Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis, Characterization, Antimicrobial Activities and Molecular Docking Studies of Nanoparticles from Polygonum cognatum, Mentha pulegium and Tragopogon reticulatus

Yıl 2025, Cilt: 30 Sayı: 2, 537 - 554, 31.08.2025
https://doi.org/10.53433/yyufbed.1621096

Öz

Nanotechnology and its applications are increasing day by day in the food industry, medicine, pharmacy, cosmetics and industrial sectors as technology develops. However, research into their impact on human health and nature continues. In this study, Ag, Cu and Fe nanoparticles (NPs) were obtained from the plants Polygonum cognatum, Mentha pulegium, and Tragopogon reticulatus by methanol extracts and green synthesis. The characteristic properties of these synthesized particles were tested by FE-SEM, FESEM-EDX, UV-Vis, FT-IR and HPLC. The antimicrobial activities of the extracts and NPs obtained against the microorganisms Staphylococcus aureus, Enterococcus faecalis and Pseudomonas aeruginosa were tested using the disk diffusion method. Also, the inhibitory properties of the molecules and NP complexes identified in HPLC analysis against the enzyme topoisomerase IV were theoretically calculated by molecular docking. In HPLC analysis, chlorogenic acid (P. cognatum and T. reticulatus) and chrysin (M. pulegium) were detected in the highest amounts. In studies on antibacterial activity, all NPs obtained from P. cognatum, M. pulegium and T. reticulatus showed activity against S. aureus. According to the molecular docking result, chlorogenic acid-AgNP and chrysin-CuNP had higher MolDock values. As a result, the NPs and extracts made from these plants have use in medicine, food, and cosmetics.

Kaynakça

  • Abdelsattar, A. S., Dawoud, A., & Helal, M. A. (2021). Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology, 15(1), 66-95. https://doi.org/10.1080/17435390.2020.1842537
  • Acet, T., & Özcan, K. (2018). Investigation of some biological activities of horsetail (equisetum arvense) plant used for medicinal purposes in Gümüşhane province. Turkish Journal of Agriculture-Food Science and Technology, 5(13), 1810-1814.
  • Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04636
  • Ardakani, L. S., Alimardani, V., Tamaddon, A. M., Amani, A. M., & Taghizadeh, S. (2021). Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06159
  • Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., & Kim, K. H. (2017). Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol, 45(2), 372-379. https://doi.org/10.3109/21691401.2016.1160403
  • Başar, Y., Gül, F., Nas, M. S., Alma, M. H., & Çalımlı, M. H. (2024b). Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). International Journal of Chemistry and Technology, 8(1), 51-59. https://doi.org/10.32571/ijct.1365592
  • Başar, Y., Hosaflıoğlu, İ., & Erenler, R. (2024c). Phytochemical analysis of Robinia pseudoacacia flowers and leaf: quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity, 7(1), 1-10. https://doi.org/10.38059/biodiversity.1446241
  • Başar, Y., Yiğit, A., Karacalı Tunç, A., & Sarıtaş, B. M. (2024a). Lavandula Stoechas extract; synthesis of silver nanoparticles (nature-friendly green synthesis method), characterization, antimicrobial activity and ın silico molecular docking study. Current Perspectives on Medicinal and Aromatic Plants, 7(1), 24-33. https://doi.org/10.38093/cupmap.1461976
  • Chandraker, S. K., Lal, M., & Shukla, R. (2019). DNA-binding, antioxidant, H 2 O 2 sensing and photocatalytic properties of biogenic silver nanoparticles using Ageratum conyzoides L. leaf extract. Rsc Advances, 9(40), 23408-23417.
  • Çoban, F., Tosun, M., Özer, H., Güneş, A., Öztürk, E., Atsan, E., & Polat, T. (2021). Antioxidant activity and mineral nutrient composition of Polygonum cognatum-a potential wild edible plant.
  • Çöteli, E., & Karataş, F. (2015). Yemlik (tragopogon reticulatus) bitkisinin yapraklarındaki glutatyon ve vitaminler ile toplam antioksidan kapasitenin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 5(2), 78-86.
  • Dinesh, B., Monisha, N., Shalini, H., Prathap, G., Poyya, J., Shantaram, M., Hampapura, J. S., Karigar, C. S., & Joshi, C. G. (2022). Antibacterial activity of silver nanoparticles synthesized using endophytic fungus—Penicillium cinnamopurpureum. Spectroscopy Letters, 55(1), 20-34. https://doi.org/10.1080/00387010.2021.2010764
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  • Erenler, R., Yıldız, İ., Geçer, E. N., Kocaman, A. Y., Alma, M. H., Demirtas, İ., Başar, Y., Hosaflıoğlu, İ., & Behçet, L. (2024). Phytochemical analyses of Ebenus haussknechtii flowers: Quantification of phenolics, antioxidants effect, and molecular docking studies. Bütünleyici ve Anadolu Tıbbı Dergisi, 5(2), 1-9. https://doi.org/10.53445/batd.1479874
  • Eruygur, N., Ucar, E., Ataş, M., Ergul, M., Ergul, M., & Sozmen, F. (2020). Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas. Toxicology reports, 7, 59-66. https://doi.org/10.1016/j.toxrep.2019.12.002
  • Espinoza-Gómez, H., Flores-López, L. Z., Espinoza, K. A., & Alonso-Nuñez, G. (2020). Microstrain analyses of Fe3O4NPs greenly synthesized using Gardenia jasminoides flower extract, during the photocatalytic removal of a commercial dye. Applied Nanoscience, 10(1), 127-140. https://doi.org/10.1007/s13204-019-01070-w
  • Eze, F. N., Jayeoye, T. J., & Eze, R. C. (2023). Construction, characterization and application of locust bean gum/Phyllanthus reticulatus anthocyanin - based plasmonic silver nanocomposite for sensitive detection of ferrous ions. Environ Res, 228, 115864. https://doi.org/10.1016/j.envres.2023.115864
  • Gavande, N. S., VanderVere-Carozza, P. S., Hinshaw, H. D., Jalal, S. I., Sears, C. R., Pawelczak, K. S., & Turchi, J. J. (2016). DNA repair targeted therapy: The past or future of cancer treatment? Pharmacology & therapeutics, 160, 65-83. https://doi.org/10.1016/j.pharmthera.2016.02.003
  • Hadi, M. Y., Hameed, I. H., & Ibraheam, I. A. (2017). Mentha pulegium: medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: a review. Research Journal of Pharmacy and Technology, 10(10), 3580-3584.
  • Jara, Y. S., Mekiso, T. T., & Washe, A. P. (2024). Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract. Scientific reports, 14(1), 6997. https://doi.org/10.1038/s41598-024-57554-5
  • Johnson, A., & Uwa, P. (2019). Eco-friendly synthesis of iron nanoparticles using Uvaria chamae: Characterization and biological activity. Inorganic and Nano-Metal Chemistry, 49(12), 431-442. https://doi.org/10.1080/24701556.2019.1661448
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Katata-Seru, L., Moremedi, T., Aremu, O. S., & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296-304. https://doi.org/10.1016/j.molliq.2017.11.093
  • Kato, M. (2008). Chondrotoxicity of quinolone antimicrobial agents. Journal of Toxicologic Pathology, 21(3), 123-131.
  • Kebede, O. G., Pasaoglulari Aydinlik, N., Oba, O. A., & Ertekin, E. (2024). Green synthesis and characterization of limonium sinuatum silver nanoparticles (AgNPs) for antioxidant and antimicrobial applications. Analytical Letters, 57(16), 2773-2785. https://doi.org/10.1080/00032719.2024.2302074
  • Kuang, Y., Wang, Q., Chen, Z., Megharaj, M., & Naidu, R. (2013). Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 410, 67-73. https://doi.org/10.1016/j.jcis.2013.08.020
  • Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products, 58, 238-243. https://doi.org/10.1016/j.indcrop.2014.04.021
  • Kumar, P. V., Shameem, U., Kollu, P., Kalyani, R., & Pammi, S. (2015). Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience, 5, 135-139. https://doi.org/ 10.1007/s12668-015-0171-z
  • Mahiuddin, M., Saha, P., & Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials, 10(9), 1777. https://doi.org/10.3390/nano10091777
  • Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. Journal of Nanomedicine & Nanotechnology, 6, 1-5. http://dx.doi.org/10.4172/2157-7439.1000251
  • Miraj, S., & Kiani, S. (2016). Study of pharmacological effect of Mentha pulegium: A review. Der Pharmacia Lettre, 8(9), 242-245.
  • Niraimathi, K., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102, 288-291. https://doi.org/10.1016/j.colsurfb.2012.08.041
  • Nkosinathi, D. G., Albertus, B. K., Jabulani, S. S., Siboniso Siphephelo, M., & Pullabhotla, R. V. (2020). Biosynthesis, characterization, and application of iron nanoparticles: In dye removal and as antimicrobial agent. Water, Air, & Soil Pollution, 231, 1-10. https://doi.org/10.1007/s11270-020-04498-x
  • Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10), 5221-5238. https://doi.org/10.3390/ijerph10105221
  • Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208–219. https://doi.org/10.1016/j.procbio.2019.10.027
  • Phan, H. T., & Haes, A. J. (2019). What does nanoparticle stability mean? The Journal of Physical Chemistry C, 123(27), 16495-16507. http://dx.doi.org/10.1021/acs.jpcc.9b00913
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces, 108, 255-259. https://doi.org/10.1016/j.colsurfb.2013.03.017
  • Prema, P. (2011). Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application. InTech. doi: 10.5772/22114
  • Purniawan, A., Lusida, M. I., Pujiyanto, R. W., Nastri, A. M., Permanasari, A. A., Harsono, A. A. H., Oktavia, N. H., Wicaksono, S. T., Dewantari, J. R., & Prasetya, R. R. (2022). Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Scientific reports, 12(1), 4835. https://doi.org/10.1038/s41598-022-08766-0
  • Rajesh, K., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., Reddy, P. S., & Ahn, C. W. (2018). A facile bio-synthesis of copper nanoparticles using Cuminum cyminum seed extract: antimicrobial studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 035005.
  • Rathore, A., & Devra, V. (2022). Experimental investigation on green synthesis of FeNPs using Azadirachta indica leaves. Journal of Scientific Research, 14(1), 375-386. https://doi.org/10.3329/jsr.v14i1.54344
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv, 9(5), 2673-2702. https://doi.org/10.1039/c8ra08982e
  • Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces, 77(2), 214-218. https://doi.org/10.1016/j.colsurfb.2010.01.026
  • Serpi, M., Ozdemir, Z., & Salman, Y. (2012). Bazı bitki ekstrelerinin Propionibacterium acnes üzerine antibakteriyel etkilerinin araştırılması. KSÜ Doğa Bilimleri Dergisi, 15(1), 7-12.
  • Skvarča, A. (2019). Vrednotenje selektivnosti zaviralcev bakterijskih topoizomeraz (Doctoral dissertation, Univerza v Ljubljani, Fakulteta za farmacijo).
  • Vakilzadeh, M. M., Heidari, A., Mehri, A., Shirazinia, M., Sheybani, F., Aryan, E., Naderi, H., Najaf Najafi, M., & Varzandeh, M. (2020). Antimicrobial resistance among community‐acquired uropathogens in Mashhad, Iran. Journal of Environmental and Public Health, 2020(1), 3439497. https://doi.org/10.1155/2020/3439497
  • Wang, W., Liu, L., & Han, Z. (2024). Effect of copper nanoparticles green-synthesized using Ocimum basilicum against Pseudomonas aeruginosa in mice lung infection model. Open Chemistry, 22(1), 20240062.
  • Wolfgang, L. (2007). Bottom-up methods for making nanotechnology products. Access date: 15.08.2025. https://www.azonano.com/article.aspx?ArticleID=1079
  • Xia, X., Lan, S., Li, X., Xie, Y., Liang, Y., Yan, P., Chen, Z., & Xing, Y. (2018). Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere, 206, 701-708. https://doi.org/10.1016/j.chemosphere.2018.04.159
  • Yenigun, S., Basar, Y., Ipek, Y., Gok, M., Behcet, L., Ozen, T., & Demirtas, I. (2024). A potential DNA protector, enzyme inhibitor and in silico studies of daucosterol isolated from six Nepeta species. Process Biochemistry, 143, 234-247. https://doi.org/10.1016/j.procbio.2024.04.039
  • Yildiz, İ., Başar, Y., Erenler, R., Alma, M. H., & Calimli, M. H. (2024). A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany, 174, 686-693. https://doi.org/10.1016/j.sajb.2024.09.060

Polygonum cognatum, Mentha pulegium ve Tragopogon reticulatus'tan Elde Edilen Nanopartiküllerin Sentezi, Karakterizasyonu, Antimikrobiyal Aktiviteleri ve Moleküler Yerleştirme Çalışmaları

Yıl 2025, Cilt: 30 Sayı: 2, 537 - 554, 31.08.2025
https://doi.org/10.53433/yyufbed.1621096

Öz

Nanoteknoloji ve uygulamaları, teknoloji geliştikçe gıda endüstrisi, tıp, eczacılık, kozmetik ve endüstriyel sektörlerde her geçen gün artmaktadır. Ancak, insan sağlığı ve doğa üzerindeki etkilerine yönelik araştırmalar devam etmektedir. Bu çalışmada, Polygonum cognatum, Mentha pulegium ve Tragopogon reticulatus bitkilerinden metanol ekstraktları ve yeşil sentez yoluyla Ag, Cu ve Fe nanopartikülleri elde edildi. Sentezlenen bu partiküllerin karakteristik özellikleri FE-SEM, FESEM-EDX, UV-Vis, FT-IR ve HPLC ile belirlendi. Elde edilen ekstrakt ve nanopartiküllerin Staphylococcus aureus, Enterococcus faecalis ve Pseudomonas aeruginosa mikroorganizmalarına karşı antimikrobiyal aktiviteleri disk difüzyon yöntemi kullanılarak test edildi. Ayrıca HPLC analizinde belirlenen moleküllerin ve molekül-partikül komplekslerinin topoizomeraz IV enzimine karşı inhibitör özellikleri moleküler yerleştirme yoluyla teorik olarak hesaplandı. HPLC analizinde, P. cognatum ve T. reticulatus'ta klorojenik asit, M. pulegium'da chrysin en fazla miktarda tespit edildi. Antibakteriyel aktivite üzerine yapılan çalışmalarda, P. cognatum, M. pulegium ve T. reticulatus'tan elde edilen tüm nanopartiküllerin S. aureus'a karşı etki gösterdi. Moleküler yerleştirme sonucuna göre, klorojenik asit-AgNP ve crysin-AuNP'nin daha yüksek MolDock değerleri vardı. Sonuç olarak, bu bitkilerden elde edilen ekstraktlar ve NP'ler gıda, farmakoloji ve kozmetik gibi alanlarda kullanılabilir.

Kaynakça

  • Abdelsattar, A. S., Dawoud, A., & Helal, M. A. (2021). Interaction of nanoparticles with biological macromolecules: a review of molecular docking studies. Nanotoxicology, 15(1), 66-95. https://doi.org/10.1080/17435390.2020.1842537
  • Acet, T., & Özcan, K. (2018). Investigation of some biological activities of horsetail (equisetum arvense) plant used for medicinal purposes in Gümüşhane province. Turkish Journal of Agriculture-Food Science and Technology, 5(13), 1810-1814.
  • Amaliyah, S., Pangesti, D. P., Masruri, M., Sabarudin, A., & Sumitro, S. B. (2020). Green synthesis and characterization of copper nanoparticles using Piper retrofractum Vahl extract as bioreductor and capping agent. Heliyon, 6(8). https://doi.org/10.1016/j.heliyon.2020.e04636
  • Ardakani, L. S., Alimardani, V., Tamaddon, A. M., Amani, A. M., & Taghizadeh, S. (2021). Green synthesis of iron-based nanoparticles using Chlorophytum comosum leaf extract: methyl orange dye degradation and antimicrobial properties. Heliyon, 7(2). https://doi.org/10.1016/j.heliyon.2021.e06159
  • Arokiyaraj, S., Vincent, S., Saravanan, M., Lee, Y., Oh, Y. K., & Kim, K. H. (2017). Green synthesis of silver nanoparticles using Rheum palmatum root extract and their antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Artif Cells Nanomed Biotechnol, 45(2), 372-379. https://doi.org/10.3109/21691401.2016.1160403
  • Başar, Y., Gül, F., Nas, M. S., Alma, M. H., & Çalımlı, M. H. (2024b). Investigation of value-added compounds derived from oak wood using hydrothermal processing techniques and comprehensive analytical approaches (HPLC, GC-MS, FT-IR, and NMR). International Journal of Chemistry and Technology, 8(1), 51-59. https://doi.org/10.32571/ijct.1365592
  • Başar, Y., Hosaflıoğlu, İ., & Erenler, R. (2024c). Phytochemical analysis of Robinia pseudoacacia flowers and leaf: quantitative analysis of natural compounds and molecular docking application. Turkish Journal of Biodiversity, 7(1), 1-10. https://doi.org/10.38059/biodiversity.1446241
  • Başar, Y., Yiğit, A., Karacalı Tunç, A., & Sarıtaş, B. M. (2024a). Lavandula Stoechas extract; synthesis of silver nanoparticles (nature-friendly green synthesis method), characterization, antimicrobial activity and ın silico molecular docking study. Current Perspectives on Medicinal and Aromatic Plants, 7(1), 24-33. https://doi.org/10.38093/cupmap.1461976
  • Chandraker, S. K., Lal, M., & Shukla, R. (2019). DNA-binding, antioxidant, H 2 O 2 sensing and photocatalytic properties of biogenic silver nanoparticles using Ageratum conyzoides L. leaf extract. Rsc Advances, 9(40), 23408-23417.
  • Çoban, F., Tosun, M., Özer, H., Güneş, A., Öztürk, E., Atsan, E., & Polat, T. (2021). Antioxidant activity and mineral nutrient composition of Polygonum cognatum-a potential wild edible plant.
  • Çöteli, E., & Karataş, F. (2015). Yemlik (tragopogon reticulatus) bitkisinin yapraklarındaki glutatyon ve vitaminler ile toplam antioksidan kapasitenin araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 5(2), 78-86.
  • Dinesh, B., Monisha, N., Shalini, H., Prathap, G., Poyya, J., Shantaram, M., Hampapura, J. S., Karigar, C. S., & Joshi, C. G. (2022). Antibacterial activity of silver nanoparticles synthesized using endophytic fungus—Penicillium cinnamopurpureum. Spectroscopy Letters, 55(1), 20-34. https://doi.org/10.1080/00387010.2021.2010764
  • Duncan, T. V. (2011). Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363(1), 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  • Erenler, R., Yıldız, İ., Geçer, E. N., Kocaman, A. Y., Alma, M. H., Demirtas, İ., Başar, Y., Hosaflıoğlu, İ., & Behçet, L. (2024). Phytochemical analyses of Ebenus haussknechtii flowers: Quantification of phenolics, antioxidants effect, and molecular docking studies. Bütünleyici ve Anadolu Tıbbı Dergisi, 5(2), 1-9. https://doi.org/10.53445/batd.1479874
  • Eruygur, N., Ucar, E., Ataş, M., Ergul, M., Ergul, M., & Sozmen, F. (2020). Determination of biological activity of Tragopogon porrifolius and Polygonum cognatum consumed intensively by people in Sivas. Toxicology reports, 7, 59-66. https://doi.org/10.1016/j.toxrep.2019.12.002
  • Espinoza-Gómez, H., Flores-López, L. Z., Espinoza, K. A., & Alonso-Nuñez, G. (2020). Microstrain analyses of Fe3O4NPs greenly synthesized using Gardenia jasminoides flower extract, during the photocatalytic removal of a commercial dye. Applied Nanoscience, 10(1), 127-140. https://doi.org/10.1007/s13204-019-01070-w
  • Eze, F. N., Jayeoye, T. J., & Eze, R. C. (2023). Construction, characterization and application of locust bean gum/Phyllanthus reticulatus anthocyanin - based plasmonic silver nanocomposite for sensitive detection of ferrous ions. Environ Res, 228, 115864. https://doi.org/10.1016/j.envres.2023.115864
  • Gavande, N. S., VanderVere-Carozza, P. S., Hinshaw, H. D., Jalal, S. I., Sears, C. R., Pawelczak, K. S., & Turchi, J. J. (2016). DNA repair targeted therapy: The past or future of cancer treatment? Pharmacology & therapeutics, 160, 65-83. https://doi.org/10.1016/j.pharmthera.2016.02.003
  • Hadi, M. Y., Hameed, I. H., & Ibraheam, I. A. (2017). Mentha pulegium: medicinal uses, anti-hepatic, antibacterial, antioxidant effect and analysis of bioactive natural compounds: a review. Research Journal of Pharmacy and Technology, 10(10), 3580-3584.
  • Jara, Y. S., Mekiso, T. T., & Washe, A. P. (2024). Highly efficient catalytic degradation of organic dyes using iron nanoparticles synthesized with Vernonia Amygdalina leaf extract. Scientific reports, 14(1), 6997. https://doi.org/10.1038/s41598-024-57554-5
  • Johnson, A., & Uwa, P. (2019). Eco-friendly synthesis of iron nanoparticles using Uvaria chamae: Characterization and biological activity. Inorganic and Nano-Metal Chemistry, 49(12), 431-442. https://doi.org/10.1080/24701556.2019.1661448
  • Jyoti, K., Baunthiyal, M., & Singh, A. (2016). Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. Journal of Radiation Research and Applied Sciences, 9(3), 217-227. https://doi.org/10.1016/j.jrras.2015.10.002
  • Katata-Seru, L., Moremedi, T., Aremu, O. S., & Bahadur, I. (2018). Green synthesis of iron nanoparticles using Moringa oleifera extracts and their applications: Removal of nitrate from water and antibacterial activity against Escherichia coli. Journal of Molecular Liquids, 256, 296-304. https://doi.org/10.1016/j.molliq.2017.11.093
  • Kato, M. (2008). Chondrotoxicity of quinolone antimicrobial agents. Journal of Toxicologic Pathology, 21(3), 123-131.
  • Kebede, O. G., Pasaoglulari Aydinlik, N., Oba, O. A., & Ertekin, E. (2024). Green synthesis and characterization of limonium sinuatum silver nanoparticles (AgNPs) for antioxidant and antimicrobial applications. Analytical Letters, 57(16), 2773-2785. https://doi.org/10.1080/00032719.2024.2302074
  • Kuang, Y., Wang, Q., Chen, Z., Megharaj, M., & Naidu, R. (2013). Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles. Journal of Colloid and Interface Science, 410, 67-73. https://doi.org/10.1016/j.jcis.2013.08.020
  • Kumar, B., Smita, K., Cumbal, L., & Debut, A. (2014). Sacha inchi (Plukenetia volubilis L.) oil for one pot synthesis of silver nanocatalyst: an ecofriendly approach. Industrial Crops and Products, 58, 238-243. https://doi.org/10.1016/j.indcrop.2014.04.021
  • Kumar, P. V., Shameem, U., Kollu, P., Kalyani, R., & Pammi, S. (2015). Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. BioNanoScience, 5, 135-139. https://doi.org/ 10.1007/s12668-015-0171-z
  • Mahiuddin, M., Saha, P., & Ochiai, B. (2020). Green synthesis and catalytic activity of silver nanoparticles based on Piper chaba stem extracts. Nanomaterials, 10(9), 1777. https://doi.org/10.3390/nano10091777
  • Manikandan, A., & Sathiyabama, M. (2015). Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. Journal of Nanomedicine & Nanotechnology, 6, 1-5. http://dx.doi.org/10.4172/2157-7439.1000251
  • Miraj, S., & Kiani, S. (2016). Study of pharmacological effect of Mentha pulegium: A review. Der Pharmacia Lettre, 8(9), 242-245.
  • Niraimathi, K., Sudha, V., Lavanya, R., & Brindha, P. (2013). Biosynthesis of silver nanoparticles using Alternanthera sessilis (Linn.) extract and their antimicrobial, antioxidant activities. Colloids and Surfaces B: Biointerfaces, 102, 288-291. https://doi.org/10.1016/j.colsurfb.2012.08.041
  • Nkosinathi, D. G., Albertus, B. K., Jabulani, S. S., Siboniso Siphephelo, M., & Pullabhotla, R. V. (2020). Biosynthesis, characterization, and application of iron nanoparticles: In dye removal and as antimicrobial agent. Water, Air, & Soil Pollution, 231, 1-10. https://doi.org/10.1007/s11270-020-04498-x
  • Okafor, F., Janen, A., Kukhtareva, T., Edwards, V., & Curley, M. (2013). Green synthesis of silver nanoparticles, their characterization, application and antibacterial activity. International Journal of Environmental Research and Public Health, 10(10), 5221-5238. https://doi.org/10.3390/ijerph10105221
  • Öztürk, B. Y., Gürsu, B. Y., & Dağ, İ. (2020). Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 89, 208–219. https://doi.org/10.1016/j.procbio.2019.10.027
  • Phan, H. T., & Haes, A. J. (2019). What does nanoparticle stability mean? The Journal of Physical Chemistry C, 123(27), 16495-16507. http://dx.doi.org/10.1021/acs.jpcc.9b00913
  • Pinzi, L., & Rastelli, G. (2019). Molecular docking: shifting paradigms in drug discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  • Prakash, P., Gnanaprakasam, P., Emmanuel, R., Arokiyaraj, S., & Saravanan, M. (2013). Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloids and Surfaces B: Biointerfaces, 108, 255-259. https://doi.org/10.1016/j.colsurfb.2013.03.017
  • Prema, P. (2011). Chemical mediated synthesis of silver nanoparticles and its potential antibacterial application. InTech. doi: 10.5772/22114
  • Purniawan, A., Lusida, M. I., Pujiyanto, R. W., Nastri, A. M., Permanasari, A. A., Harsono, A. A. H., Oktavia, N. H., Wicaksono, S. T., Dewantari, J. R., & Prasetya, R. R. (2022). Synthesis and assessment of copper-based nanoparticles as a surface coating agent for antiviral properties against SARS-CoV-2. Scientific reports, 12(1), 4835. https://doi.org/10.1038/s41598-022-08766-0
  • Rajesh, K., Ajitha, B., Reddy, Y. A. K., Suneetha, Y., Reddy, P. S., & Ahn, C. W. (2018). A facile bio-synthesis of copper nanoparticles using Cuminum cyminum seed extract: antimicrobial studies. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(3), 035005.
  • Rathore, A., & Devra, V. (2022). Experimental investigation on green synthesis of FeNPs using Azadirachta indica leaves. Journal of Scientific Research, 14(1), 375-386. https://doi.org/10.3329/jsr.v14i1.54344
  • Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv, 9(5), 2673-2702. https://doi.org/10.1039/c8ra08982e
  • Saravanan, M., & Nanda, A. (2010). Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids and Surfaces B: Biointerfaces, 77(2), 214-218. https://doi.org/10.1016/j.colsurfb.2010.01.026
  • Serpi, M., Ozdemir, Z., & Salman, Y. (2012). Bazı bitki ekstrelerinin Propionibacterium acnes üzerine antibakteriyel etkilerinin araştırılması. KSÜ Doğa Bilimleri Dergisi, 15(1), 7-12.
  • Skvarča, A. (2019). Vrednotenje selektivnosti zaviralcev bakterijskih topoizomeraz (Doctoral dissertation, Univerza v Ljubljani, Fakulteta za farmacijo).
  • Vakilzadeh, M. M., Heidari, A., Mehri, A., Shirazinia, M., Sheybani, F., Aryan, E., Naderi, H., Najaf Najafi, M., & Varzandeh, M. (2020). Antimicrobial resistance among community‐acquired uropathogens in Mashhad, Iran. Journal of Environmental and Public Health, 2020(1), 3439497. https://doi.org/10.1155/2020/3439497
  • Wang, W., Liu, L., & Han, Z. (2024). Effect of copper nanoparticles green-synthesized using Ocimum basilicum against Pseudomonas aeruginosa in mice lung infection model. Open Chemistry, 22(1), 20240062.
  • Wolfgang, L. (2007). Bottom-up methods for making nanotechnology products. Access date: 15.08.2025. https://www.azonano.com/article.aspx?ArticleID=1079
  • Xia, X., Lan, S., Li, X., Xie, Y., Liang, Y., Yan, P., Chen, Z., & Xing, Y. (2018). Characterization and coagulation-flocculation performance of a composite flocculant in high-turbidity drinking water treatment. Chemosphere, 206, 701-708. https://doi.org/10.1016/j.chemosphere.2018.04.159
  • Yenigun, S., Basar, Y., Ipek, Y., Gok, M., Behcet, L., Ozen, T., & Demirtas, I. (2024). A potential DNA protector, enzyme inhibitor and in silico studies of daucosterol isolated from six Nepeta species. Process Biochemistry, 143, 234-247. https://doi.org/10.1016/j.procbio.2024.04.039
  • Yildiz, İ., Başar, Y., Erenler, R., Alma, M. H., & Calimli, M. H. (2024). A phytochemical content analysis, and antioxidant activity evaluation using a novel method on Melilotus officinalis flower. South African Journal of Botany, 174, 686-693. https://doi.org/10.1016/j.sajb.2024.09.060
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Organik Yeşil Kimya
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Saniye Aslan 0009-0003-2975-1385

Yunus Başar 0000-0002-7785-3242

Aybek Yiğit 0000-0001-8279-5908

Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 16 Ocak 2025
Kabul Tarihi 17 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Aslan, S., Başar, Y., & Yiğit, A. (2025). Synthesis, Characterization, Antimicrobial Activities and Molecular Docking Studies of Nanoparticles from Polygonum cognatum, Mentha pulegium and Tragopogon reticulatus. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 537-554. https://doi.org/10.53433/yyufbed.1621096