Araştırma Makalesi
BibTex RIS Kaynak Göster

Energy and Exergy Analysis of Two Different Heat Exchangers: Plate and Tube Heat Exchanger

Yıl 2025, Cilt: 30 Sayı: 2, 708 - 718, 31.08.2025

Öz

In this study, the energy and exergy analyses of plate and double-pipe heat exchangers were experimentally investigated under parallel flow conditions at different hot fluid flow rates (400 l/h, 500 l/h, 600 l/h) and a constant cold fluid flow rate (300 l/h). According to the experimental results, as the hot fluid flow rate increased, the outlet temperature of the cold fluid also increased in both heat exchangers. Based on the exergy analysis, increasing the hot fluid flow rate raised the exergy of both the hot and cold fluids exiting the heat exchangers. In the plate heat exchanger, for a hot fluid flow rate of 400 l/h, the exergy at the hot fluid outlet was 62.12 W, while at 600 l/h, it increased to 79.22 W. Under the same conditions, the exergy in the double-pipe heat exchanger rose from 81.35 W at 400 l/h to 119.68 W at 600 l/h. In the energy efficiency analysis, a significant increase in the first law efficiency of both heat exchangers was observed as the hot fluid flow rate increased. When the hot fluid flow rate reached 600 l/h, the effectiveness of the double-pipe heat exchanger reached 91%, while the plate heat exchanger reached 96%. However, exergy efficiencies were found to be lower compared to energy efficiencies. At a hot fluid flow rate of 400 l/h, the exergy efficiency of the double-pipe heat exchanger was 44.4%, while it was determined to be 41.25% in the plate heat exchanger. In the study, significant differences were observed between energy and exergy efficiencies. It was found that in engineering applications, system analyses should be conducted not only in terms of energy but also from an exergy perspective.

Kaynakça

  • Alamu, S. O., Lee, S. W., & Qian, X. (2023). Exergy and energy analysis of the shell-and-tube heat exchanger for a poultry litter co-combustion process. Processes, 11(8), 2249. https://doi.org/10.3390/pr11082249
  • Ali, S., Nohra, C., El Achkar, G., Faraj, J., & Khaled, M. (2025). Heat transfer, exergy, and cost: A sustainable analysis of concentric tube heat exchangers. Case Studies in Thermal Engineering, 68, 105833. https://doi.org/10.1016/j.csite.2025.105833
  • Bejan, A. (1988). Advanced engineering thermodynamics. New York: Wiley.
  • Can, A., Eryener, D., & Buyruk, E. (1999). Experimental studies on influence of process variables to the exergy losses at the double tube heat exchanger. In: S. Kakaç, A. E. Bergles, F. Mayinger, & H. Yüncü (eds) Heat transfer enhancement of heat exchangers (pp. 641-648). Nato ASI Series, vol 355. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_34
  • Colorado, D. (2017). Advanced exergy analysis applied to a single-stage heat transformer. Applied Thermal Engineering, 116, 584-596. https://doi.org/10.1016/j.applthermaleng.2017.01.109
  • Dincer, I., Hussain, M. M., & Al-Zaharnah, I. (2004). Analysis of sectoral energy and exergy use of Saudi Arabia. International Journal of Energy Research, 28(3), 205–243. https://doi.org/10.1002/er.962
  • Fartaj, A., Ting, D. S. K., & Yang, W. W. (2003). Second law analysis of the transcritical CO2 refrigeration cycle. Energy Conversion and Management, 45(13), 2269–2281. https://doi.org/10.1016/j.enconman.2003.07.001
  • Gulenoglu, C., Akturk, F., Aradag, S., Uzol, N. S., & Kakac, S. (2014). Experimental comparison of performances of three different plates for gasketed plate heat exchangers. International Journal of Thermal Sciences, 75, 249-256. https://doi.org/10.1016/j.ijthermalsci.2013.06.012
  • Khaliq, A., & Kaushik, S. C. (2004). Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2), 179-197. https://doi.org/10.1016/j.apenergy.2003.08.002
  • Kanoglu, M., Isık, S. K., & Abusoglu, A. (2005). Performance characteristics of a diesel engine power plant. Energy Conversion and Management, 46(11–12), 1692–1702. https://doi.org/10.1016/j.enconman.2004.10.005
  • Leiner, K. A., & Fiebig, M. (1988). Second law optimization of flat-plate solar air heaters Part I: The concept of net exergy flow and the modeling of solar air heaters. Solar Energy, 41(2), 127–132. https://doi.org/10.1016/0038-092X(88)90128-4
  • Mahmud, S., & Fraser, R. A. (2002). Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates. Exergy, An International Journal, 2(3), 140–146. https://doi.org/10.1016/S1164-0235(02)00062-6
  • Mazaheri, K., & Fazli, M. (2023). Exergy-based methodology to develop design guidelines for performance optimization of a coupled co-axial thermoacoustic refrigerator. International Journal of Thermofluids, 20, 100451. https://doi.org/10.1016/j.ijft.2023.100451
  • Prajapati, P., Raja, B. D., Savaliya, H., Patel, V., & Jouhara, H. (2024). Thermodynamic evaluation of shell and tube heat exchanger through advanced exergy analysis. Energy, 292, 130421. https://doi.org/10.1016/j.energy.2024.130421
  • Reddy, B. V., Ramkiran, G., Ashok Kumar, K., & Nag, P. K. (2002). Second law analysis of a waste heat recovery steam generator. International Journal of Heat and Mass Transfer, 45(9), 1807–1814. https://doi.org/10.1016/S0017-9310(01)00293-9
  • Tian, Z., Chen, X., Zhang, Y., Gao, W., Chen, W., & Peng, H. (2023). Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle. Energy, 268, 126648. https://doi.org/10.1016/j.energy.2023.126648
  • Zeinali, S., & Neshat, E. (2023). Energy, exergy, economy analysis and geometry optimization of spiral coil heat exchangers. Case Studies in Thermal Engineering, 42, 102708. https://doi.org/10.1016/j.csite.2023.102708

Plakalı ve İç İçe Borulu İki Farklı Tip Isı Değiştiricinin Enerji ve Ekserji Analizi

Yıl 2025, Cilt: 30 Sayı: 2, 708 - 718, 31.08.2025

Öz

Bu çalışmada, plakalı ve iç içe borulu ısı değiştiricilerinin enerji ve ekserji analizleri, farklı sıcak akışkan debilerinde (400 l/h, 500 l/h, 600 l/h) ve sabit soğuk akışkan debisinde (300 l/h) paralel akış koşulları altında deneysel olarak incelenmiştir. Deney sonuçlarına göre, sıcak akışkan debisi arttıkça her iki ısı değiştiricide de soğuk akışkanın çıkış sıcaklığı artmıştır. Ekserji analizine göre, sıcak akışkan debisinin artması, her iki ısı değiştiriciden çıkan sıcak ve soğuk akışkanların ekserjilerini artırmıştır. 400 l/h sıcak akışkan debisinde plakalı ısı değiştiricide sıcak akışkanın çıkış ekserjisi 62.12 W iken, 600 l/h debide bu değer 79.22 W'a çıkmıştır. Aynı koşullarda iç içe borulu ısı değiştiricisinin ekserjisi de 400 l/h debisinde 81.35 W iken, 600 l/h debide 119.68 W'a yükselmiştir. Enerji verimliliği analizinde, sıcak akışkanın debisinin artırılmasıyla her iki ısı değiştiricinin birinci yasa verimliliğinde önemli bir artış gözlemlenmiştir. Sıcak akışkan debisi 600 l/h'e çıkarıldığında, iç içe borulu ısı değiştiricinin etkinliği %91'e ulaşırken, plakalı ısı değiştiricinin etkinliği %96'ya çıkmıştır. Ancak, ekserji verimlilikleri, enerji verimliliklerine kıyasla daha düşük bulunmuştur. İç içe borulu ısı değiştiricinin 400 l/h sıcak akışkan debisinde %44.4 olan ekserji verimi, plakalı ısı değiştiricide %41.25 olarak tespit edilmiştir.
Yapılan çalışmada enerji ve ekserji verimleri arasında önemli farklar olduğu gözlenmiştir. Mühendislik uygulamalarında sistem analizlerinde enerji analizlerinin yanında ekserji açısından dan da analizlerin yapılması gerektiği görülmüştür.

Destekleyen Kurum

Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2022-9922 numaralı proje kapsamında desteklenmiştir

Teşekkür

Teşekkür Bu yayın Göksel GÜNDAL’ın Van Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı’nda tamamlanmış olan yüksek lisans tez çalışmasından hazırlanmış olup, Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi tarafından FYL-2022-9922 numaralı proje kapsamında desteklenmiştir. Destekleyen kurum ve kuruluşlara teşekkür ederiz.

Kaynakça

  • Alamu, S. O., Lee, S. W., & Qian, X. (2023). Exergy and energy analysis of the shell-and-tube heat exchanger for a poultry litter co-combustion process. Processes, 11(8), 2249. https://doi.org/10.3390/pr11082249
  • Ali, S., Nohra, C., El Achkar, G., Faraj, J., & Khaled, M. (2025). Heat transfer, exergy, and cost: A sustainable analysis of concentric tube heat exchangers. Case Studies in Thermal Engineering, 68, 105833. https://doi.org/10.1016/j.csite.2025.105833
  • Bejan, A. (1988). Advanced engineering thermodynamics. New York: Wiley.
  • Can, A., Eryener, D., & Buyruk, E. (1999). Experimental studies on influence of process variables to the exergy losses at the double tube heat exchanger. In: S. Kakaç, A. E. Bergles, F. Mayinger, & H. Yüncü (eds) Heat transfer enhancement of heat exchangers (pp. 641-648). Nato ASI Series, vol 355. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_34
  • Colorado, D. (2017). Advanced exergy analysis applied to a single-stage heat transformer. Applied Thermal Engineering, 116, 584-596. https://doi.org/10.1016/j.applthermaleng.2017.01.109
  • Dincer, I., Hussain, M. M., & Al-Zaharnah, I. (2004). Analysis of sectoral energy and exergy use of Saudi Arabia. International Journal of Energy Research, 28(3), 205–243. https://doi.org/10.1002/er.962
  • Fartaj, A., Ting, D. S. K., & Yang, W. W. (2003). Second law analysis of the transcritical CO2 refrigeration cycle. Energy Conversion and Management, 45(13), 2269–2281. https://doi.org/10.1016/j.enconman.2003.07.001
  • Gulenoglu, C., Akturk, F., Aradag, S., Uzol, N. S., & Kakac, S. (2014). Experimental comparison of performances of three different plates for gasketed plate heat exchangers. International Journal of Thermal Sciences, 75, 249-256. https://doi.org/10.1016/j.ijthermalsci.2013.06.012
  • Khaliq, A., & Kaushik, S. C. (2004). Second-law based thermodynamic analysis of Brayton/Rankine combined power cycle with reheat. Applied Energy, 78(2), 179-197. https://doi.org/10.1016/j.apenergy.2003.08.002
  • Kanoglu, M., Isık, S. K., & Abusoglu, A. (2005). Performance characteristics of a diesel engine power plant. Energy Conversion and Management, 46(11–12), 1692–1702. https://doi.org/10.1016/j.enconman.2004.10.005
  • Leiner, K. A., & Fiebig, M. (1988). Second law optimization of flat-plate solar air heaters Part I: The concept of net exergy flow and the modeling of solar air heaters. Solar Energy, 41(2), 127–132. https://doi.org/10.1016/0038-092X(88)90128-4
  • Mahmud, S., & Fraser, R. A. (2002). Thermodynamic analysis of flow and heat transfer inside channel with two parallel plates. Exergy, An International Journal, 2(3), 140–146. https://doi.org/10.1016/S1164-0235(02)00062-6
  • Mazaheri, K., & Fazli, M. (2023). Exergy-based methodology to develop design guidelines for performance optimization of a coupled co-axial thermoacoustic refrigerator. International Journal of Thermofluids, 20, 100451. https://doi.org/10.1016/j.ijft.2023.100451
  • Prajapati, P., Raja, B. D., Savaliya, H., Patel, V., & Jouhara, H. (2024). Thermodynamic evaluation of shell and tube heat exchanger through advanced exergy analysis. Energy, 292, 130421. https://doi.org/10.1016/j.energy.2024.130421
  • Reddy, B. V., Ramkiran, G., Ashok Kumar, K., & Nag, P. K. (2002). Second law analysis of a waste heat recovery steam generator. International Journal of Heat and Mass Transfer, 45(9), 1807–1814. https://doi.org/10.1016/S0017-9310(01)00293-9
  • Tian, Z., Chen, X., Zhang, Y., Gao, W., Chen, W., & Peng, H. (2023). Energy, conventional exergy and advanced exergy analysis of cryogenic recuperative organic rankine cycle. Energy, 268, 126648. https://doi.org/10.1016/j.energy.2023.126648
  • Zeinali, S., & Neshat, E. (2023). Energy, exergy, economy analysis and geometry optimization of spiral coil heat exchangers. Case Studies in Thermal Engineering, 42, 102708. https://doi.org/10.1016/j.csite.2023.102708
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Enerji, Termik Enerji Sistemleri
Bölüm Mühendislik ve Mimarlık / Engineering and Architecture
Yazarlar

İrfan Uçkan 0000-0003-3679-5661

Göksel Gündal 0000-0002-4233-5736

Yayımlanma Tarihi 31 Ağustos 2025
Gönderilme Tarihi 28 Şubat 2025
Kabul Tarihi 20 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 30 Sayı: 2

Kaynak Göster

APA Uçkan, İ., & Gündal, G. (2025). Plakalı ve İç İçe Borulu İki Farklı Tip Isı Değiştiricinin Enerji ve Ekserji Analizi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(2), 708-718.