Araştırma Makalesi
BibTex RIS Kaynak Göster

Cinnamomum verum Ekstraktı Kullanılarak Farklı Çinko Tuzlarından Elde Edilen Çinko Oksit Nanopartiküllerinin Biyojenik Sentezi, Karakterizasyonu ve Metilen Mavisinin Bozunması

Yıl 2024, Cilt: 29 Sayı: 3, 939 - 954, 31.12.2024
https://doi.org/10.53433/yyufbed.1518986

Öz

Bu çalışmada çinko asetat, çinko nitrat, çinko sülfat ve çinko klorür gibi farklı çinko tuzlarından Cinnamomum verum ekstraktı kullanılarak çinko oksit nanopartikülleri (ZnONP'ler) sentezlendi. Sentezlenen ZnONP'ler, X-ışını kırınımı (XRD), dinamik ışık saçılımı (DLS), Fourier dönüşümü kızılötesi spektroskopisi (FT-IR) ve transmisyon elektron mikroskobu (TEM) kullanılarak karakterize edildi. Ayrıca ZnO nanopartiküllerinin fotokatalitik aktiviteleri güneş ışığının varlığında ve yokluğunda test edildi. Tarçın ekstraktı DPPH radikal temizleme aktivitesi ve toplam fenolik içerik (TPC) açısından analiz edildi. Çalışma sonuçları, kullanılan çinko tuzunun türünün ZnO nanopartiküllerinin morfolojisini, boyutunu ve kristal yapısını önemli ölçüde etkilediğini gösterdi. Çinko asetattan (ZnONPsA) sentezlenen ZnONP'ler her iki durumda da üstün fotokatalitik aktivite gösterdi.

Kaynakça

  • Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc Oxide nanoparticles as potential delivery carrier: Green synthesis by aspergillus niger endophytic fungus, characterization, and ın vitro/ın vivo antibacterial activity. Pharmaceuticals, 15(9). https://doi.org/10.3390/ph15091057
  • Abdullah, J. A. A., Guerrero, A., & Romero, A. (2024). efficient and sustainable synthesis of zinc salt-dependent polycrystal zinc oxide nanoparticles: comprehensive assessment of physicochemical and functional properties. Applied Sciences (Switzerland), 14(5). https://doi.org/10.3390/app14051815
  • Abeysekera, W. P. K. M., Premakumara, G. A. S., & Ratnasooriya, W. D. (2013). In vitro antioxidant properties of leaf and bark extracts of ceylon cinnamon (cinnamomum zeylanicum blume). Tropical Agricultural Research, 24(2), 128-138.
  • Aigbe, U. O., & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13(January), 100401. https://doi.org/10.1016/j.hazadv.2024.100401
  • Aydoğdu, B., Aytar, M., & Ünal, İ. (2024). Comparison of characteristics and antimicrobial activity of synthesized zinc oxide and magnetite ıron oxide nanoparticles using four different plant extracts. Cumhuriyet Science Journal, 45(1), 20–28. https://doi.org/10.17776/csj.1370606
  • Baratta, G. A., Domingo, M., Ferini, G., Leto, G., Palumbo, M. E., Satorre, M. A., & Strazzulla, G. (2003). Ion irradiation of CH4-containing icy mixtures. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 209(August), 283–287. https://doi.org/10.1016/S0168-583X(02)02010-4
  • Bhandari, K. P., Sapkota, D. R., Jamarkattel, M. K., Stillion, Q., & Collins, R. W. (2023). Zinc oxide nanoparticles—solution-based synthesis and characterizations. Nanomaterials, 13(11). https://doi.org/10.3390/nano13111795
  • Błaszczyk, N., Rosiak, A., & Kałużna-Czaplińska, J. (2021). The potential role of cinnamon in human health. Forests, 12(5), 1–17. https://doi.org/10.3390/f12050648
  • Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
  • Das, G., Gonçalves, S., Basilio Heredia, J., Romano, A., Jiménez-Ortega, L. A., Gutiérrez-Grijalva, E. P., Shin, H. S., & Patra, J. K. (2022). Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. Journal of Functional Foods, 97(January 2023). https://doi.org/10.1016/j.jff.2022.105045
  • Fahmy, M. D., Jazayeri, H. E., Razavi, M., Hashemi, M., Omidi, M., Farahani, M., Salahinejad, E., Yadegari, A., Pitcher, S., & Tayebi, L. (2016). Biomedical Applications of Intelligent Nanomaterials. Intelligent Nanomaterials: Second Edition, 13(10), 199–245. https://doi.org/10.1002/9781119242628.ch8
  • Fito, J., Abewaa, M., Mengistu, A., Angassa, K., Ambaye, A. D., Moyo, W., & Nkambule, T. (2023). Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-32341-w
  • Gaim, Y. T., Tesfamariam, G. M., Nigussie, G. Y., & Ashebir, M. E. (2019). Synthesis, characterization and photocatalytic activity of n-doped cu2o/zno nanocomposite on degradation of methyl red. Journal of Composites Science, 3(4). https://doi.org/10.3390/jcs3040093
  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406.
  • Kazemi, S., Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: from production to application. Materials Today Sustainability, 24, 100500. https://doi.org/10.1016/j.mtsust.2023.100500
  • Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Kulkarni, D., Sherkar, R., Shirsathe, C., Sonwane, R., Varpe, N., Shelke, S., More, M. P., Pardeshi, S. R., Dhaneshwar, G., Junnuthula, V., & Dyawanapelly, S. (2023). Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 11(May), 1–26. https://doi.org/10.3389/fbioe.2023.1159193
  • Leroy, P., Tournassat, C., & Bizi, M. (2011). Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. Journal of Colloid and Interface Science, 356(2), 442–453. https://doi.org/10.1016/j.jcis.2011.01.016
  • Libbey, L. M., & Walradt, J. P. (1968). 3,5-di-Tert-butyl-4-hydroxytoluene (BHT) as an artifact from diethyl ether. Lipids, 3(6), 561. https://doi.org/10.1007/BF02530903
  • Marin-Flores, C. A., Rodríguez-Nava, O., García-Hernández, M., Ruiz-Guerrero, R., Juárez-López, F., & Morales-Ramírez, A. de J. (2021). Free-radical scavenging activity properties of ZnO sub-micron particles: size effect and kinetics. Journal of Materials Research and Technology, 13, 1665–1675. https://doi.org/10.1016/j.jmrt.2021.05.050
  • Mayekar, J. (2014). Role of salt precursor in the synthesis of zınc oxide nanoparticles. International Journal of Research in Engineering and Technology, 03(03), 43–45. https://doi.org/10.15623/ijret.2014.0303008
  • Naiel, B., Fawzy, M., Halmy, M. W. A., & Mahmoud, A. E. D. (2022). Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-24805-2
  • Nyabadza, A., McCarthy, É., Makhesana, M., Heidarinassab, S., Plouze, A., Vazquez, M., & Brabazon, D. (2023). A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Advances in Colloid and Interface Science, 321(August). https://doi.org/10.1016/j.cis.2023.103010
  • Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., Abd El-Monaem, E. M., Mohamed, I. M. A., Badr, M. M., Ihara, I., Rooney, D. W., & Yap, P. S. (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22(2), 841-887. https://doi.org/10.1007/s10311-023-01682-3
  • Ovanesyan, Z., Aljzmi, A., Almusaynid, M., Khan, A., Valderrama, E., Nash, K. L., & Marucho, M. (2016). Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles. Journal of Colloid and Interface Science, 462, 325–333. https://doi.org/10.1016/j.jcis.2015.10.019
  • Pourrahimi, A. M., Liu, D., Pallon, L. K. H., Andersson, R. L., Martínez Abad, A., Lagarón, J. M., Hedenqvist, M. S., Ström, V., Gedde, U. W., & Olsson, R. T. (2014). Water-based synthesis and cleaning methods for high purity ZnO nanoparticles-comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Advances, 4(67), 35568–35577. https://doi.org/10.1039/c4ra06651k
  • Prabu, P., & Losetty, V. (2024). Green synthesis of copper oxide nanoparticles using Macroptilium Lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. Journal of Molecular Structure, 1301(August 2023), 137404. https://doi.org/10.1016/j.molstruc.2023.137404
  • Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020). An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826. https://doi.org/10.1016/j.molliq.2019.111826
  • Rasmussen, M. K., Pedersen, J. N., & Marie, R. (2020). Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-15889-3
  • Rezapour, M., & Talebian, N. (2011). Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Materials Chemistry and Physics, 129(1–2), 249–255. https://doi.org/10.1016/j.matchemphys.2011.04.012
  • Saeed, K., Khan, I., Shah, T., & Park, S. Y. (2015). Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers. Fibers and Polymers, 16(9), 1870–1875. https://doi.org/10.1007/s12221-015-5373-z
  • Sajid, M., & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154(November 2019), 104623. https://doi.org/10.1016/j.microc.2020.104623
  • Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046
  • Saod, W. M., Al-Janaby, M. S., Gayadh, E. W., Ramizy, A., & Hamid, L. L. (2024). Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract: Potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria. Current Research in Green and Sustainable Chemistry, 8(January), 100397. https://doi.org/10.1016/j.crgsc.2024.100397
  • Shankar, S., & Rhim, J. W. (2019). Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles. Environmental Chemistry Letters, 17(2), 1105–1109. https://doi.org/10.1007/s10311-018-00835-z
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
  • Song, F. L., Gan, R. Y., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. B. (2010). Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. International Journal of Molecular Sciences, 11(6), 2362–2372. https://doi.org/10.3390/ijms11062362
  • Steffy, K., Shanthi, G., Maroky, A. S., & Selvakumar, S. (2018). Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. Journal of Advanced Research, 9, 69–77. https://doi.org/10.1016/j.jare.2017.11.001
  • Sudan, R., Bhagat, M., Gupta, S., Chitrarakha, & Devi, T. (2013). Comparative analysis of cytotoxic and antioxidant potential of edible Cinnamomum verum (bark) and Cinnamomum tamala (Indian bay leaf). Free Radicals and Antioxidants, 3(2), 70-73. https://doi.org/10.1016/j.fra.2013.05.005
  • Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology, 2012, 1–6. https://doi.org/10.5402/2012/372505
  • Tănase, M. A., Marinescu, M., Oancea, P., Răducan, A., Mihaescu, C. I., Alexandrescu, E., Nistor, C. L., Jinga, L. I., Diţu, L. M., Petcu, C., & Cinteza, L. O. (2021). Antibacterial and photocatalytic properties of ZnO nanoparticles obtained from chemical versus Saponaria officinalis extract-mediated synthesis. Molecules, 26(7), 2072. https://doi.org/10.3390/molecules26072072
  • Taş, A. C., Majewski, P. J., & Aldinger, F. (2000). Chemical preparation of pure and strontium- and/or magnesium-doped lanthanum gallate powders. Journal of the American Ceramic Society, 83(12), 2954–2960. https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
  • Venkatesan, S., Suresh, S., Ramu, P., Arumugam, J., Thambidurai, S., & Pugazhenthiran, N. (2022). Methylene blue dye degradation potential of zinc oxide nanoparticles bioreduced using Solanum trilobatum leaf extract. Results in Chemistry, 4(September), 100637. https://doi.org/10.1016/j.rechem.2022.100637
  • Zhou, X. Q., Hayat, Z., Zhang, D. D., Li, M. Y., Hu, S., Wu, Q., Cao, Y. F., & Yuan, Y. (2023). Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes, 11(4), 1193. https://doi.org/10.3390/pr11041193
  • Zuhrotun, A., Oktaviani, D. J., & Hasanah, A. N. (2023). Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules, 28(7), 3240. https://doi.org/10.3390/molecules28073240

Biogenic Synthesis, Characterization and Degradation of Methylene Blue Dye of Zinc Oxide Nanoparticles from Different Zinc Salts Using Cinnamomum verum Extract

Yıl 2024, Cilt: 29 Sayı: 3, 939 - 954, 31.12.2024
https://doi.org/10.53433/yyufbed.1518986

Öz

In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using Cinnamomum verum extract from different zinc salts such as zinc acetate, zinc nitrate, zinc sulfate, and zinc chloride. The synthesized ZnONPs were characterized using X-ray diffraction (XRD), dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM). Additionally, The photocatalytic activities of ZnO nanoparticles were tested in the presence and absence of sunlight. Cinnamomum verum extract was analyzed for DPPH radical scavenging activity and total phenolic content (TPC). The study results showed that the type of zinc salt used significantly affects the morphology, size, and crystal structure of the ZnO nanoparticles. ZnONPs synthesized from zinc acetate (ZnONPsA) showed superior photocatalytic activity in the presence and absence of sunlight.

Kaynakça

  • Abdelkader, D. H., Negm, W. A., Elekhnawy, E., Eliwa, D., Aldosari, B. N., & Almurshedi, A. S. (2022). Zinc Oxide nanoparticles as potential delivery carrier: Green synthesis by aspergillus niger endophytic fungus, characterization, and ın vitro/ın vivo antibacterial activity. Pharmaceuticals, 15(9). https://doi.org/10.3390/ph15091057
  • Abdullah, J. A. A., Guerrero, A., & Romero, A. (2024). efficient and sustainable synthesis of zinc salt-dependent polycrystal zinc oxide nanoparticles: comprehensive assessment of physicochemical and functional properties. Applied Sciences (Switzerland), 14(5). https://doi.org/10.3390/app14051815
  • Abeysekera, W. P. K. M., Premakumara, G. A. S., & Ratnasooriya, W. D. (2013). In vitro antioxidant properties of leaf and bark extracts of ceylon cinnamon (cinnamomum zeylanicum blume). Tropical Agricultural Research, 24(2), 128-138.
  • Aigbe, U. O., & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13(January), 100401. https://doi.org/10.1016/j.hazadv.2024.100401
  • Aydoğdu, B., Aytar, M., & Ünal, İ. (2024). Comparison of characteristics and antimicrobial activity of synthesized zinc oxide and magnetite ıron oxide nanoparticles using four different plant extracts. Cumhuriyet Science Journal, 45(1), 20–28. https://doi.org/10.17776/csj.1370606
  • Baratta, G. A., Domingo, M., Ferini, G., Leto, G., Palumbo, M. E., Satorre, M. A., & Strazzulla, G. (2003). Ion irradiation of CH4-containing icy mixtures. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 209(August), 283–287. https://doi.org/10.1016/S0168-583X(02)02010-4
  • Bhandari, K. P., Sapkota, D. R., Jamarkattel, M. K., Stillion, Q., & Collins, R. W. (2023). Zinc oxide nanoparticles—solution-based synthesis and characterizations. Nanomaterials, 13(11). https://doi.org/10.3390/nano13111795
  • Błaszczyk, N., Rosiak, A., & Kałużna-Czaplińska, J. (2021). The potential role of cinnamon in human health. Forests, 12(5), 1–17. https://doi.org/10.3390/f12050648
  • Danaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., & Mozafari, M. R. (2018). Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 10(2), 57. https://doi.org/10.3390/pharmaceutics10020057
  • Das, G., Gonçalves, S., Basilio Heredia, J., Romano, A., Jiménez-Ortega, L. A., Gutiérrez-Grijalva, E. P., Shin, H. S., & Patra, J. K. (2022). Cardiovascular protective effect of cinnamon and its major bioactive constituents: An update. Journal of Functional Foods, 97(January 2023). https://doi.org/10.1016/j.jff.2022.105045
  • Fahmy, M. D., Jazayeri, H. E., Razavi, M., Hashemi, M., Omidi, M., Farahani, M., Salahinejad, E., Yadegari, A., Pitcher, S., & Tayebi, L. (2016). Biomedical Applications of Intelligent Nanomaterials. Intelligent Nanomaterials: Second Edition, 13(10), 199–245. https://doi.org/10.1002/9781119242628.ch8
  • Fito, J., Abewaa, M., Mengistu, A., Angassa, K., Ambaye, A. D., Moyo, W., & Nkambule, T. (2023). Adsorption of methylene blue from textile industrial wastewater using activated carbon developed from Rumex abyssinicus plant. Scientific Reports, 13(1), 1–17. https://doi.org/10.1038/s41598-023-32341-w
  • Gaim, Y. T., Tesfamariam, G. M., Nigussie, G. Y., & Ashebir, M. E. (2019). Synthesis, characterization and photocatalytic activity of n-doped cu2o/zno nanocomposite on degradation of methyl red. Journal of Composites Science, 3(4). https://doi.org/10.3390/jcs3040093
  • Iravani, S., Korbekandi, H., Mirmohammadi, S. V., & Zolfaghari, B. (2014). Synthesis of silver nanoparticles: chemical, physical and biological methods. Research in Pharmaceutical Sciences, 9(6), 385–406.
  • Kazemi, S., Hosseingholian, A., Gohari, S. D., Feirahi, F., Moammeri, F., Mesbahian, G., Moghaddam, Z. S., & Ren, Q. (2023). Recent advances in green synthesized nanoparticles: from production to application. Materials Today Sustainability, 24, 100500. https://doi.org/10.1016/j.mtsust.2023.100500
  • Kedare, S. B., & Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology, 48(4), 412–422. https://doi.org/10.1007/s13197-011-0251-1
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011
  • Kulkarni, D., Sherkar, R., Shirsathe, C., Sonwane, R., Varpe, N., Shelke, S., More, M. P., Pardeshi, S. R., Dhaneshwar, G., Junnuthula, V., & Dyawanapelly, S. (2023). Biofabrication of nanoparticles: sources, synthesis, and biomedical applications. Frontiers in Bioengineering and Biotechnology, 11(May), 1–26. https://doi.org/10.3389/fbioe.2023.1159193
  • Leroy, P., Tournassat, C., & Bizi, M. (2011). Influence of surface conductivity on the apparent zeta potential of TiO2 nanoparticles. Journal of Colloid and Interface Science, 356(2), 442–453. https://doi.org/10.1016/j.jcis.2011.01.016
  • Libbey, L. M., & Walradt, J. P. (1968). 3,5-di-Tert-butyl-4-hydroxytoluene (BHT) as an artifact from diethyl ether. Lipids, 3(6), 561. https://doi.org/10.1007/BF02530903
  • Marin-Flores, C. A., Rodríguez-Nava, O., García-Hernández, M., Ruiz-Guerrero, R., Juárez-López, F., & Morales-Ramírez, A. de J. (2021). Free-radical scavenging activity properties of ZnO sub-micron particles: size effect and kinetics. Journal of Materials Research and Technology, 13, 1665–1675. https://doi.org/10.1016/j.jmrt.2021.05.050
  • Mayekar, J. (2014). Role of salt precursor in the synthesis of zınc oxide nanoparticles. International Journal of Research in Engineering and Technology, 03(03), 43–45. https://doi.org/10.15623/ijret.2014.0303008
  • Naiel, B., Fawzy, M., Halmy, M. W. A., & Mahmoud, A. E. D. (2022). Green synthesis of zinc oxide nanoparticles using Sea Lavender (Limonium pruinosum L. Chaz.) extract: characterization, evaluation of anti-skin cancer, antimicrobial and antioxidant potentials. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-24805-2
  • Nyabadza, A., McCarthy, É., Makhesana, M., Heidarinassab, S., Plouze, A., Vazquez, M., & Brabazon, D. (2023). A review of physical, chemical and biological synthesis methods of bimetallic nanoparticles and applications in sensing, water treatment, biomedicine, catalysis and hydrogen storage. Advances in Colloid and Interface Science, 321(August). https://doi.org/10.1016/j.cis.2023.103010
  • Osman, A. I., Zhang, Y., Farghali, M., Rashwan, A. K., Eltaweil, A. S., Abd El-Monaem, E. M., Mohamed, I. M. A., Badr, M. M., Ihara, I., Rooney, D. W., & Yap, P. S. (2024). Synthesis of green nanoparticles for energy, biomedical, environmental, agricultural, and food applications: A review. Environmental Chemistry Letters, 22(2), 841-887. https://doi.org/10.1007/s10311-023-01682-3
  • Ovanesyan, Z., Aljzmi, A., Almusaynid, M., Khan, A., Valderrama, E., Nash, K. L., & Marucho, M. (2016). Ion-ion correlation, solvent excluded volume and pH effects on physicochemical properties of spherical oxide nanoparticles. Journal of Colloid and Interface Science, 462, 325–333. https://doi.org/10.1016/j.jcis.2015.10.019
  • Pourrahimi, A. M., Liu, D., Pallon, L. K. H., Andersson, R. L., Martínez Abad, A., Lagarón, J. M., Hedenqvist, M. S., Ström, V., Gedde, U. W., & Olsson, R. T. (2014). Water-based synthesis and cleaning methods for high purity ZnO nanoparticles-comparing acetate, chloride, sulphate and nitrate zinc salt precursors. RSC Advances, 4(67), 35568–35577. https://doi.org/10.1039/c4ra06651k
  • Prabu, P., & Losetty, V. (2024). Green synthesis of copper oxide nanoparticles using Macroptilium Lathyroides (L) leaf extract and their spectroscopic characterization, biological activity and photocatalytic dye degradation study. Journal of Molecular Structure, 1301(August 2023), 137404. https://doi.org/10.1016/j.molstruc.2023.137404
  • Prasad, C., Liu, Q., Tang, H., Yuvaraja, G., Long, J., Rammohan, A., & Zyryanov, G. V. (2020). An overview of graphene oxide supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. Journal of Molecular Liquids, 297, 111826. https://doi.org/10.1016/j.molliq.2019.111826
  • Rasmussen, M. K., Pedersen, J. N., & Marie, R. (2020). Size and surface charge characterization of nanoparticles with a salt gradient. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-15889-3
  • Rezapour, M., & Talebian, N. (2011). Comparison of structural, optical properties and photocatalytic activity of ZnO with different morphologies: Effect of synthesis methods and reaction media. Materials Chemistry and Physics, 129(1–2), 249–255. https://doi.org/10.1016/j.matchemphys.2011.04.012
  • Saeed, K., Khan, I., Shah, T., & Park, S. Y. (2015). Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers. Fibers and Polymers, 16(9), 1870–1875. https://doi.org/10.1007/s12221-015-5373-z
  • Sajid, M., & Płotka-Wasylka, J. (2020). Nanoparticles: Synthesis, characteristics, and applications in analytical and other sciences. Microchemical Journal, 154(November 2019), 104623. https://doi.org/10.1016/j.microc.2020.104623
  • Sangeetha, G., Rajeshwari, S., & Venckatesh, R. (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: Structure and optical properties. Materials Research Bulletin, 46(12), 2560–2566. https://doi.org/10.1016/j.materresbull.2011.07.046
  • Saod, W. M., Al-Janaby, M. S., Gayadh, E. W., Ramizy, A., & Hamid, L. L. (2024). Biogenic synthesis of iron oxide nanoparticles using Hibiscus sabdariffa extract: Potential for antibiotic development and antibacterial activity against multidrug-resistant bacteria. Current Research in Green and Sustainable Chemistry, 8(January), 100397. https://doi.org/10.1016/j.crgsc.2024.100397
  • Shankar, S., & Rhim, J. W. (2019). Effect of Zn salts and hydrolyzing agents on the morphology and antibacterial activity of zinc oxide nanoparticles. Environmental Chemistry Letters, 17(2), 1105–1109. https://doi.org/10.1007/s10311-018-00835-z
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Hasan, H., & Mohamad, D. (2015). Review on zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), 219–242. https://doi.org/10.1007/s40820-015-0040-x
  • Song, F. L., Gan, R. Y., Zhang, Y., Xiao, Q., Kuang, L., & Li, H. B. (2010). Total phenolic contents and antioxidant capacities of selected chinese medicinal plants. International Journal of Molecular Sciences, 11(6), 2362–2372. https://doi.org/10.3390/ijms11062362
  • Steffy, K., Shanthi, G., Maroky, A. S., & Selvakumar, S. (2018). Synthesis and characterization of ZnO phytonanocomposite using Strychnos nux-vomica L. (Loganiaceae) and antimicrobial activity against multidrug-resistant bacterial strains from diabetic foot ulcer. Journal of Advanced Research, 9, 69–77. https://doi.org/10.1016/j.jare.2017.11.001
  • Sudan, R., Bhagat, M., Gupta, S., Chitrarakha, & Devi, T. (2013). Comparative analysis of cytotoxic and antioxidant potential of edible Cinnamomum verum (bark) and Cinnamomum tamala (Indian bay leaf). Free Radicals and Antioxidants, 3(2), 70-73. https://doi.org/10.1016/j.fra.2013.05.005
  • Talam, S., Karumuri, S. R., & Gunnam, N. (2012). Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles. ISRN Nanotechnology, 2012, 1–6. https://doi.org/10.5402/2012/372505
  • Tănase, M. A., Marinescu, M., Oancea, P., Răducan, A., Mihaescu, C. I., Alexandrescu, E., Nistor, C. L., Jinga, L. I., Diţu, L. M., Petcu, C., & Cinteza, L. O. (2021). Antibacterial and photocatalytic properties of ZnO nanoparticles obtained from chemical versus Saponaria officinalis extract-mediated synthesis. Molecules, 26(7), 2072. https://doi.org/10.3390/molecules26072072
  • Taş, A. C., Majewski, P. J., & Aldinger, F. (2000). Chemical preparation of pure and strontium- and/or magnesium-doped lanthanum gallate powders. Journal of the American Ceramic Society, 83(12), 2954–2960. https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
  • Venkatesan, S., Suresh, S., Ramu, P., Arumugam, J., Thambidurai, S., & Pugazhenthiran, N. (2022). Methylene blue dye degradation potential of zinc oxide nanoparticles bioreduced using Solanum trilobatum leaf extract. Results in Chemistry, 4(September), 100637. https://doi.org/10.1016/j.rechem.2022.100637
  • Zhou, X. Q., Hayat, Z., Zhang, D. D., Li, M. Y., Hu, S., Wu, Q., Cao, Y. F., & Yuan, Y. (2023). Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes, 11(4), 1193. https://doi.org/10.3390/pr11041193
  • Zuhrotun, A., Oktaviani, D. J., & Hasanah, A. N. (2023). Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules, 28(7), 3240. https://doi.org/10.3390/molecules28073240
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Nanomalzemeler
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

Burcu Aydoğdu 0000-0002-3309-1995

İlkay Ünal 0000-0002-1587-4187

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 20 Temmuz 2024
Kabul Tarihi 11 Kasım 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 29 Sayı: 3

Kaynak Göster

APA Aydoğdu, B., & Ünal, İ. (2024). Biogenic Synthesis, Characterization and Degradation of Methylene Blue Dye of Zinc Oxide Nanoparticles from Different Zinc Salts Using Cinnamomum verum Extract. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 939-954. https://doi.org/10.53433/yyufbed.1518986