Araştırma Makalesi
BibTex RIS Kaynak Göster

Topraktaki Kadmiyum (Cd) Birikimine Maruz Kalan Ekmeklik Buğdayda Kadmiyumun İndüklediği Bazı Genlerin DNA Metilasyonu ve İfadesindeki Değişikliklerin Karşılaştırılması

Yıl 2024, Cilt: 29 Sayı: 3, 830 - 841, 31.12.2024
https://doi.org/10.53433/yyufbed.1497910

Öz

Doğal fenomenler ve antropojenik olaylar sonucunda toprakta kadmiyum (Cd) birikimi son yıllarda giderek artmakta ve bitkiler, yaşamları için gerekli olmayan bu ağır metale doğrudan maruz kalmaktadır. Çalışmamızda Cd stresine maruz bırakılan Triticum aestivum L. bitkisinde UGT-3 (UDP-Glikosiltransferaz-3), LTP-4 (Lipit Transfer Proteini-4), Plazma Membran PIP-1 (Plazma Membran Protein-1) genleri çalışılmıştır. Bu genlerde meydana gelen ekspresyon seviyelerindeki değişimlerin ve Real-Time PCR temelli kantitatif DNA metilasyon analizi (qAMP) kullanılarak ilk kez metilasyon yüzdelerinin belirlenmesi amaçlanmıştır. Bu kapsamda kontrol, 100, 250 ve 500 µM CdCl2 dozlarına maruz bırakılarak geliştirilen buğdayların kök ve gövdelerinden DNA ile RNA izolasyonu yapılmıştır. Daha sonra RNA örneklerinden elde edilen cDNA'lar ile gen ekspresyon analizi yapılarak gen ekspresyon düzeyleri belirlenmiştir. DNA metilasyon yüzdeleri qAMP tekniği uygulanarak saptanmıştır. Sonuç olarak UGT-3, LTP-4 ve PIP-1 genlerinde en yüksek metilasyon yüzdesinin hem gövdede hem de kökte 250 µM konsantrasyonda olduğu gözlenmiştir. UGT-3 geninde ekspresyon seviyesi gövdede 250 µM konsantrasyonda en yüksek oranı verirken, LTP-4 geninde kökte 250 µM konsantrasyonda aşırı ekspresyon gözlenmiştir. UGT-3, LTP-4 ve PIP-1 genlerinin metilasyon oranlarındaki değişimler bitkilerde kullanımı yeni bir teknik olan qAMP ile ilk kez araştırılmıştır. Genlerin ekspresyon seviyeleri ile metilasyon durumları arasında anlamlı bir ilişki olduğu bulunmuştur.

Proje Numarası

FYL-2020-8329

Kaynakça

  • Ai-Jun, L., Xu-Hong, Z., Mei-Mei, C., & Qing, C. (2007). Oxidative stress and DNA damages induced by cadmium accumulation. Journal of Environmental Sciences, 19, 596-602.https://doi.org/10.1016/S1001-0742(07)60099-0
  • Alshegaihi, R. M., Mfarrej, M. F. B., Saleem, M. H., Parveen, A., Ahmad, K. S., Ali, B., Abeed, A. H. A., Alshehri, D., Alghamdi, S. A., Alghanem, S. M. S., Lone, J. A., Soliman, T. M. A., & Soudy, F. A. (2023). Effective citric acid and EDTA treatments in cadmium stress tolerance in pepper (Capsicum annuum L.) seedlings by regulating specific gene expression. South African Journal of Botany, 159, 367-380. https://doi.org/10.1016/j.sajb.2023.06.024
  • Baetz, U., & Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science, 19(2), 90-98. https://doi.org/10.1016/j.tplants.2013.11.006
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., Courdavault, V., Clastre, M., Giglioli-Guivarc’h, N., & Lanoue, A. (2018). Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 240, 1022-1027. https://doi.org/10.1016/j.foodchem.2017.07.105
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  • Brown, M. B., & Forsythe, A. B. (1974). The Small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1), 129–132. https://doi.org/10.1080/00401706.1974.10489158
  • Erturk, F. A., Agar, G., Arslan, E., Nardemir, G., Aydin, M., & Taspinar, M. S. (2014). Effects of lead sulfate on genetic and epigenetic changes, and endogenous hormone levels in corn (Zea mays L.). Polish Journal of Environmental Studies, 23(6), 1925-1932. https://doi.org/10.15244/pjoes/26109
  • FAO. (2021). Global assessment of soil pollution: Report. In Global assessment of soil pollution: Report. https://doi.org/10.4060/cb4894en
  • Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167-176. https://doi.org/10.1080/15376516.2019.1701594
  • Galati, S., DalCorso, G., Furini, A., Fragni, R., Maccari, C., Mozzoni, P., Giannelli, G., Buschini, A., & Visioli, G. (2023). DNA methylation is enhanced during Cd hyperaccumulation in Noccaea caerulescens ecotype Ganges. Environmental Science and Pollution Research, 30(10), 26178-26190. https://doi.org/10.1007/s11356-022-23983-w
  • Gomès, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y. H., Delrot, S., & Coutos-Thévenot, P. (2003). Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) Cells in response to fungal elicitor treatments. Molecular Plant-Microbe Interactions, 16(5), 456-464. https://doi.org/10.1094/MPMI.2003.16.5.456
  • Greco, M., Chiappetta, A., Bruno, L., & Bitonti, M. B. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany, 63(2), 695-709. https://doi.org/10.1093/jxb/err313
  • Guo, L., Zi, Y. W., Lin, H., Wei, E. C., Chen, J., Liu, M., Zhang, L. C., Li, J. Q., & Gu, H. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16(3), 277-286. https://doi.org/10.1038/sj.cr.7310035
  • Hoagland, D. R., & Arnon, D. I. (1950). The water–culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, California, USA. Circular No. 347, 32p.
  • Khan, M. I. R., Chopra, P., Chhillar, H., Ahanger, M. A., Hussain, S. J., & Maheshwari, C. (2021). Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. Plant Physiology and Biochemistry, 164, 260-278. https://doi.org/10.1016/j.plaphy.2021.05.006
  • Kosová, K., Vítámvás, P., & Prášil, I. T. (2007). The role of dehydrins in plant response to cold. Biologia Plantarum, 51(4), 601-617. https://doi.org/10.1007/s10535-007-0133-6
  • Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., & Zhu, J. K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3553-3557. https://doi.org/10.1073/pnas.1502279112
  • Leonardo, B., Emanuela, T., Letizia, M. M., Antonella, M., Marco, M., Fabrizio, A., Beatrice, B. M., & Adriana, C. (2021). Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. Plant Physiology and Biochemistry, 167, 785-794. https://doi.org/10.1016/j.plaphy.2021.09.014
  • Li, Y., Bi, Y., Mi, W., Xie, S., & Ji, L. (2021). Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. Journal of Hazardous Materials, 406, 1-9. https://doi.org/10.1016/j.jhazmat.2020.124337
  • Liu, D. (2021). Value evaluation system of ecological environment damage compensation caused by air pollution. Environmental Technology and Innovation, 22, 101473. https://doi.org/10.1016/j.eti.2021.101473
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
  • Luo, M., Zhou, C., Ma, T., Guo, W., Percival, L., Baeyens, W., & Gao, Y. (2022). Anthropogenic activities influence the mobilization of trace metals and oxyanions in coastal sediment porewaters. Science of the Total Environment, 839, 156353. https://doi.org/10.1016/j.scitotenv.2022.156353
  • Mishra, S., Lin, Z., Pang, S., Zhang, Y., Bhatt, P., & Chen, S. (2021). Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 418, 126253. https://doi.org/10.1016/j.jhazmat.2021.126253
  • Pacenza, M., Muto, A., Chiappetta, A., Mariotti, L., Talarico, E., Picciarelli, P., Picardi, E., Bruno, L., & Bitonti, M. B. (2021). In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Scientific Reports, 11(1), 1-17. https://doi.org/10.1038/s41598-021-90528-5
  • Pal, M., Yirgalem, M., Anberber, M., Giro, B., & Dasgupta, R. (2015). Impact of environmental pollution on animal health. Journal of Natural History, 11, 4-21.
  • Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992). Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CH IP28 Protein. Science, 256, 385-387. https://doi.org/10.1126/science.256.5055.385
  • Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., & Sethunathan, N. (2010). The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology, 40(8), 699-821. https://doi.org/10.1080/10643380802471068
  • Safi, H., Saibi, W., Alaoui, M. M., Hmyene, A., Masmoudi, K., Hanin, M., & Brini, F. (2015). A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 89, 64-75. https://doi.org/10.1016/j.plaphy.2015.02.008
  • Salbu, B., Fesenko, S., & Ulanowski, A. (2019). Radioactive particle characteristics, environmental behaviour and potential biological impact. Journal of Environmental Radioactivity, 201, 56-57. https://doi.org/10.1016/j.jenvrad.2019.01.019
  • Salmon, A., Bellis, H., Chable, V., & Manzanares-Dauleux, M. J. (2009). Identification of differentially expressed genes related to aberrant phenotypes in Brassica oleracea var. botrytis. Plant Breeding, 128(6), 631-639. https://doi.org/10.1111/j.1439-0523.2008.01602.x
  • Sofia Duque, A., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Paula, A., Santos, D., Fevereiro, P., & Sousa Araujo, S. de. (2013). Abiotic Stress Responses in Plants: Unraveling the Complexity of Genes and Networks to Survive. In Abiotic Stress - Plant Responses and Applications in Agriculture (pp. 49-101). InTech. https://doi.org/10.5772/52779
  • Song, J., Feng, S. J., Chen, J., Zhao, W. T., & Yang, Z. M. (2017). A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biology, 17(1), 187. https://doi.org/10.1186/s12870-017-1141-0
  • Sorrentino, M. C., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: An evaluation by ISSR markers. Chemosphere, 181, 208-215. https://doi.org/10.1016/j.chemosphere.2017.04.065
  • Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99(5), 1103-1110. https://doi.org/10.1016/j.biortech.2007.02.035
  • United Nations. (2022). World Population Prospects 2022. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101-118. https://doi.org/10.1016/j.jenvman.2019.05.126
  • Wagner, G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173-212. https://doi.org/10.1016/S0065-2113(08)60593-3
  • Wang, C., Xie, W., Chi, F., Hu, W., Mao, G., Sun, D., Li, C., & Sun, Y. (2008). BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Reports, 27(1), 159-169. https://doi.org/10.1007/s00299-007-0434-4
  • Wasi, S., Tabrez, S., & Ahmad, M. (2013). Toxicological effects of major environmental pollutants: An overview. Environmental Monitoring and Assessment, 185(3), 2585-2593. https://doi.org/10.1007/s10661-012-2732-8
  • Williams, B. P., Pignatta, D., Henikoff, S., & Gehring, M. (2015). Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLoS Genetics, 11(3). https://doi.org/10.1371/journal.pgen.1005142
  • Xin, C., Chi, J., Zhao, Y., He, Y., & Guo, J. (2019). Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Science, 284, 16-24. https://doi.org/10.1016/j.plantsci.2019.03.021
  • Xing, L., Gao, L., Chen, Q., Pei, H., Di, Z., Xiao, J., Wang, H., Ma, L., Chen, P., Cao, A., & Wang, X. (2018). Over-expressing a UDP-glucosyltransferase gene (Ta-UGT3) enhances Fusarium Head Blight resistance of wheat. Plant Growth Regulation, 84(3), 561-571. https://doi.org/10.1007/s10725-017-0361-5
  • Xu, C., Wang, M., Zhou, L., Quan, T., & Xia, G. (2013). Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079618
  • Yang, L., Zheng, B., Mao, C., Yi, K., Liu, F., Wu, Y., Tao, Q., & Wu, P. (2003). cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 314(1-2), 141-148. https://doi.org/10.1016/S0378-1119(03)00713-3
  • Zhang, H., & Zhu, J. K. (2012). Active DNA demethylation in plants and animals. Cold Spring Harbor Symposia on Quantitative Biology, 77, 161-173. https://doi.org/10.1101/sqb.2012.77.014936
  • Zheng, H., Zhang, C., Wang, Y., Zhou, W., Chen, J., Yan, X., Li, Z., Huang, S., Li, M., Tang, Y., Li, H., Wang, Q., Zhang, F., & Sun, B. (2021). Overexpression of the glucosyltransferase gene BoaUGT74B1 enhances the accumulation of indole glucosinolates in Chinese kale. Scientia Horticulturae, 288, 110302. https://doi.org/10.1016/j.scienta.2021.110302
  • Zhou, G., Guo, J., Yang, J., & Yang, J. (2018). Effect of fertilizers on Cd accumulation and subcellular distribution of two cosmos species (Cosmos sulphureus and Cosmos bipinnata). International Journal of Phytoremediation, 20(9), 930-938. https://doi.org/10.1080/15226514.2018.1448362
  • Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution, 280, 116965. https://doi.org/10.1016/j.envpol.2021.116965

Comparison of DNA Methylation and Changes in the Expression of Certain Cadmium-induced Genes in Bread Wheat Exposed to Cadmium (Cd) Accumulation in Soil

Yıl 2024, Cilt: 29 Sayı: 3, 830 - 841, 31.12.2024
https://doi.org/10.53433/yyufbed.1497910

Öz

As a result of natural phenomena and anthropogenic activities, cadmium (Cd) accumulation in the soil has been increasing in recent years, and plants are directly exposed to this heavy metal, which is not essential for their life. In our study, UGT-3 (UDP-Glycosyltransferase-3), LTP-4 (Lipid Transfer Protein-4), Plasma Membrane PIP-1 (Plasma Membrane Protein-1) genes were investigated in Triticum aestivum L. plants exposed to Cd stress. It was aimed to determine the changes in expression levels in these genes and their methylation percentages for the first time using Real-Time PCR-based quantitative DNA methylation analysis (qAMP). In this context, DNA and RNA were isolated from the roots and stems of wheat grown by exposure to control, 100, 250 and 500 µM CdCl2 doses. Then, gene expression levels were determined by gene expression analysis with cDNAs obtained from RNA samples. DNA methylation percentages were determined by applying the qAMP technique. As a result, it was observed that the highest methylation percentage in the UGT-3, LTP-4 and PIP-1 genes was at 250 µM concentration in both the stem and the root. While the expression level of the UGT-3 gene was highest at a concentration of 250 µM in the stem, overexpression of the LTP-4 gene was observed at a concentration of 250 µM in the root changes in the methylation rates of UGT-3, LTP-4 and PIP-1 genes were investigated for the first time with qAMP, a new technique used in plants. A significant relationship was found out between the expression levels and methylation status of genes

Proje Numarası

FYL-2020-8329

Kaynakça

  • Ai-Jun, L., Xu-Hong, Z., Mei-Mei, C., & Qing, C. (2007). Oxidative stress and DNA damages induced by cadmium accumulation. Journal of Environmental Sciences, 19, 596-602.https://doi.org/10.1016/S1001-0742(07)60099-0
  • Alshegaihi, R. M., Mfarrej, M. F. B., Saleem, M. H., Parveen, A., Ahmad, K. S., Ali, B., Abeed, A. H. A., Alshehri, D., Alghamdi, S. A., Alghanem, S. M. S., Lone, J. A., Soliman, T. M. A., & Soudy, F. A. (2023). Effective citric acid and EDTA treatments in cadmium stress tolerance in pepper (Capsicum annuum L.) seedlings by regulating specific gene expression. South African Journal of Botany, 159, 367-380. https://doi.org/10.1016/j.sajb.2023.06.024
  • Baetz, U., & Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science, 19(2), 90-98. https://doi.org/10.1016/j.tplants.2013.11.006
  • Billet, K., Houillé, B., Besseau, S., Mélin, C., Oudin, A., Papon, N., Courdavault, V., Clastre, M., Giglioli-Guivarc’h, N., & Lanoue, A. (2018). Mechanical stress rapidly induces E-resveratrol and E-piceatannol biosynthesis in grape canes stored as a freshly-pruned byproduct. Food Chemistry, 240, 1022-1027. https://doi.org/10.1016/j.foodchem.2017.07.105
  • Briffa, J., Sinagra, E., & Blundell, R. (2020). Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), e04691. https://doi.org/10.1016/j.heliyon.2020.e04691
  • Brown, M. B., & Forsythe, A. B. (1974). The Small sample behavior of some statistics which test the equality of several means. Technometrics, 16(1), 129–132. https://doi.org/10.1080/00401706.1974.10489158
  • Erturk, F. A., Agar, G., Arslan, E., Nardemir, G., Aydin, M., & Taspinar, M. S. (2014). Effects of lead sulfate on genetic and epigenetic changes, and endogenous hormone levels in corn (Zea mays L.). Polish Journal of Environmental Studies, 23(6), 1925-1932. https://doi.org/10.15244/pjoes/26109
  • FAO. (2021). Global assessment of soil pollution: Report. In Global assessment of soil pollution: Report. https://doi.org/10.4060/cb4894en
  • Fu, Z., & Xi, S. (2020). The effects of heavy metals on human metabolism. Toxicology Mechanisms and Methods, 30(3), 167-176. https://doi.org/10.1080/15376516.2019.1701594
  • Galati, S., DalCorso, G., Furini, A., Fragni, R., Maccari, C., Mozzoni, P., Giannelli, G., Buschini, A., & Visioli, G. (2023). DNA methylation is enhanced during Cd hyperaccumulation in Noccaea caerulescens ecotype Ganges. Environmental Science and Pollution Research, 30(10), 26178-26190. https://doi.org/10.1007/s11356-022-23983-w
  • Gomès, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y. H., Delrot, S., & Coutos-Thévenot, P. (2003). Nonspecific lipid-transfer protein genes expression in grape (Vitis sp.) Cells in response to fungal elicitor treatments. Molecular Plant-Microbe Interactions, 16(5), 456-464. https://doi.org/10.1094/MPMI.2003.16.5.456
  • Greco, M., Chiappetta, A., Bruno, L., & Bitonti, M. B. (2012). In Posidonia oceanica cadmium induces changes in DNA methylation and chromatin patterning. Journal of Experimental Botany, 63(2), 695-709. https://doi.org/10.1093/jxb/err313
  • Guo, L., Zi, Y. W., Lin, H., Wei, E. C., Chen, J., Liu, M., Zhang, L. C., Li, J. Q., & Gu, H. (2006). Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research, 16(3), 277-286. https://doi.org/10.1038/sj.cr.7310035
  • Hoagland, D. R., & Arnon, D. I. (1950). The water–culture method for growing plants without soil. University of California, College of Agriculture, Agricultural Experiment Station, Berkeley, California, USA. Circular No. 347, 32p.
  • Khan, M. I. R., Chopra, P., Chhillar, H., Ahanger, M. A., Hussain, S. J., & Maheshwari, C. (2021). Regulatory hubs and strategies for improving heavy metal tolerance in plants: Chemical messengers, omics and genetic engineering. Plant Physiology and Biochemistry, 164, 260-278. https://doi.org/10.1016/j.plaphy.2021.05.006
  • Kosová, K., Vítámvás, P., & Prášil, I. T. (2007). The role of dehydrins in plant response to cold. Biologia Plantarum, 51(4), 601-617. https://doi.org/10.1007/s10535-007-0133-6
  • Lei, M., Zhang, H., Julian, R., Tang, K., Xie, S., & Zhu, J. K. (2015). Regulatory link between DNA methylation and active demethylation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 112(11), 3553-3557. https://doi.org/10.1073/pnas.1502279112
  • Leonardo, B., Emanuela, T., Letizia, M. M., Antonella, M., Marco, M., Fabrizio, A., Beatrice, B. M., & Adriana, C. (2021). Cadmium affects cell niches maintenance in Arabidopsis thaliana post-embryonic shoot and root apical meristem by altering the expression of WUS/WOX homolog genes and cytokinin accumulation. Plant Physiology and Biochemistry, 167, 785-794. https://doi.org/10.1016/j.plaphy.2021.09.014
  • Li, Y., Bi, Y., Mi, W., Xie, S., & Ji, L. (2021). Land-use change caused by anthropogenic activities increase fluoride and arsenic pollution in groundwater and human health risk. Journal of Hazardous Materials, 406, 1-9. https://doi.org/10.1016/j.jhazmat.2020.124337
  • Liu, D. (2021). Value evaluation system of ecological environment damage compensation caused by air pollution. Environmental Technology and Innovation, 22, 101473. https://doi.org/10.1016/j.eti.2021.101473
  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4), 402-408. https://doi.org/10.1006/meth.2001.1262
  • Luo, M., Zhou, C., Ma, T., Guo, W., Percival, L., Baeyens, W., & Gao, Y. (2022). Anthropogenic activities influence the mobilization of trace metals and oxyanions in coastal sediment porewaters. Science of the Total Environment, 839, 156353. https://doi.org/10.1016/j.scitotenv.2022.156353
  • Mishra, S., Lin, Z., Pang, S., Zhang, Y., Bhatt, P., & Chen, S. (2021). Biosurfactant is a powerful tool for the bioremediation of heavy metals from contaminated soils. Journal of Hazardous Materials, 418, 126253. https://doi.org/10.1016/j.jhazmat.2021.126253
  • Pacenza, M., Muto, A., Chiappetta, A., Mariotti, L., Talarico, E., Picciarelli, P., Picardi, E., Bruno, L., & Bitonti, M. B. (2021). In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Scientific Reports, 11(1), 1-17. https://doi.org/10.1038/s41598-021-90528-5
  • Pal, M., Yirgalem, M., Anberber, M., Giro, B., & Dasgupta, R. (2015). Impact of environmental pollution on animal health. Journal of Natural History, 11, 4-21.
  • Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992). Appearance of Water Channels in Xenopus Oocytes Expressing Red Cell CH IP28 Protein. Science, 256, 385-387. https://doi.org/10.1126/science.256.5055.385
  • Ramakrishnan, B., Megharaj, M., Venkateswarlu, K., Naidu, R., & Sethunathan, N. (2010). The impacts of environmental pollutants on microalgae and cyanobacteria. Critical Reviews in Environmental Science and Technology, 40(8), 699-821. https://doi.org/10.1080/10643380802471068
  • Safi, H., Saibi, W., Alaoui, M. M., Hmyene, A., Masmoudi, K., Hanin, M., & Brini, F. (2015). A wheat lipid transfer protein (TdLTP4) promotes tolerance to abiotic and biotic stress in Arabidopsis thaliana. Plant Physiology and Biochemistry, 89, 64-75. https://doi.org/10.1016/j.plaphy.2015.02.008
  • Salbu, B., Fesenko, S., & Ulanowski, A. (2019). Radioactive particle characteristics, environmental behaviour and potential biological impact. Journal of Environmental Radioactivity, 201, 56-57. https://doi.org/10.1016/j.jenvrad.2019.01.019
  • Salmon, A., Bellis, H., Chable, V., & Manzanares-Dauleux, M. J. (2009). Identification of differentially expressed genes related to aberrant phenotypes in Brassica oleracea var. botrytis. Plant Breeding, 128(6), 631-639. https://doi.org/10.1111/j.1439-0523.2008.01602.x
  • Sofia Duque, A., de Almeida, A. M., da Silva, A. B., da Silva, J. M., Paula, A., Santos, D., Fevereiro, P., & Sousa Araujo, S. de. (2013). Abiotic Stress Responses in Plants: Unraveling the Complexity of Genes and Networks to Survive. In Abiotic Stress - Plant Responses and Applications in Agriculture (pp. 49-101). InTech. https://doi.org/10.5772/52779
  • Song, J., Feng, S. J., Chen, J., Zhao, W. T., & Yang, Z. M. (2017). A cadmium stress-responsive gene AtFC1 confers plant tolerance to cadmium toxicity. BMC Plant Biology, 17(1), 187. https://doi.org/10.1186/s12870-017-1141-0
  • Sorrentino, M. C., Capozzi, F., Giordano, S., & Spagnuolo, V. (2017). Genotoxic effect of Pb and Cd on in vitro cultures of Sphagnum palustre: An evaluation by ISSR markers. Chemosphere, 181, 208-215. https://doi.org/10.1016/j.chemosphere.2017.04.065
  • Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99(5), 1103-1110. https://doi.org/10.1016/j.biortech.2007.02.035
  • United Nations. (2022). World Population Prospects 2022. https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/wpp2022_summary_of_results.pdf
  • Vareda, J. P., Valente, A. J. M., & Durães, L. (2019). Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: A review. Journal of Environmental Management, 246, 101-118. https://doi.org/10.1016/j.jenvman.2019.05.126
  • Wagner, G. J. (1993). Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy, 51, 173-212. https://doi.org/10.1016/S0065-2113(08)60593-3
  • Wang, C., Xie, W., Chi, F., Hu, W., Mao, G., Sun, D., Li, C., & Sun, Y. (2008). BcLTP, a novel lipid transfer protein in Brassica chinensis, may secrete and combine extracellular CaM. Plant Cell Reports, 27(1), 159-169. https://doi.org/10.1007/s00299-007-0434-4
  • Wasi, S., Tabrez, S., & Ahmad, M. (2013). Toxicological effects of major environmental pollutants: An overview. Environmental Monitoring and Assessment, 185(3), 2585-2593. https://doi.org/10.1007/s10661-012-2732-8
  • Williams, B. P., Pignatta, D., Henikoff, S., & Gehring, M. (2015). Methylation-Sensitive Expression of a DNA Demethylase Gene Serves As an Epigenetic Rheostat. PLoS Genetics, 11(3). https://doi.org/10.1371/journal.pgen.1005142
  • Xin, C., Chi, J., Zhao, Y., He, Y., & Guo, J. (2019). Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Science, 284, 16-24. https://doi.org/10.1016/j.plantsci.2019.03.021
  • Xing, L., Gao, L., Chen, Q., Pei, H., Di, Z., Xiao, J., Wang, H., Ma, L., Chen, P., Cao, A., & Wang, X. (2018). Over-expressing a UDP-glucosyltransferase gene (Ta-UGT3) enhances Fusarium Head Blight resistance of wheat. Plant Growth Regulation, 84(3), 561-571. https://doi.org/10.1007/s10725-017-0361-5
  • Xu, C., Wang, M., Zhou, L., Quan, T., & Xia, G. (2013). Heterologous expression of the wheat aquaporin gene TaTIP2;2 compromises the abiotic stress tolerance of Arabidopsis thaliana. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0079618
  • Yang, L., Zheng, B., Mao, C., Yi, K., Liu, F., Wu, Y., Tao, Q., & Wu, P. (2003). cDNA-AFLP analysis of inducible gene expression in rice seminal root tips under a water deficit. Gene, 314(1-2), 141-148. https://doi.org/10.1016/S0378-1119(03)00713-3
  • Zhang, H., & Zhu, J. K. (2012). Active DNA demethylation in plants and animals. Cold Spring Harbor Symposia on Quantitative Biology, 77, 161-173. https://doi.org/10.1101/sqb.2012.77.014936
  • Zheng, H., Zhang, C., Wang, Y., Zhou, W., Chen, J., Yan, X., Li, Z., Huang, S., Li, M., Tang, Y., Li, H., Wang, Q., Zhang, F., & Sun, B. (2021). Overexpression of the glucosyltransferase gene BoaUGT74B1 enhances the accumulation of indole glucosinolates in Chinese kale. Scientia Horticulturae, 288, 110302. https://doi.org/10.1016/j.scienta.2021.110302
  • Zhou, G., Guo, J., Yang, J., & Yang, J. (2018). Effect of fertilizers on Cd accumulation and subcellular distribution of two cosmos species (Cosmos sulphureus and Cosmos bipinnata). International Journal of Phytoremediation, 20(9), 930-938. https://doi.org/10.1080/15226514.2018.1448362
  • Zou, M., Zhou, S., Zhou, Y., Jia, Z., Guo, T., & Wang, J. (2021). Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. Environmental Pollution, 280, 116965. https://doi.org/10.1016/j.envpol.2021.116965
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Epigenetik
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Ilknur Colak 0000-0002-3500-260X

Gökçe Karadayı 0000-0003-2044-9609

Proje Numarası FYL-2020-8329
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Haziran 2024
Kabul Tarihi 23 Eylül 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 3

Kaynak Göster

APA Colak, I., & Karadayı, G. (2024). Comparison of DNA Methylation and Changes in the Expression of Certain Cadmium-induced Genes in Bread Wheat Exposed to Cadmium (Cd) Accumulation in Soil. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 830-841. https://doi.org/10.53433/yyufbed.1497910