019). Scanning electron microscopy and atomic force microscopy: Topographic and dynamical surface studies of blends, composites, and hybrid functional materials for sustainable future. Advances in Materials Science and Engineering, 2019, 1-16. doi:10.1155/2019/6871785
  • Sarkar, J., Mollick, M. M., Chattopadhyay, D., & Acharya, K. (2017). An eco-friendly route of gamma-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-gamma-Fe2O3 nanocomposites. Bioprocess and Biosystems Engineering, 40(3), 351-359. doi:10.1007/s00449-016-1702-x
  • Selvaraj, R., Pai, S., Vinayagam, R., Varadavenkatesan, T., Kumar, P. S., Duc, P. A., & Rangasamy, G. (2022). A recent update on green synthesized iron and iron oxide nanoparticles for environmental applications. Chemosphere, 308(Pt2), 136331. doi:10.1016/j.chemosphere.2022.136331
  • Tcnnesen, H. H., & Greenhill, J. V. (1992). Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger. International Journal of Pharmaceutics, 87, 79-87.
  • Vo, T. S., Vo, T. T. B. C., Vo, T. T. T. N., & Lai, T. N. H. (2021). Turmeric (Curcuma longa L.): chemical components and their effective clinical applications. Journal of the Turkish Chemical Society Section A: Chemistry, 8(3), 883-898. doi:10.18596/jotcsa.913136
  • Wang, C., & Huang, Z. (2016). Controlled synthesis of α-Fe2O3 nanostructures for efficient photocatalysis. Materials Letters, 164, 194-197. doi:10.1016/j.matlet.2015.10.152
  • Wei, S., Xing, P., Tang, Z., Wang, Y., & Dai, L. (2023). Spindle-shaped cobalt-doped iron phosphide anchored on three-dimensional graphene electrocatalysis for hydrogen evolution reactions in both acidic and alkaline media. Journal of Power Sources, 555, 232414. doi:10.1016/j.jpowsour.2022.232414
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Başak Doğru Mert 0000-0002-2270-9032

Yayımlanma Tarihi 29 Aralık 2023
Gönderilme Tarihi 3 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 28 Sayı: 3

Kaynak Göster

APA Doğru Mert, B. (2023). Green Synthesis and Characterization of Fe2O3 Nanoparticles. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(3), 1059-1067. https://doi.org/10.53433/yyufbed.1276192