Araştırma Makalesi
BibTex RIS Kaynak Göster

2-Amino-4-feniltiyazol Türevinin MCF-7 ve AGS Kanser Hücrelerine Karşı Sitotoksik Etkisinin Araştırılması

Yıl 2025, Cilt: 30 Sayı: 1, 61 - 68, 29.04.2025
https://doi.org/10.53433/yyufbed.1572502

Öz

Bu çalışmada 2-amino-4-feniltiyazol bileşiğinin (3) MCF-7 meme ve AGS mide kanseri hücreleri üzerindeki sitotoksik etkilerinin incelenmesi amaçlanmıştır. 2-aminotiyazol bileşiğinin (3) çeşitli konsantrasyonlarının (10-25-50-100 μg/mL) MCF-7 meme kanseri ve AGS mide hücreleri üzerindeki sitotoksik etkilerini 24., 48. ve 72. saatlerde MTT testi kullanarak incelenmiştir. MTT deneyleri, 2-amino tiyazol (3) bileşiğinin MCF-7 ve AGS kanser hücrelerinin çoğalması üzerinde zamana ve doza bağlı bir inhibitör etkiye sahip olduğunu göstermektedir. MTT deneyinden elde edilen verilerin analizi, tiyazol için IC50 değerlerinin MCF-7 ve AGS hücreleri üzerinde 24, 48 ve 72 saat boyunca sırasıyla 80.13, 71.03 ve 59.24 µg/ml ve 75.03, 38.12 ve 28.01 µg/ml olduğunu göstermiştir.100 μg/mL dozunun her iki kanser hücresi üzerinde de en etkili olduğu gösterilmiştir. Sonuçlarımız 2-amino-4-feniltiyazol (3) bileşiğinin MCF-7 meme ve AGS mide kanseri hücrelerinde sitotoksisite üzerinde doza bağlı bir etkiye sahip olduğunu göstermektedir.

Destekleyen Kurum

Bilecik Şeyh Edebali University

Proje Numarası

2023-01.BŞEÜ.35-04.

Teşekkür

This work has been supported by Bilecik Şeyh Edebali University Scientific Research Projects Coordination Unit under grant number 2023-01.BŞEÜ.35-04.

Kaynakça

  • Ammar, Y. A., El-Sharief, A., Mohamed, Y., Mehany, A., & Ragab, A. (2018). Synthesis, spectral characterization and pharmacological evaluation of novel thiazole-Oxoindole hybrid compounds As potential anticancer agents. Al-Azhar Bulletin of Science, 29(Issue 2-A), 25–37. https://doi.org/10.21608/absb.2018.33767
  • Amooie, A. M., Zarrinpour, V., Sadat Shandiz, S. A., & Salehzadeh, A. (2023). Apoptosis induction by ZnFe2O4-Ag biosynthesized by Chlorella vulgaris in MCF-7 breast cancer cell line. Biological Trace Element Research, 202(5), 2022-2035. https://doi.org/10.1007/s12011-023-03814-w
  • Ansari, M., Shokrzadeh, M., Karima, S., Rajaei, S., Fallah, M., Ghassemi-Barghi, N., Ghasemian, M., & Emami, S. (2020). New thiazole-2 (3H)-thiones containing 4-(3, 4, 5-trimethoxyphenyl) moiety as anticancer agents. European Journal of Medicinal Chemistry, 185, 111784. https://doi.org/10.1016/j.ejmech.2019.111784
  • Biçer, A., & Altundaş, R. (2023). Formylation reactions of N-protecting 2-Amino-4-phenyl thiazole compounds. Journal of Molecular Structure, 1289. https://doi.org/10.1016/j.molstruc.2023.135840
  • Cinar, I., Yayla, M., Celik, M., Bilen, A., & Bayraktutan, Z. (2020). Role of endothelin 1 on proliferation and migration of human MCF-7 cells. Eurasian Journal of Medicine, 52(3), 277–282. https://doi.org/10.5152/eurasianjmed.2020.20033
  • Dang, X., Lei, S., Luo, S., Hu, Y., Wang, J., Zhang, D., Lu, D., Jiang, F., & Fu, L. (2021). Design, synthesis and biological evaluation of novel thiazole-derivatives as mitochondrial targeting inhibitors of cancer cells. Bioorganic Chemistry, 114, 105015. https://doi.org/10.1016/j.bioorg.2021.105015
  • Fayed, E. A., Ammar, Y. A., Ragab, A., Gohar, N. A., Mehany, A. B., & Farrag, A. M. (2020). In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorganic Chemistry, 100, 103951. https://doi.org/10.1016/j.bioorg.2020.103951
  • Ghorab, M. M., & Al-Said, M. S. (2012). Antitumor activity of novel pyridine, thiophene and thiazole derivatives. Archives of Pharmacal Research, 35(6), 965–973. https://doi.org/10.1007/s12272-012-0603-z
  • Habibzadeh, S. Z., Salehzadeh, A., Moradi-Shoeili, Z., & Shandiz, S. A. S. (2020). A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe3O4 and 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-phenylthiazol-2-yl) hydrazine: assessment on anti-cancer against gastric AGS cancer cells. Molecular Biology Reports, 47(3), 1637-1647. https://doi.org/10.1007/s11033-020-05251-7
  • Kidwai, M., Chauhan, R., & Bhatnagar, D. (2011). Eco-friendly synthesis of 2-aminothiazoles using Nafion-H as a recyclable catalyst in PEG–water solvent system. Journal of Sulfur Chemistry, 32(1), 37-44. https://doi.org/10.1080/17415993.2010.533773
  • Mahmoudi, M., Rabe, S. Z. T., Ahi, A., & Emami, S. A. (2009). Evaluation of the cytotoxic activity of different Artemisia khorassanica samples on cancer cell lines. Pharmacol Online, 2, 778-786.
  • Mirza, S., Naqvi, S. A., Khan, K. M., Salar, U., & Choudhary, M. I. (2017). Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorganic Chemistry, 70, 133-143. https://doi.org/10.1016/j.bioorg.2016.12.003
  • Moghaddam‐manesh, M., Beyzaei, H., Heidari Majd, M., Hosseinzadegan, S., & Ghazvini, K. (2021). Investigation and comparison of biological effects of regioselectively synthesized thiazole derivatives. Journal of Heterocyclic Chemistry, 58(7), 1525-1530. https://doi.org/10.1002/jhet.4278
  • Mohamed, L. W., Taher, A. T., Rady, G. S., Ali, M. M., & Mahmoud, A. E. (2017). Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF‐7 cancer cell line. Chemical Biology & Drug Design, 89(4), 566-576. https://doi.org/10.1111/cbdd.12879
  • Othman, I. M., Alamshany, Z. M., Tashkandi, N. Y., Gad-Elkareem, M. A., Abd El-Karim, S. S., & Nossier, E. S. (2022). Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Advances, 12(1), 561-577. https://doi.org/10.1039/D1RA08055E
  • Patil, V., Tilekar, K., Mehendale-Munj, S., Mohan, R., & Ramaa, C. S. (2010). Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4- thiazolidinedione derivatives. European Journal of Medicinal Chemistry, 45(10), 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
  • Salehi, M., Amini, M., Ostad, S. N., Riazi, G. H., Assadieskandar, A., Shafiei, B., & Shafiee, A. (2013). Synthesis, cytotoxic evaluation and molecular docking study of 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazoles as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry, 21(24), 7648–7654. https://doi.org/10.1016/j.bmc.2013.10.030
  • Sharma, P. C., Bansal, K. K., Sharma, A., Sharma, D., & Deep, A. (2020). Thiazole-containing compounds as therapeutic targets for cancer therapy. European Journal of Medicinal Chemistry, 188, 112016. https://doi.org/10.1016/j.ejmech.2019.112016
  • Tavallaei, O., Heidarian, M., Marzbany, M., & Aliabadi, A. (2021). Cytotoxicity and pro-apoptosis activity of synthetic 1, 3-thiazole incorporated phthalimide derivatives on cancer cells. Iranian Journal of Basic Medical Sciences, 24(5), 604. https://doi.org/10.22038/ijbms.2021.53845.12103
  • Tavangar, S., Bohlooli, S., & Razzaghi-Asl, N. (2020). Synthesis and cytotoxic effect of a few N-heteroaryl enamino amides and dihydropyrimidinethiones on AGS and MCF-7 human cancer cell lines. Research in Pharmaceutical Sciences, 15(2), 154-163. https://doi.org/10.4103/1735-5362.283815
  • Zou, X., Shi, P., Feng, A., Mei, M., & Li, Y. (2021). Two metal complex derivatives of pyridine thiazole ligand: synthesis, characterization and biological activity. Transition Metal Chemistry, 46, 263-272. https://doi.org/10.1007/s11243-020-00442-4

Investigation of the Cytotoxic Effect of 2-Amino-4-phenylthiazole Derivative Against MCF-7 and AGS Cancer Cells

Yıl 2025, Cilt: 30 Sayı: 1, 61 - 68, 29.04.2025
https://doi.org/10.53433/yyufbed.1572502

Öz

This study aimed to investigate the cytotoxic effects of 2-amino thiazole compound (3) on MCF-7 breast and AGS gastric cancer cells. We examined the cytotoxic effects of various concentrations (10-25-50-100 μg/mL) of 2-aminothiazol compound (3) on MCF-7 breast cancer and AGS gastric cells at 24, 48 and 72 hours using MTT assay. MTT assays demonstrate that the 2-amino thiazole (3) compound has a time- and dose-dependent inhibitory effect on the proliferation of MCF-7 and AGS cancer cells. Analysis of the data obtained from MTT assay showed that IC50 values for thiazole were 80.13, 71.03 and 59.24 µg/ml and 75.03, 38.12 and 28.01 µg/ml for 24, 48 and 72 hours on MCF-7 and AGS cells, respectively. The 100 μg/mL dose was demonstrated to be most effective on both cancer cells. Our results suggest that the 2-amino-4-phenylthiazole (3) compound has a dose-dependent effect on cytotoxicity in MCF7 breast and AGS gastric cancer cells.

Proje Numarası

2023-01.BŞEÜ.35-04.

Kaynakça

  • Ammar, Y. A., El-Sharief, A., Mohamed, Y., Mehany, A., & Ragab, A. (2018). Synthesis, spectral characterization and pharmacological evaluation of novel thiazole-Oxoindole hybrid compounds As potential anticancer agents. Al-Azhar Bulletin of Science, 29(Issue 2-A), 25–37. https://doi.org/10.21608/absb.2018.33767
  • Amooie, A. M., Zarrinpour, V., Sadat Shandiz, S. A., & Salehzadeh, A. (2023). Apoptosis induction by ZnFe2O4-Ag biosynthesized by Chlorella vulgaris in MCF-7 breast cancer cell line. Biological Trace Element Research, 202(5), 2022-2035. https://doi.org/10.1007/s12011-023-03814-w
  • Ansari, M., Shokrzadeh, M., Karima, S., Rajaei, S., Fallah, M., Ghassemi-Barghi, N., Ghasemian, M., & Emami, S. (2020). New thiazole-2 (3H)-thiones containing 4-(3, 4, 5-trimethoxyphenyl) moiety as anticancer agents. European Journal of Medicinal Chemistry, 185, 111784. https://doi.org/10.1016/j.ejmech.2019.111784
  • Biçer, A., & Altundaş, R. (2023). Formylation reactions of N-protecting 2-Amino-4-phenyl thiazole compounds. Journal of Molecular Structure, 1289. https://doi.org/10.1016/j.molstruc.2023.135840
  • Cinar, I., Yayla, M., Celik, M., Bilen, A., & Bayraktutan, Z. (2020). Role of endothelin 1 on proliferation and migration of human MCF-7 cells. Eurasian Journal of Medicine, 52(3), 277–282. https://doi.org/10.5152/eurasianjmed.2020.20033
  • Dang, X., Lei, S., Luo, S., Hu, Y., Wang, J., Zhang, D., Lu, D., Jiang, F., & Fu, L. (2021). Design, synthesis and biological evaluation of novel thiazole-derivatives as mitochondrial targeting inhibitors of cancer cells. Bioorganic Chemistry, 114, 105015. https://doi.org/10.1016/j.bioorg.2021.105015
  • Fayed, E. A., Ammar, Y. A., Ragab, A., Gohar, N. A., Mehany, A. B., & Farrag, A. M. (2020). In vitro cytotoxic activity of thiazole-indenoquinoxaline hybrids as apoptotic agents, design, synthesis, physicochemical and pharmacokinetic studies. Bioorganic Chemistry, 100, 103951. https://doi.org/10.1016/j.bioorg.2020.103951
  • Ghorab, M. M., & Al-Said, M. S. (2012). Antitumor activity of novel pyridine, thiophene and thiazole derivatives. Archives of Pharmacal Research, 35(6), 965–973. https://doi.org/10.1007/s12272-012-0603-z
  • Habibzadeh, S. Z., Salehzadeh, A., Moradi-Shoeili, Z., & Shandiz, S. A. S. (2020). A novel bioactive nanoparticle synthesized by conjugation of 3-chloropropyl trimethoxy silane functionalized Fe3O4 and 1-((3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl) methylene)-2-(4-phenylthiazol-2-yl) hydrazine: assessment on anti-cancer against gastric AGS cancer cells. Molecular Biology Reports, 47(3), 1637-1647. https://doi.org/10.1007/s11033-020-05251-7
  • Kidwai, M., Chauhan, R., & Bhatnagar, D. (2011). Eco-friendly synthesis of 2-aminothiazoles using Nafion-H as a recyclable catalyst in PEG–water solvent system. Journal of Sulfur Chemistry, 32(1), 37-44. https://doi.org/10.1080/17415993.2010.533773
  • Mahmoudi, M., Rabe, S. Z. T., Ahi, A., & Emami, S. A. (2009). Evaluation of the cytotoxic activity of different Artemisia khorassanica samples on cancer cell lines. Pharmacol Online, 2, 778-786.
  • Mirza, S., Naqvi, S. A., Khan, K. M., Salar, U., & Choudhary, M. I. (2017). Facile synthesis of novel substituted aryl-thiazole (SAT) analogs via one-pot multi-component reaction as potent cytotoxic agents against cancer cell lines. Bioorganic Chemistry, 70, 133-143. https://doi.org/10.1016/j.bioorg.2016.12.003
  • Moghaddam‐manesh, M., Beyzaei, H., Heidari Majd, M., Hosseinzadegan, S., & Ghazvini, K. (2021). Investigation and comparison of biological effects of regioselectively synthesized thiazole derivatives. Journal of Heterocyclic Chemistry, 58(7), 1525-1530. https://doi.org/10.1002/jhet.4278
  • Mohamed, L. W., Taher, A. T., Rady, G. S., Ali, M. M., & Mahmoud, A. E. (2017). Synthesis and cytotoxic activity of certain benzothiazole derivatives against human MCF‐7 cancer cell line. Chemical Biology & Drug Design, 89(4), 566-576. https://doi.org/10.1111/cbdd.12879
  • Othman, I. M., Alamshany, Z. M., Tashkandi, N. Y., Gad-Elkareem, M. A., Abd El-Karim, S. S., & Nossier, E. S. (2022). Synthesis and biological evaluation of new derivatives of thieno-thiazole and dihydrothiazolo-thiazole scaffolds integrated with a pyrazoline nucleus as anticancer and multi-targeting kinase inhibitors. RSC Advances, 12(1), 561-577. https://doi.org/10.1039/D1RA08055E
  • Patil, V., Tilekar, K., Mehendale-Munj, S., Mohan, R., & Ramaa, C. S. (2010). Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2,4- thiazolidinedione derivatives. European Journal of Medicinal Chemistry, 45(10), 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
  • Salehi, M., Amini, M., Ostad, S. N., Riazi, G. H., Assadieskandar, A., Shafiei, B., & Shafiee, A. (2013). Synthesis, cytotoxic evaluation and molecular docking study of 2-alkylthio-4-(2,3,4-trimethoxyphenyl)-5-aryl-thiazoles as tubulin polymerization inhibitors. Bioorganic and Medicinal Chemistry, 21(24), 7648–7654. https://doi.org/10.1016/j.bmc.2013.10.030
  • Sharma, P. C., Bansal, K. K., Sharma, A., Sharma, D., & Deep, A. (2020). Thiazole-containing compounds as therapeutic targets for cancer therapy. European Journal of Medicinal Chemistry, 188, 112016. https://doi.org/10.1016/j.ejmech.2019.112016
  • Tavallaei, O., Heidarian, M., Marzbany, M., & Aliabadi, A. (2021). Cytotoxicity and pro-apoptosis activity of synthetic 1, 3-thiazole incorporated phthalimide derivatives on cancer cells. Iranian Journal of Basic Medical Sciences, 24(5), 604. https://doi.org/10.22038/ijbms.2021.53845.12103
  • Tavangar, S., Bohlooli, S., & Razzaghi-Asl, N. (2020). Synthesis and cytotoxic effect of a few N-heteroaryl enamino amides and dihydropyrimidinethiones on AGS and MCF-7 human cancer cell lines. Research in Pharmaceutical Sciences, 15(2), 154-163. https://doi.org/10.4103/1735-5362.283815
  • Zou, X., Shi, P., Feng, A., Mei, M., & Li, Y. (2021). Two metal complex derivatives of pyridine thiazole ligand: synthesis, characterization and biological activity. Transition Metal Chemistry, 46, 263-272. https://doi.org/10.1007/s11243-020-00442-4
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Doğal Ürünler ve Biyoaktif Bileşikler, Organik Kimyasal Sentez
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Abdullah Biçer 0000-0003-4648-1834

İrfan Çınar 0000-0002-9826-2556

Proje Numarası 2023-01.BŞEÜ.35-04.
Yayımlanma Tarihi 29 Nisan 2025
Gönderilme Tarihi 23 Ekim 2024
Kabul Tarihi 3 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 1

Kaynak Göster

APA Biçer, A., & Çınar, İ. (2025). Investigation of the Cytotoxic Effect of 2-Amino-4-phenylthiazole Derivative Against MCF-7 and AGS Cancer Cells. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 61-68. https://doi.org/10.53433/yyufbed.1572502