Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Radiation Effects on Cr-Co-Ni Alloys Used in Dental Applications by Monte Carlo Simulation

Yıl 2024, Cilt: 29 Sayı: 2, 468 - 482, 31.08.2024
https://doi.org/10.53433/yyufbed.1520230

Öz

Radiation is used in dental applications, both in any tumor treatment and oral diagnosis. Especially boron -neutron treatment mostly uses brain and larynx cancer treatment. In recent years, denture restoration has become important in combating tooth decay and tooth loss. Many alloys are used for both restoration and medical purposes, with cobalt-chromium (Co-Cr) alloys seeing increasing use. These alloys are favored because they offer good resistance to corrosion and mechanical wear. Toxicity and radiation resistance are crucial properties of these alloys in oral applications. Individuals with chrome-coated implants and restorations may be exposed to radiation during diagnostic procedures while working in nuclear facilities or undergoing radiotherapy treatments like boron neutron therapy. The epithermal and fast neutron interaction parameters, including effective removal cross-section, half-value layer, mean free path, and transmission number, have been determined for dentures used in medical applications with three types of Co-Cr alloys. These parameters and the emitted secondary radiation were calculated using the effective semi-experimental Monte Carlo simulation software, GEANT4. It was determined that the first type of alloys are best suited for oral restorations in people exposed to radiation.

Kaynakça

  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., & Daoush, W. M. (2024). Titanium-based alloys and composites for orthopedic implants applications: A comprehensive review. Materials & Design, 241, 112850. https://doi.org/10.1016/j.matdes.2024.112850
  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … & Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  • Al-Imam, H., Benetti, A. R., Özhayat, E. B., Pedersen, A. M. L., Johansen, J. D., Thyssen, J. P., … & Gotfredsen, K. (2016). Cobalt release and complications resulting from the use of dental prostheses. Contact Dermatitis, 75(6), 377-383. https://doi.org/10.1111/cod.12649
  • Ananth, H., Kundapur, V., Mohammed, H. S., Anand, M., Amarnath, G. S., & Mankar, S. (2015). A review on biomaterials in dental implantology. International Journal of Biomedical Science: IJBS, 11(3), 113-120.
  • Apte, K., & Bhide, S. (2024). Advanced radiation shielding materials: In S. Verma, & A. K. Srivastava (Eds.), Basics of radiation (pp. 1-23). Elsevier. https://doi.org/10.1016/B978-0-323-95387-0.00013-3
  • Aygün, B. (2021). Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique. Radiation Physics and Chemistry, 188, 109630. https://doi.org/10.1016/j.radphyschem.2021.109630
  • Aygün, B., & Karabulut, A. (2022). Investigation of epithermal and fast neutron shielding properties of some high entropy alloys containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science, 8(2), 37-44.
  • Bayram, S., Aygün, B., Karadayi, M., Alaylar, B., Güllüce, M., & Karabulut, A. (2023). Determination of toxicity and radioprotective properties of bacterial and fungal eumelanin pigments. International Journal of Radiation Biology, 99(11), 1785-1793. https://doi.org/10.1080/09553002.2023.2204957
  • Chung, D. D. L. (2017). Carbon-matrix composites. In Carbon composites, composites with carbon fibers, nanofibers and nanotubes (pp. 387-466). Elsevier. https://doi.org/10.1016/B978-0-12-804459-9.00007-5
  • Durna, D., Aygün, B., Genişel, M., & Singh, V. P. (2023). Investigation of the neutron radiation protective properties of chlorophyll and carotenoid. Radiation Physics and Chemistry, 208, 110873. https://doi.org/10.1016/j.radphyschem.2023.110873
  • El-Khayatt, A. M. (2010). Calculation of fast neutron removal cross-sections for some compounds and materials. Annals of Nuclear Energy, 37(2), 218-222. https://doi.org/10.1016/j.anucene.2009.10.022
  • Han, X., Sawada, T., Schille, C., Schweizer, E., Scheideler, L., Geis-Gerstorfer, J., … & Spintzyk, S. (2018). Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes. Materials, 11(10), 1801. https://doi.org/10.3390/ma11101801
  • Hiremath, G. B., Singh, V. P., Patil, P. N., Ayachit, N. H., & Badiger, N. M. (2023). Investigation of the nuclear radiation parameters of some Ti alloys for biomedical applications. Radiation Effects and Defects in Solids, 179 (3-4), 301-314. https://doi.org/10.1080/10420150.2023.2265020
  • Kassapidou, M., Stenport, V. F., Hjalmarsson, L., & Johansson, C. B. (2017). Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta Biomaterialia Odontologica Scandinavica, 3(1), 53-62. https://doi.org/10.1080/23337931.2017.1360776
  • Kim, T. W, Kim, W. I., Mun, J. H., Song, M., Kim, H. S., Kim, B. S., Kim, M. B., & Ko, H. C. (2015). Patch testing with dental screening series in oral disease. Annals of Dermatology, 27(4), 389-393. https://doi.org/10.5021/ad.2015.27.4.389
  • Kursun, C., Gao, M., Guclu, S., Gaylan, Y., Parrey, K. A., & Yalcin, A. O. (2023). Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti50Cu30Zr15B5 via arc melting technique. Heliyon, 9(11), 1-11. https://doi.org/10.1016/j.heliyon.2023.e21696
  • Mansouri, E., Mesbahi, A., Malekzadeh, R., Ghasemi Janghjoo, A., & Okutan, M. (2020). A review on neutron shielding performance of nano - composite materials. International Journal of Radiation Research, 18(4), 611-622. http://dx.doi.org/10.52547/ijrr.18.4.611
  • Mohamed, L. Z., Elsayed, A. H., Elkady, O. A., & Abolkassem, S. A. (2023). Physico-mechanical, microstructure, and chemical properties of Si/Ti/Nb additions to CoCrMoW medium entropy alloys. Journal of Materials Research and Technology, 24, 9897-9914. https://doi.org/10.1016/j.jmrt.2023.05.198
  • Nazarov, K. M., Muhametuly, B., Kenzhin E. A., Kichanov, S. E., Kozlenko, D. P., Lukin, E. V., & Shaimerdenov, A. (2020). New neutron radiography and tomography facility TITAN at the WWR-K reactor. Nuclear Instruments and Methods in Physics Research Section A (NIM-A), 982, 164572. https://doi.org/10.1016/j.nima.2020.164572
  • Onimus, F., Doriot, S., & Béchade, J. L. (2020). Radiation effects in zirconium alloys. In R. J. M. Konings, & R. E. Stoller (Eds.), Comprehensive nuclear materials (pp. 1-56). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11759-X
  • Podgoršak, E. B. (2009). Interactions of neutrons with matter. In Radiation physics for medical physicists. Biological and Medical Physics, Biomedical Engineering (pp. 429-49). Springer. https://doi.org/10.1007/978-3-642-00875-7_9
  • Robau-Porrua, A., González, J. E., Rodríguez-Guerra, J., González-Mederos, P., Navarro, P., De La Rosa, J. E., … & Torres, Y. (2024). Biomechanical behavior of a new design of dental implant: Influence of the porosity and location in the maxilla. Journal of Materials Research and Technology, 29, 3255-3267. https://doi.org/10.1016/j.jmrt.2024.02.091
  • Scharf, B., Clement, C., Zolla, V., Perino, G., Yan, B., Gokhan Elci, S., … & Santambrogio, L. (2014). Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports, 4, 5729. https://doi.org/10.1038/srep05729
  • Sriwongsa, K., Glumglomchit, P., Wananuraksakul, T., Pimprakhon, A., Hanchana, T., & Ravangvong, S. (2020). Simulation of shielding parameters of some high entropy alloys containing energies for gamma ray and fast neutron. Research Journal Rajamangala University of Technology Thanyaburi, 19, 97-105.
  • Taşgın, Y. (2021). Investigation of microstructural and mechanical properties of different titanium alloys for gamma radiation properties and ımplant applications. Journal of Material Engineering and Performance, 30, 6203-6223. https://doi.org/10.1007/s11665-021-05830-0
  • Vaicelyte, A., Janssen, C., Le Borgne, M., Grosgogeat, B. (2020). Cobalt–chromium dental alloys: Metal exposures, toxicological risks, CMR classification, and EU regulatory framework. Crystals, 10(12), 1151. https://doi.org/10.3390/cryst10121151

Dental Uygulamalarda Kullanılan Cr-Co-Ni Alaşımlarında Radyasyonun Etkilerinin Monte Carlo Simülasyonu ile Araştırılması

Yıl 2024, Cilt: 29 Sayı: 2, 468 - 482, 31.08.2024
https://doi.org/10.53433/yyufbed.1520230

Öz

Radyasyon diş hekimliği uygulamalarında hem her türlü tümör tedavisinde hem de ağız yoluyla teşhiste kullanılmaktadır. Özellikle bor-nötron tedavisinde çoğunlukla beyin ve gırtlak kanseri tedavisinde kullanılmaktadır. Son yıllarda diş çürüğü ve diş kaybıyla mücadelede protez restorasyonu önem kazanmıştır. Birçok alaşım hem restorasyon hem de tıbbi amaçlar için kullanılmakta özellikle kobalt-krom (Co-Cr) alaşımlarının kullanımı giderek artıyor. Bu alaşımlar, korozyona ve mekanik aşınmaya karşı iyi bir direnç sundukları için tercih ediliyor. Toksite ve radyasyon direnci bunların çok önemli özellikleridir. Oral uygulamalarda alaşımlar krom kaplı implantlara ve restorasyonlara sahip kişiler, nükleer tesislerde çalışırken veya bor nötron tedavisi gibi radyoterapi tedavilerine tabi tutulurken teşhis prosedürleri sırasında radyasyona maruz kalabilirler. Üç tip Co-Cr alaşımı ile tıbbi uygulamalarda kullanılan protezler için epitermal ve hızlı nötron etkileşimi parametreleri etkili uzaklaştırma kesiti, yarı değer katmanı, ortalama serbest yol ve iletim sayısı belirlendi. Bu parametreler ve yayılan ikincil radyasyon, etkili yarı deneysel Monte Carlo simülasyonu kullanılarak hesaplandı. GEANT4 yazılımı ile radyasyona maruz kalan kişilerde ağız restorasyonları için birinci tip alaşımların en uygun olduğu belirlendi.

Kaynakça

  • Abd-Elaziem, W., Darwish, M. A., Hamada, A., & Daoush, W. M. (2024). Titanium-based alloys and composites for orthopedic implants applications: A comprehensive review. Materials & Design, 241, 112850. https://doi.org/10.1016/j.matdes.2024.112850
  • Agostinelli, S., Allison, J., Amako, K., Apostolakis, J., Araujo, H., Arce, P., … & Zschiesche, D. (2003). GEANT4 - A simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506(3), 250-303. https://doi.org/10.1016/S0168-9002(03)01368-8
  • Al-Imam, H., Benetti, A. R., Özhayat, E. B., Pedersen, A. M. L., Johansen, J. D., Thyssen, J. P., … & Gotfredsen, K. (2016). Cobalt release and complications resulting from the use of dental prostheses. Contact Dermatitis, 75(6), 377-383. https://doi.org/10.1111/cod.12649
  • Ananth, H., Kundapur, V., Mohammed, H. S., Anand, M., Amarnath, G. S., & Mankar, S. (2015). A review on biomaterials in dental implantology. International Journal of Biomedical Science: IJBS, 11(3), 113-120.
  • Apte, K., & Bhide, S. (2024). Advanced radiation shielding materials: In S. Verma, & A. K. Srivastava (Eds.), Basics of radiation (pp. 1-23). Elsevier. https://doi.org/10.1016/B978-0-323-95387-0.00013-3
  • Aygün, B. (2021). Neutron and gamma radiation shielding Ni based new type super alloys development and production by Monte Carlo Simulation technique. Radiation Physics and Chemistry, 188, 109630. https://doi.org/10.1016/j.radphyschem.2021.109630
  • Aygün, B., & Karabulut, A. (2022). Investigation of epithermal and fast neutron shielding properties of some high entropy alloys containing Ti, Hf, Nb, and Zr. Eastern Anatolian Journal of Science, 8(2), 37-44.
  • Bayram, S., Aygün, B., Karadayi, M., Alaylar, B., Güllüce, M., & Karabulut, A. (2023). Determination of toxicity and radioprotective properties of bacterial and fungal eumelanin pigments. International Journal of Radiation Biology, 99(11), 1785-1793. https://doi.org/10.1080/09553002.2023.2204957
  • Chung, D. D. L. (2017). Carbon-matrix composites. In Carbon composites, composites with carbon fibers, nanofibers and nanotubes (pp. 387-466). Elsevier. https://doi.org/10.1016/B978-0-12-804459-9.00007-5
  • Durna, D., Aygün, B., Genişel, M., & Singh, V. P. (2023). Investigation of the neutron radiation protective properties of chlorophyll and carotenoid. Radiation Physics and Chemistry, 208, 110873. https://doi.org/10.1016/j.radphyschem.2023.110873
  • El-Khayatt, A. M. (2010). Calculation of fast neutron removal cross-sections for some compounds and materials. Annals of Nuclear Energy, 37(2), 218-222. https://doi.org/10.1016/j.anucene.2009.10.022
  • Han, X., Sawada, T., Schille, C., Schweizer, E., Scheideler, L., Geis-Gerstorfer, J., … & Spintzyk, S. (2018). Comparative analysis of mechanical properties and metal-ceramic bond strength of Co-Cr dental alloy fabricated by different manufacturing processes. Materials, 11(10), 1801. https://doi.org/10.3390/ma11101801
  • Hiremath, G. B., Singh, V. P., Patil, P. N., Ayachit, N. H., & Badiger, N. M. (2023). Investigation of the nuclear radiation parameters of some Ti alloys for biomedical applications. Radiation Effects and Defects in Solids, 179 (3-4), 301-314. https://doi.org/10.1080/10420150.2023.2265020
  • Kassapidou, M., Stenport, V. F., Hjalmarsson, L., & Johansson, C. B. (2017). Cobalt-chromium alloys in fixed prosthodontics in Sweden. Acta Biomaterialia Odontologica Scandinavica, 3(1), 53-62. https://doi.org/10.1080/23337931.2017.1360776
  • Kim, T. W, Kim, W. I., Mun, J. H., Song, M., Kim, H. S., Kim, B. S., Kim, M. B., & Ko, H. C. (2015). Patch testing with dental screening series in oral disease. Annals of Dermatology, 27(4), 389-393. https://doi.org/10.5021/ad.2015.27.4.389
  • Kursun, C., Gao, M., Guclu, S., Gaylan, Y., Parrey, K. A., & Yalcin, A. O. (2023). Measurement on the neutron and gamma radiation shielding performance of boron-doped titanium alloy Ti50Cu30Zr15B5 via arc melting technique. Heliyon, 9(11), 1-11. https://doi.org/10.1016/j.heliyon.2023.e21696
  • Mansouri, E., Mesbahi, A., Malekzadeh, R., Ghasemi Janghjoo, A., & Okutan, M. (2020). A review on neutron shielding performance of nano - composite materials. International Journal of Radiation Research, 18(4), 611-622. http://dx.doi.org/10.52547/ijrr.18.4.611
  • Mohamed, L. Z., Elsayed, A. H., Elkady, O. A., & Abolkassem, S. A. (2023). Physico-mechanical, microstructure, and chemical properties of Si/Ti/Nb additions to CoCrMoW medium entropy alloys. Journal of Materials Research and Technology, 24, 9897-9914. https://doi.org/10.1016/j.jmrt.2023.05.198
  • Nazarov, K. M., Muhametuly, B., Kenzhin E. A., Kichanov, S. E., Kozlenko, D. P., Lukin, E. V., & Shaimerdenov, A. (2020). New neutron radiography and tomography facility TITAN at the WWR-K reactor. Nuclear Instruments and Methods in Physics Research Section A (NIM-A), 982, 164572. https://doi.org/10.1016/j.nima.2020.164572
  • Onimus, F., Doriot, S., & Béchade, J. L. (2020). Radiation effects in zirconium alloys. In R. J. M. Konings, & R. E. Stoller (Eds.), Comprehensive nuclear materials (pp. 1-56). Elsevier. https://doi.org/10.1016/B978-0-12-803581-8.11759-X
  • Podgoršak, E. B. (2009). Interactions of neutrons with matter. In Radiation physics for medical physicists. Biological and Medical Physics, Biomedical Engineering (pp. 429-49). Springer. https://doi.org/10.1007/978-3-642-00875-7_9
  • Robau-Porrua, A., González, J. E., Rodríguez-Guerra, J., González-Mederos, P., Navarro, P., De La Rosa, J. E., … & Torres, Y. (2024). Biomechanical behavior of a new design of dental implant: Influence of the porosity and location in the maxilla. Journal of Materials Research and Technology, 29, 3255-3267. https://doi.org/10.1016/j.jmrt.2024.02.091
  • Scharf, B., Clement, C., Zolla, V., Perino, G., Yan, B., Gokhan Elci, S., … & Santambrogio, L. (2014). Molecular analysis of chromium and cobalt-related toxicity. Scientific Reports, 4, 5729. https://doi.org/10.1038/srep05729
  • Sriwongsa, K., Glumglomchit, P., Wananuraksakul, T., Pimprakhon, A., Hanchana, T., & Ravangvong, S. (2020). Simulation of shielding parameters of some high entropy alloys containing energies for gamma ray and fast neutron. Research Journal Rajamangala University of Technology Thanyaburi, 19, 97-105.
  • Taşgın, Y. (2021). Investigation of microstructural and mechanical properties of different titanium alloys for gamma radiation properties and ımplant applications. Journal of Material Engineering and Performance, 30, 6203-6223. https://doi.org/10.1007/s11665-021-05830-0
  • Vaicelyte, A., Janssen, C., Le Borgne, M., Grosgogeat, B. (2020). Cobalt–chromium dental alloys: Metal exposures, toxicological risks, CMR classification, and EU regulatory framework. Crystals, 10(12), 1151. https://doi.org/10.3390/cryst10121151
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nükleer Fizik
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Doğan Durna 0000-0001-5341-6024

Bünyamin Aygün 0000-0002-9384-1540

Abdulhalik Karabulut 0000-0003-2290-9007

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 22 Temmuz 2024
Kabul Tarihi 20 Ağustos 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 2

Kaynak Göster

APA Durna, D., Aygün, B., & Karabulut, A. (2024). Investigation of Radiation Effects on Cr-Co-Ni Alloys Used in Dental Applications by Monte Carlo Simulation. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(2), 468-482. https://doi.org/10.53433/yyufbed.1520230