Araştırma Makalesi
BibTex RIS Kaynak Göster

Spesifik Enerji ve Spesifik Açısal Momentum: G3 de Özel Tüp Yüzeyler

Yıl 2025, Cilt: 30 Sayı: 2, 572 - 583, 31.08.2025
https://doi.org/10.53433/yyufbed.1627975

Öz

Bu çalışmada, rektifiye eğriler ile oluşturulan tüp yüzeyindeki bazı özellikler Galilean 3-uzayında ifade edilmiş ve Galilean uzayında Clairaut teoremi bu yüzey üzerinde genelleştirilmiştir. Ayrıca Clairaut teoremi yardımıyla elde edilen jeodezik rektifiye eğriler ile oluşturulan tüp yüzeyinde spesifik kinetik enerji ve spesifik açısal momentum ifade edilmiştir.

Kaynakça

  • Ali, A. T. (2012). Position vectors of curves in the Galilean space G_3, Matematicki Vesnik, 64(249), 200-210.
  • Almaz, F., & Kulahci, M. A. (2020). Some characterizations on the special tubular surfaces in Galilean space. Prespacetime Journal, 11(7), 626-636.
  • Almaz, F., & Kulahci, M. A. (2021). The notes on rotational surfaces in Galilean space, International Journal of Geometric Methods in Modern Physics, 18(02), 2150017. https://doi.org/10.1142/S0219887821500171
  • Almaz, F., & Külahci, M. (2022). A survey on tube surfaces in Galilean 3-space. Politeknik Dergisi, 25(3), 1133-1142. https://doi.org/10.2339/politeknik.747869
  • Dede, M. (2013). Tubular surfaces in Galilean space. Mathematical Communications, 18(1), 209-217.
  • Kasap, E., & Akyildiz, F. T. (2006). Surfaces with common geodesic in Minkowski 3-space. Applied Mathematics and Computation, 177(1), 260-270. https://doi.org/10.1016/j.amc.2005.11.005
  • Karacan, M. K., & Yayli, Y. (2008). On the geodesics of tubular surfaces in Minkowski 3-space. Bulletin of the Malaysian Mathematical Sciences Society. Second Series, 31(1), 1-10.
  • Kuhnel, W. (2006). Differential geometry curves-surfaces and manifolds, (2nd ed.). Providence, RI, United States, American Math. Soc., 16.
  • Milin Šipuš, Ž., & Divjak, B. (2012). Surfaces of Constant Curvature in the Pseudo‐Galilean Space. International Journal of Mathematics and Mathematical Sciences, 2012(1), 375264. https://doi.org/10.1155/2012/375264
  • Öztekin, H. B., & Tatlipinar, S. (2012). On some curves in Galilean plane and 3-dimensional Galilean space. Journal of Dynamical Systems and Geometric Theories, 10(2), 189-196. https://doi.org/10.1080/1726037X.2012.10698620
  • Pressley, A. (2010). Elementary differential geometry, second edition. London, UK. Springer-Verlag London Limited.
  • Ro, J. S., & Yoon, D. W. (2009). Tubes of Weingarten types in a Euclidean 3-space. Journal of the Chungcheong Mathematical Society, 22(3), 359-359.
  • Röschel, O. (1984). Die Geometrie des Galileischen Raumes, Bericht der Mathematisch Statistischen Sektion in der Forschungs-Gesellschaft Joanneum, Bericht Nr. 256, Habilitationsschrift, Leoben.
  • Röschel, O. (1986). Die Geometrie des Galileischen Raumes, Forschungszentrum Graz Research Centre, Austria.
  • Saad, A., & Low, R. J. (2014). A generalized Clairaut’s theorem in Minkowski space, Journal of Geometry and Symmetry in Physics, 35, 103-111.
  • Walecka, J. D. (2007). Introduction to general relativity. World Scientific, Singapore.
  • Walecka, J. D. (2013). Topics in modern physics: Theoretical foundations. World Scientific.
  • Yaglom, I. M. (1979). A simple non-Euclidean geometry and its physical basis. Springer-Verlag, New York Inc.

The Specific Energy and Specific Angular Momentum: On Special Tube Surfaces in G3

Yıl 2025, Cilt: 30 Sayı: 2, 572 - 583, 31.08.2025
https://doi.org/10.53433/yyufbed.1627975

Öz

In this paper, some features on the tube surface generated by rectifying curves are expressed in Galilean 3-space, and Clairaut’s theorem is generalized on this surface in Galilean space. Furthermore, the specific kinetic energy and the specific angular momentum are expressed on tube surface formed by rectifying curves that are geodesics obtained with the help of Clairaut’s theorem.

Kaynakça

  • Ali, A. T. (2012). Position vectors of curves in the Galilean space G_3, Matematicki Vesnik, 64(249), 200-210.
  • Almaz, F., & Kulahci, M. A. (2020). Some characterizations on the special tubular surfaces in Galilean space. Prespacetime Journal, 11(7), 626-636.
  • Almaz, F., & Kulahci, M. A. (2021). The notes on rotational surfaces in Galilean space, International Journal of Geometric Methods in Modern Physics, 18(02), 2150017. https://doi.org/10.1142/S0219887821500171
  • Almaz, F., & Külahci, M. (2022). A survey on tube surfaces in Galilean 3-space. Politeknik Dergisi, 25(3), 1133-1142. https://doi.org/10.2339/politeknik.747869
  • Dede, M. (2013). Tubular surfaces in Galilean space. Mathematical Communications, 18(1), 209-217.
  • Kasap, E., & Akyildiz, F. T. (2006). Surfaces with common geodesic in Minkowski 3-space. Applied Mathematics and Computation, 177(1), 260-270. https://doi.org/10.1016/j.amc.2005.11.005
  • Karacan, M. K., & Yayli, Y. (2008). On the geodesics of tubular surfaces in Minkowski 3-space. Bulletin of the Malaysian Mathematical Sciences Society. Second Series, 31(1), 1-10.
  • Kuhnel, W. (2006). Differential geometry curves-surfaces and manifolds, (2nd ed.). Providence, RI, United States, American Math. Soc., 16.
  • Milin Šipuš, Ž., & Divjak, B. (2012). Surfaces of Constant Curvature in the Pseudo‐Galilean Space. International Journal of Mathematics and Mathematical Sciences, 2012(1), 375264. https://doi.org/10.1155/2012/375264
  • Öztekin, H. B., & Tatlipinar, S. (2012). On some curves in Galilean plane and 3-dimensional Galilean space. Journal of Dynamical Systems and Geometric Theories, 10(2), 189-196. https://doi.org/10.1080/1726037X.2012.10698620
  • Pressley, A. (2010). Elementary differential geometry, second edition. London, UK. Springer-Verlag London Limited.
  • Ro, J. S., & Yoon, D. W. (2009). Tubes of Weingarten types in a Euclidean 3-space. Journal of the Chungcheong Mathematical Society, 22(3), 359-359.
  • Röschel, O. (1984). Die Geometrie des Galileischen Raumes, Bericht der Mathematisch Statistischen Sektion in der Forschungs-Gesellschaft Joanneum, Bericht Nr. 256, Habilitationsschrift, Leoben.
  • Röschel, O. (1986). Die Geometrie des Galileischen Raumes, Forschungszentrum Graz Research Centre, Austria.
  • Saad, A., & Low, R. J. (2014). A generalized Clairaut’s theorem in Minkowski space, Journal of Geometry and Symmetry in Physics, 35, 103-111.
  • Walecka, J. D. (2007). Introduction to general relativity. World Scientific, Singapore.
  • Walecka, J. D. (2013). Topics in modern physics: Theoretical foundations. World Scientific.
  • Yaglom, I. M. (1979). A simple non-Euclidean geometry and its physical basis. Springer-Verlag, New York Inc.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Fen Bilimleri ve Matematik / Natural Sciences and Mathematics
Yazarlar

Fatma Almaz 0000-0002-1060-7813

Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 27 Ocak 2025
Kabul Tarihi 10 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Almaz, F. (2025). The Specific Energy and Specific Angular Momentum: On Special Tube Surfaces in G3. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 572-583. https://doi.org/10.53433/yyufbed.1627975