Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Resin Additive Polyurethane Composite to Increase Flame Resistance of Insulation Material Polyurethane Foam

Yıl 2024, Cilt: 29 Sayı: 3, 955 - 966, 31.12.2024
https://doi.org/10.53433/yyufbed.1502963

Öz

Rigid polyurethane foams (RPUF) are among the most popular, energy-efficient, versatile insulation materials. RPUF is used as an efficient and comfortable insulation material, especially in buildings, significantly reducing energy costs. The flammability of rigid polyurethane foams severely restricts their application areas. Limited application areas can be eliminated when the char yield and flame resistances are increased. Resorcinol-formaldehyde (RF) resin stands out with its high char yield and flame resistance. This study included RF resin with high char yield and very low flammability in the preparation of rigid polyurethane foam with low char yield and flame resistance. Firstly, the RF resin was synthesised. In the second stage, polyol mixture and polyisocyanate were combined and mixed to prepare RPUFs. In the last stage, the RF resin was mixed with a polyol mixture, polyisocyanate was mixed and rigid polyurethane-resorcinol-formaldehyde composites were prepared. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), apparent density and vertical burning test were performed for the prepared composite foam samples. The combustion resistance of RPUF increased with the increase in RF content by weight. While resin-free polyurethane foam burns completely in the first 10 seconds, the linear burning rate of foam containing 20% RF resin (RF20-RPUF) is 91.33% lower than that of resin-free polyurethane foam.

Proje Numarası

1919B012208035

Kaynakça

  • Aghabararpour, M., Mohsenpour, M., Motahari, S., & Abolghasemi, A. (2018). Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels. Journal of Non-Crystalline Solid, 481, 548–555. https://doi.org/10.1016/j.jnoncrysol.2017.11.048
  • Agrawal, A., Kaur, R., & Walia, R. S. (2019). Investigation on flammability of rigid polyurethane foam‐mineral fillers composite. Fire and Materials, 43(8), 917-927. https://doi.org/10.1002/fam.2751
  • Attia, S. M., Abdelfatah, M. S., & Mossad, M. M. (2017). Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver. Journal of Physics: Conference Series, 869, 012036. https://doi.org/10.1088/1742-6596/869/1/012036
  • Badhe, Y., & Kandasubramanian, B. (2014). Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems for re-entry vehicles. RSC Advances, 4, 28956. https://doi.org/10.1039/C4RA03316G
  • Bryśkiewicz, A., Zieleniewska, M., Przyjemska, K., Chojnacki, P., & Ryszkowska, J. (2016). Modification of flexible polyurethane foams by the addition of natural origin fillers. Polymer Degradation and Stability, 132, 32–40. https://doi.org/10.1016/j.polymdegradstab.2016.05.002
  • Burgaz, E., & Kendirlioglu, C. (2019). Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polymer Testing, 77, 105930. https://doi.org/10.1016/j.polymertesting.2019.105930
  • Daniel, A., Gudivada, G., Srikanth, I., & Kandasubramanian, B. (2019). Effect of zirconium diboride incorporation on thermal stability and ablation characteristics of carbon fiber reinforced resorcinol formaldehyde composites. Industrial & Engineering Chemistry Research, 58, 18623-18634. https://doi.org/10.1021/acs.iecr.9b03469
  • Daniel, A., Srikanth, I., & Kandasubramanian, B. (2020). Effect of boron nitride addition on ablation characteristics of carbon fiber reinforced resorcinol formaldehyde composites. Industrial & Engineering Chemistry Research, 59 (43), 19299–19311. https://doi.org/10.1021/acs.iecr.0c03818
  • Faris, A. H., Rahim, A. A., Ibrahim, M. N. M., Hussin, M. H., Alkurdi, A. M. & Salehabadi, A. (2017). Investigation of oil palm based kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives, International Journal of Adhesion and Adhesives, 74, 115–122. https://doi.org/10.1016/j.ijadhadh.2017.01.006
  • Fathy, N. A., Rizk, M. S. & Awad, R. M. (2016). Pore structure and adsorption properties of carbon xerogels derived from carbonization of tannic acid-resorcinol-formaldehyde resin. Journal of Analytical and Applied Pyrolysis, 119, 60–68. https://doi.org/10.1016/j.jaap.2016.03.017
  • Gama, N. V., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane foams: past, present and future. Materials, 11(10), 1841. https://doi.org/10.3390/ma11101841
  • Gore, P., Khraisheh, M. & Kandasubramanian, B. (2018). Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environmental Science and Pollution Research, 25, 11729–11745. https://doi.org/10.1007/s11356-018-1304-z
  • Gupta, R., & Kandasubramanian, B. (2015). Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat shields. RSC Advances, 5(12), 8757-8769. https://doi.org/10.1039/C4RA10905H
  • Gyan, D. S. & Kandasubramanian, B. (2016). Ionic liquid microseeded WC/RF ablative composite for heat shielding. RSC Advances, 6, 65152–65161. https://doi.org/10.1039/C6RA09285C
  • Higashimoto, S., Sasakura, Y., Tokunaga, R., Takahashi, M., Kobayashi, H., Jiang, J. & Sakata, Y. (2021). Synthesis, characterization and photocatalytic properties of robust resorcinol-formaldehyde polymer fine particles. Applied Catalysis A: General, 623, 118240. https://doi.org/10.1016/j.apcata.2021.118240
  • Hu, Y., Geng, W., You, H., Wang, Y., & Loy, D. A. (2014). Modification of a phenolic resin with epoxy- and methacrylate-functionalized silica sols to improve the ablation resistance of their glass fiber-reinforced composites. Polymers, 6, 105–113. https://doi.org/10.3390/polym6010105
  • Huang, G., & Wang, P. (2017). Effects of preparation conditions on properties of rigid polyurethane foam composites based on liquefied bagasse and jute fibre. Polymer Testing, 60, 266–273. https://doi.org/10.1016/j.polymertesting.2017.04.006
  • Kumar, V., Singh, S., & Kandasubramanian, B. (2017). Thermal ablation and laser shielding characteristics of Ionic liquid-microseeded functionalized nanoclay/resorcinol formaldehyde nanocomposites for armor protection. Polymer-Plastics Technology and Engineering, 56(14), 1542-1555. https://doi.org/10.1080/03602559.2017.1280684
  • Lee, S. M., Park, I. K., Kim, Y. S., Kim, H. J., Moon, H., Mueller, S., & Jeong, Y. I. (2016). Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomaterials Research, 20, (1), 15. https://doi.org/10.1186/s40824-016-0063-5
  • Liang, C., Sha, G. & Guo, S. (2000). Resorcinol–formaldehyde aerogels prepared by supercritical acetone drying. Journal of Non-Crystalline Solids, 271, 167–170. https://doi.org/10.1016/S0022-3093(00)00108-3
  • Qiu, Q., Yang, X., Zhang, P., Wang, D., Lu, M., Wang, Z., … & Li, J. (2021). Effect of fiber surface treatment on the structure and properties of rigid bagasse fibers/polyurethane composite foams. Polymer Composites, 42, 2766–2773. https://doi.org/10.1002/pc.26011
  • Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J., & Piszczek, K. (2012). Preparation of rigid polyurethane foams with powder filler. Journal of Polymer Engineering, 32, 71–80. https://doi.org/10.1515/polyeng-2011-0108
  • Tang, G., Zhou, L., Zhang, P., Han, Z., Chen, D., Liu, X., & Zhou, Z. (2019). Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. Journal of Thermal Analysis and Calorimetry, 140, 625–636. https://doi.org/10.1007/s10973-019-08897-z
  • Vini, R., Thenmozhi, S., & Murugavel, S. C. (2019). Synthesis, characterization and thermal degradation kinetics of azomethine-based halogen-free flame-retardant polyphosphonates. High Performance Polymers, 31(1), 86-96. https://doi.org/10.1177/0954008317752073
  • Wang, K., Morgan, A.B., & Benin, V. (2017). Preparation and studies of new phosphorus‐containing diols as potential flame retardants. Fire and Materials. 41(8), 973-982. https://doi.org/10.1002/fam.2432
  • Wei, Q., Oribayo, O., Feng, X., Rempel, G. L., & Pan, Q. (2018). Synthesis of Polyurethane Foams Loaded with TiO2 Nanoparticles and Their Modification for Enhanced Performance in Oil Spill Cleanup. Industrial & Engineering Chemistry Research, 57, 8918–8926. https://doi.org/10.1021/acs.iecr.8b01037
  • Yan, D., Xu, L., Chen, C., Tang, J., Ji, X., & Li, Z. (2012). Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polymer International, 61, 1107–1114. https://doi.org/10.1002/pi.4188
  • Zhao, X., Zhang, M., Sun, X., Li, X. & Li, J. G. (2019). Comprehensive understanding of the formation process on monodisperse resorcinol-formaldehyde polymer and carbon spheres and their use as substrates for surface-enhanced raman spectroscopy. Applied Surface Science, 506, 144591. https://doi.org/10.1016/j.apsusc.2019.144591
  • Zheng, X., Wang, G., & Xu, W. (2014). Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability, 101, 32–39. https://doi.org/10.1016/j.polymdegradstab.2014.01.015
  • Zorba, T., Papadopoulou, E., Hatjiissaak, A., Paraskevopoulos, K.M., & Chrissafis, K. (2008). Urea-formaldehyde resins characterized by thermal analysis and FTIR method. Journal of Thermal Analysis and Calorimetry, 92, 29–33. https://doi.org/10.1007/s10973-007-8731-2

Yalıtım Malzemesi Poliüretan Köpüğün Alev Direncini Arttıracak Reçine Katkılı Poliüretan Kompozit Sentezi

Yıl 2024, Cilt: 29 Sayı: 3, 955 - 966, 31.12.2024
https://doi.org/10.53433/yyufbed.1502963

Öz

Rijit poliüretan köpükler (RPUF) en popüler, enerji verimi yüksek ve çok yönlü yalıtım malzemeleri arasında yer almaktadır. RPUF, özellikle binalarda verimli ve konforlu yalıtım malzemesi olarak kullanımının yanısıra enerji maliyetlerini de önemli ölçüde azaltmaktadır. RPUF’ların, alevlenebilir olması uygulama alanlarını ciddi şekilde kısıtlamaktadır. Kömür verimi ve alev dirençleri arttırıldığında kısıtlı uygulama alanları da ortadan kaldırılabilir. Resorsinol-formaldehit (RF) reçinesi yüksek kömür verimi ve alev direnci ile ön plana çıkmaktadır. Bu çalışmada da düşük kömür verimli ve alev dirençli RPUF’un hazırlanma aşamasında, yüksek kömür verimine ve oldukça düşük alevlenebilirliğe sahip RF reçinesi dahil edilmiştir. İlk olarak RF reçinesi sentezlenmiştir. İkinci aşamada poliol karışımı ve poliizosiyanat birleştirilerek karıştırılıp RPUF’lar hazırlanmıştır. Son aşamada poliol karışımı ve poliizosiyanat ile karıştırılmış RF reçinesi birleştirilerek karıştırılıp rijit poliüretan-resorsinol-formaldehit kompozitleri hazırlanmıştır. Hazırlanan kompozit köpük numuneleri için termogravimetrik analiz (TGA), Fourier dönüşümlü kızılötesi spektroskopisi (FT-IR), Taramalı elektron mikroskobu (SEM), Görünür yoğunluk ve dikey yanma testi uygulanmıştır. RPUF’larda ağırlıkça RF içeriğindeki artışla birlikte köpüklerin yanma dayanımı artmıştır. Reçinesiz poliüretan köpüğü ilk 10 saniyede tamamen yanarken, %20 RF reçinesi içeren köpüğün (RF20-RPUF) doğrusal yanma hızı reçinesiz poliüretan köpüğe göre %91.33 daha düşüktür.

Destekleyen Kurum

Tübitak

Proje Numarası

1919B012208035

Teşekkür

Bu çalışma TÜBİTAK tarafından 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı kapsamında 1919B012208035 numaralı proje ile desteklenmiştir.

Kaynakça

  • Aghabararpour, M., Mohsenpour, M., Motahari, S., & Abolghasemi, A. (2018). Mechanical properties of isocyanate crosslinked resorcinol formaldehyde aerogels. Journal of Non-Crystalline Solid, 481, 548–555. https://doi.org/10.1016/j.jnoncrysol.2017.11.048
  • Agrawal, A., Kaur, R., & Walia, R. S. (2019). Investigation on flammability of rigid polyurethane foam‐mineral fillers composite. Fire and Materials, 43(8), 917-927. https://doi.org/10.1002/fam.2751
  • Attia, S. M., Abdelfatah, M. S., & Mossad, M. M. (2017). Characterization of pure and composite resorcinol formaldehyde aerogels doped with silver. Journal of Physics: Conference Series, 869, 012036. https://doi.org/10.1088/1742-6596/869/1/012036
  • Badhe, Y., & Kandasubramanian, B. (2014). Novel hybrid ablative composites of resorcinol formaldehyde as thermal protection systems for re-entry vehicles. RSC Advances, 4, 28956. https://doi.org/10.1039/C4RA03316G
  • Bryśkiewicz, A., Zieleniewska, M., Przyjemska, K., Chojnacki, P., & Ryszkowska, J. (2016). Modification of flexible polyurethane foams by the addition of natural origin fillers. Polymer Degradation and Stability, 132, 32–40. https://doi.org/10.1016/j.polymdegradstab.2016.05.002
  • Burgaz, E., & Kendirlioglu, C. (2019). Thermomechanical behavior and thermal stability of polyurethane rigid nanocomposite foams containing binary nanoparticle mixtures. Polymer Testing, 77, 105930. https://doi.org/10.1016/j.polymertesting.2019.105930
  • Daniel, A., Gudivada, G., Srikanth, I., & Kandasubramanian, B. (2019). Effect of zirconium diboride incorporation on thermal stability and ablation characteristics of carbon fiber reinforced resorcinol formaldehyde composites. Industrial & Engineering Chemistry Research, 58, 18623-18634. https://doi.org/10.1021/acs.iecr.9b03469
  • Daniel, A., Srikanth, I., & Kandasubramanian, B. (2020). Effect of boron nitride addition on ablation characteristics of carbon fiber reinforced resorcinol formaldehyde composites. Industrial & Engineering Chemistry Research, 59 (43), 19299–19311. https://doi.org/10.1021/acs.iecr.0c03818
  • Faris, A. H., Rahim, A. A., Ibrahim, M. N. M., Hussin, M. H., Alkurdi, A. M. & Salehabadi, A. (2017). Investigation of oil palm based kraft and auto-catalyzed organosolv lignin susceptibility as a green wood adhesives, International Journal of Adhesion and Adhesives, 74, 115–122. https://doi.org/10.1016/j.ijadhadh.2017.01.006
  • Fathy, N. A., Rizk, M. S. & Awad, R. M. (2016). Pore structure and adsorption properties of carbon xerogels derived from carbonization of tannic acid-resorcinol-formaldehyde resin. Journal of Analytical and Applied Pyrolysis, 119, 60–68. https://doi.org/10.1016/j.jaap.2016.03.017
  • Gama, N. V., Ferreira, A., & Barros-Timmons, A. (2018). Polyurethane foams: past, present and future. Materials, 11(10), 1841. https://doi.org/10.3390/ma11101841
  • Gore, P., Khraisheh, M. & Kandasubramanian, B. (2018). Nanofibers of resorcinol–formaldehyde for effective adsorption of As (III) ions from mimicked effluents. Environmental Science and Pollution Research, 25, 11729–11745. https://doi.org/10.1007/s11356-018-1304-z
  • Gupta, R., & Kandasubramanian, B. (2015). Hybrid caged nanostructure ablative composites of octaphenyl-POSS/RF as heat shields. RSC Advances, 5(12), 8757-8769. https://doi.org/10.1039/C4RA10905H
  • Gyan, D. S. & Kandasubramanian, B. (2016). Ionic liquid microseeded WC/RF ablative composite for heat shielding. RSC Advances, 6, 65152–65161. https://doi.org/10.1039/C6RA09285C
  • Higashimoto, S., Sasakura, Y., Tokunaga, R., Takahashi, M., Kobayashi, H., Jiang, J. & Sakata, Y. (2021). Synthesis, characterization and photocatalytic properties of robust resorcinol-formaldehyde polymer fine particles. Applied Catalysis A: General, 623, 118240. https://doi.org/10.1016/j.apcata.2021.118240
  • Hu, Y., Geng, W., You, H., Wang, Y., & Loy, D. A. (2014). Modification of a phenolic resin with epoxy- and methacrylate-functionalized silica sols to improve the ablation resistance of their glass fiber-reinforced composites. Polymers, 6, 105–113. https://doi.org/10.3390/polym6010105
  • Huang, G., & Wang, P. (2017). Effects of preparation conditions on properties of rigid polyurethane foam composites based on liquefied bagasse and jute fibre. Polymer Testing, 60, 266–273. https://doi.org/10.1016/j.polymertesting.2017.04.006
  • Kumar, V., Singh, S., & Kandasubramanian, B. (2017). Thermal ablation and laser shielding characteristics of Ionic liquid-microseeded functionalized nanoclay/resorcinol formaldehyde nanocomposites for armor protection. Polymer-Plastics Technology and Engineering, 56(14), 1542-1555. https://doi.org/10.1080/03602559.2017.1280684
  • Lee, S. M., Park, I. K., Kim, Y. S., Kim, H. J., Moon, H., Mueller, S., & Jeong, Y. I. (2016). Physical, morphological, and wound healing properties of a polyurethane foam-film dressing. Biomaterials Research, 20, (1), 15. https://doi.org/10.1186/s40824-016-0063-5
  • Liang, C., Sha, G. & Guo, S. (2000). Resorcinol–formaldehyde aerogels prepared by supercritical acetone drying. Journal of Non-Crystalline Solids, 271, 167–170. https://doi.org/10.1016/S0022-3093(00)00108-3
  • Qiu, Q., Yang, X., Zhang, P., Wang, D., Lu, M., Wang, Z., … & Li, J. (2021). Effect of fiber surface treatment on the structure and properties of rigid bagasse fibers/polyurethane composite foams. Polymer Composites, 42, 2766–2773. https://doi.org/10.1002/pc.26011
  • Paciorek-Sadowska, J., Czupryński, B., Liszkowska, J., & Piszczek, K. (2012). Preparation of rigid polyurethane foams with powder filler. Journal of Polymer Engineering, 32, 71–80. https://doi.org/10.1515/polyeng-2011-0108
  • Tang, G., Zhou, L., Zhang, P., Han, Z., Chen, D., Liu, X., & Zhou, Z. (2019). Effect of aluminum diethylphosphinate on flame retardant and thermal properties of rigid polyurethane foam composites. Journal of Thermal Analysis and Calorimetry, 140, 625–636. https://doi.org/10.1007/s10973-019-08897-z
  • Vini, R., Thenmozhi, S., & Murugavel, S. C. (2019). Synthesis, characterization and thermal degradation kinetics of azomethine-based halogen-free flame-retardant polyphosphonates. High Performance Polymers, 31(1), 86-96. https://doi.org/10.1177/0954008317752073
  • Wang, K., Morgan, A.B., & Benin, V. (2017). Preparation and studies of new phosphorus‐containing diols as potential flame retardants. Fire and Materials. 41(8), 973-982. https://doi.org/10.1002/fam.2432
  • Wei, Q., Oribayo, O., Feng, X., Rempel, G. L., & Pan, Q. (2018). Synthesis of Polyurethane Foams Loaded with TiO2 Nanoparticles and Their Modification for Enhanced Performance in Oil Spill Cleanup. Industrial & Engineering Chemistry Research, 57, 8918–8926. https://doi.org/10.1021/acs.iecr.8b01037
  • Yan, D., Xu, L., Chen, C., Tang, J., Ji, X., & Li, Z. (2012). Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polymer International, 61, 1107–1114. https://doi.org/10.1002/pi.4188
  • Zhao, X., Zhang, M., Sun, X., Li, X. & Li, J. G. (2019). Comprehensive understanding of the formation process on monodisperse resorcinol-formaldehyde polymer and carbon spheres and their use as substrates for surface-enhanced raman spectroscopy. Applied Surface Science, 506, 144591. https://doi.org/10.1016/j.apsusc.2019.144591
  • Zheng, X., Wang, G., & Xu, W. (2014). Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam. Polymer Degradation and Stability, 101, 32–39. https://doi.org/10.1016/j.polymdegradstab.2014.01.015
  • Zorba, T., Papadopoulou, E., Hatjiissaak, A., Paraskevopoulos, K.M., & Chrissafis, K. (2008). Urea-formaldehyde resins characterized by thermal analysis and FTIR method. Journal of Thermal Analysis and Calorimetry, 92, 29–33. https://doi.org/10.1007/s10973-007-8731-2
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Malzeme Bilimi ve Teknolojileri, Polimer Bilimi ve Teknolojileri
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Sinem Karamahmutoğlu 0009-0006-8383-014X

Merve Kozan 0009-0006-5855-0736

Sefa Aras 0000-0001-8085-234X

Derya Ünlü 0000-0001-5240-5876

Proje Numarası 1919B012208035
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 21 Haziran 2024
Kabul Tarihi 28 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 3

Kaynak Göster

APA Karamahmutoğlu, S., Kozan, M., Aras, S., Ünlü, D. (2024). Yalıtım Malzemesi Poliüretan Köpüğün Alev Direncini Arttıracak Reçine Katkılı Poliüretan Kompozit Sentezi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 955-966. https://doi.org/10.53433/yyufbed.1502963