Determination of Molnupiravir, the Active Pharmaceutical Substance Used in Covid-19 Disease, by Electrochemical Methods
Yıl 2025,
Cilt: 30 Sayı: 2, 752 - 770, 31.08.2025
Mehmet Işıklı
,
Hilal Çelik Kazıcı
Öz
The mutation capacity and unpredictable spread of SARS-CoV-2 complicate the control of the infection and increase the need for advanced sensor technologies for the sensitive analysis of antiviral drugs. In this study, the electrochemical behavior and sensitive voltammetric determination of MLP were described for the first time using multi-walled carbon nanotube (MWCNT) supported ferrite nanoparticle modified glassy carbon electrode (CrFe2O4@MWCNT) prepared by coprecipitation method. The prepared CrFe₂O₄ nanoparticles were characterized by transmission electron microscope (TEM) images, energy dispersive X-ray (SEM/EDX) and X-ray diffraction (XRD) spectra. Cyclic voltammetry (CV) measurements showed good electrochemical activity of MWCNT supported ferrite nanoparticles against oxidation of MLP in 0.1M phosphate buffer. Due to the high electrochemical activity of CrFe₂O₄ nanoparticles, the peak current of MLP showed a significant increase in CrFe₂O₄@MWCNT electrode compared to the plain glassy carbon electrode. According to differential pulse voltammetry (DPV) studies, the developed electrode exhibited a wide linear range (LR) and provided successful results with high sensitivity and low detection limit (LOD). Within the scope of interference studies, it was observed that the performance of the sensor was not significantly affected in the presence of biomolecules such as dopamine (DA), ascorbic acid (AA), Glucose (Gl) and uric acid (UA) and ions such as K+, Na+, Cl-. As a result of stability studies, it was determined that the sensor maintained its stability for 3 days.
In conclusion, the developed CrFe₂O₄/ MWCNT based electrochemical sensor provides high sensitivity, selectivity and stability in MLP analysis, thus providing a strong alternative to existing methods.
Proje Numarası
FYL-2024-11170
Kaynakça
-
Aalami, Z., Hoseinzadeh, M., Manesh, P. H., Aalami, A. H., Es' haghi, Z., Darroudi, M., Sahebkar, A., & Hosseini, H. A. (2024). Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24212
-
Adams, F., & Barbante, C. (2015). Chapter 4 - Nanotechnology and analytical chemistry. In F. Adams & C. Barbante (Eds.), Comprehensive analytical chemistry (Vol. 69, pp. 125–157). Elsevier. https://doi.org/10.1016/B978-0-444-63439-9.00004-9
-
Afkhami, A., Khoshsafar, H., Bagheri, H., & Madrakian, T. (2014). Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sensors and Actuators B: Chemical, 203, 909-918. https://doi.org/10.1016/j.snb.2014.07.031
-
Al-Zahrani, E., Soomro, M. T., Bashami, R. M., Rehman, A. U., Danish, E., Ismail, I. M., Aslam, M., & Hameed, A. (2016). Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. Journal of Environmental Chemical Engineering, 4(4), 4330-4341. https://doi.org/10.1016/j.jece.2016.09.036
-
Amara, A., Penchala, S. D., Else, L., Hale, C., FitzGerald, R., Walker, L., Lyons, R., Fletcher, T., & Khoo, S. (2021). The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva. Journal of Pharmaceutical and Biomedical Analysis, 206, 114356. https://doi.org/10.1016/j.jpba.2021.114356
-
Bagheri, H., Afkhami, A., Saber-Tehrani, M., & Khoshsafar, H. (2012). Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta, 97, 87-95. https://doi.org/10.1016/j.talanta.2012.03.066
-
Baig, N., Sajid, M., & Saleh, T. A. (2019). Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry, 111, 47-61. https://doi.org/10.1016/j.trac.2018.11.044
-
Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). Wiley.
-
Brycht, M., Konecka, K., Sipa, K., Skrzypek, S., & Mirčeski, V. (2019). Electroanalysis of the anthelmintic drug bithionol at edge plane pyrolytic graphite electrode. Electroanalysis, 31(11), 2246-2253. https://doi.org/10.1002/elan.201900322
-
Cao, Y., Mohamed, A. M., Mousavi, M., & Akinay, Y. (2021). Poly (pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe–Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Materials Chemistry and Physics, 259, 124169. https://doi.org/10.1016/j.matchemphys.2020.124169
-
Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85. https://doi.org/10.1016/j.jpowsour.2012.02.013
-
Cui, R., Han, Z., Pan, J., Abdel-Halim, E. S., & Zhu, J. J. (2011). Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes. Electrochimica acta, 58, 179-183. https://doi.org/10.1016/j.electacta.2011.09.030
-
David, I. G., Buleandra, M., Popa, D. E., Cheregi, M. C., David, V., Iorgulescu, E. E., & Tartareanu, G. O. (2022). Recent developments in voltammetric analysis of pharmaceuticals using disposable pencil graphite electrodes. Processes, 10(3), 472. https://doi.org/10.3390/pr10030472
-
Demir, A., Oturan, N., Özyurt, B., Trellu, C., & Oturan, M. A. (2024). Degradation of antiviral drug molnupiravir using a dual function FeIIFeIIILDH@ carbon felt cathode in the heterogeneous electro-Fenton process: Kinetics and mineralization study. Journal of Environmental Chemical Engineering, 12(5), 113665. https://doi.org/10.1016/j.jece.2024.113665
-
Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., & Thio, T. (1996). Electrical conductivity of individual carbon nanotubes. Nature, 382(6586), 54-56. https://doi.org/10.1038/382054a0
-
Ensafi, A. A., Ahmadi, N., Rezaei, B., & Mokhtari Abarghoui, M. (2015). A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta, 134, 745–753. https://doi.org/10.1016/j.talanta.2014.12.028
-
Erk, N., Bouali, W., Mehmandoust, M., & Soylak, M. (2022). An electrochemical sensor for molnupiravir based on a metal‐organic framework composited with poly (3, 4‐ethylene dioxythiophene): poly (styrene sulfonate). ChemistrySelect, 7(46), e202203325. https://doi.org/10.1002/slct.202203325
-
Erşan, T., Giray Dilgin, D., Kumrulu, E., Kumrulu, U., & Dilgin, Y. (2022). Voltammetric determination of favipiravir used as an antiviral drug for the treatment of COVID-19 at pencil graphite electrode. Electroanalysis, 35(4), e202200295. https://doi.org/10.1002/elan.202200295
-
Ganjali, M. R., Norouzi, P., Dinarvand, R., Farrokhi, R., & Moosavi-Movahedi, A. A. (2008). Development of fast Fourier transformations with continuous cyclic voltammetry at an Au microelectrode and its application for the sub nano-molar monitoring of methyl morphine trace amounts. Materials Science and Engineering: C, 28(8), 1311–1318. https://doi.org/10.1016/j.msec.2007.10.077
-
Güneş, M., Karakaya, S., Kocaağa, T., Yıldırım, F., & Dilgin, Y. (2021). Sensitive voltammetric determination of oxymetazoline hydrochloride at a disposable electrode. Monatshefte für Chemie-Chemical Monthly, 152(12), 1505-1513. https://doi.org/10.1007/s00706-021-02862-z
-
İlhan, A. Ş. (2020). Sars-Cov-2 ve COVID-19 Patogenezi. Gazi Sağlık Bilimleri Dergisi, 78-87.
-
Jain, R. (2011). Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloids and Surfaces B: Biointerfaces, 87(2), 423–426. https://doi.org/10.1016/j.colsurfb.2011.06.001
-
Jang, B., Chae, O. B., Park, S. K., Ha, J., Oh, S. M., Na, H. B., & Piao, Y. (2013). Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries. Journal of Materials Chemistry A, 1(48), 15442-15446. https://doi.org/10.1039/C3TA13717A
-
Kablan, S. E., Reçber, T., Tezel, G., Timur, S. S., Karabulut, C., Karabulut, T. C., ... & Nemutlu, E. (2022). Voltammetric sensor for COVID-19 drug Molnupiravir on modified glassy carbon electrode with electrochemically reduced graphene oxide. Journal of Electroanalytical Chemistry, 920, 116579. https://doi.org/10.1016/j.jelechem.2022.116579
-
Karakaya, S., & Dilgin, Y. (2024). Disposable and sensitive electrochemical determination of molnupiravir at a pencil graphite electrode (PGE) by differential pulse voltammetry (DPV). Analytical Letters, 57(5), 783-796. https://doi.org/10.1080/00032719.2023.2224908
-
Kazemi-Abatary, Z., Naderi, L., & Shahrokhian, S. (2024). CuCoP@ Cu (OH) 2 core-shell nanostructure as a robust electrochemical sensor for glucose detection in biological and beverage samples. Microchemical Journal, 200, 110369. https://doi.org/10.1016/j.microc.2024.110369
-
Khezerloo, E., Hekmat, F., Shahrokhian, S., & Iraji Zad, A. (2024). A step toward Molnupiravir, COVID-19 antiviral, detection using cauliflower-like cobalt sulfide-decorated carbon nanotube modified glassy carbon electrodes. Microchemical Journal, 204, 111072. https://doi.org/10.1016/j.microc.2024.111072
-
Khodadadian, M., Jalili, R., Bahrami, M. T., & Bahrami, G. (2017). Adsorptive behavior and voltammetric determination of hydralazine hydrochloride at a glassy carbon electrode modified with multiwalled carbon nanotubes. Iranian Journal of Pharmaceutical Research: IJPR, 16(4), 1312. https://doi.org/10.22037/ijpr.2017.2134
-
Lee, P. L., Chiu, Y. K., Sun, Y. C., & Ling, Y. C. (2010). Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon, 48(5), 1397-1404. https://doi.org/10.1016/j.carbon.2009.12.030
-
Li, X., Wang, J., Zhang, S., Sun, L., Zhang, W., Dang, F., Seifert, H. J., & Du, Y. (2021). Intrinsic defects in LiMn₂O₄: First-principles calculations. ACS Omega, 6(33), 21255-21264. https://doi.org/10.1021/acsomega.1c01162
-
Liu, L., Cui, H., An, H., Zhai, J., & Pan, Y. (2017). Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics, 23(6), 1517–1523. https://doi.org/10.1007/s11581-017-1970-3
-
Majumder, S., Haripriya, V., Karade, S. S., Kim, D., Venkatesan, R., Nguyen, H. M., Pabba, D. P., Alshehri, S. A., & Kim, K. H. (2025). Nanostructured CuFe₂O₄ via urea tuning: A new avenue for energy storage. Journal of Alloys and Compounds, 1031, 180997. https://doi.org/10.1016/j.jallcom.2025.180997
-
Mashhadizadeh, M. H., & Rasouli, F. (2014). Design of a new carbon paste electrode modified with TiO₂ nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanalysis, 26(10), 2033–2042. https://doi.org/10.1002/elan.201400141
-
Medetalibeyoğlu, A., Ezirmik, E., Şenkal, N., Bayrakdar, S., Aktar, İ., Akas, R., ... & Tükek, T. (2022). Patient characteristics and risk factors for mortality in 504 hospitalized patients due to COVID-19. Journal of Istanbul Faculty of Medicine, 85(1), 1-8.
-
Mubasher, M., Hassan, M., Ullah, S., & Ahmad, Z. (2021). Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries. Carbon, 171, 179-187. https://doi.org/10.1016/j.carbon.2020.08.080
-
Ozkan, S. A., Kauffmann, J. M., & Zuman, P. (2015). Electroanalytical techniques most frequently used in drug analysis. Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications (pp. 45-81). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-47138-8_3
-
Qu, J., Dong, Y., Wang, Y., & Xing, H. (2015). A novel sensor based on Fe3O4 nanoparticles–multiwalled carbon nanotubes composite film for determination of nitrite. Sensing and Bio-Sensing Research, 3, 74-78. https://doi.org/10.1016/j.sbsr.2014.10.009
-
Patil, R. P., Delekar, S. D., Mane, D. R., & Hankare, P. P. (2013). Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results in Physics, 3, 129-133. https://doi.org/10.1016/j.rinp.2013.08.002
-
Pournaghi-Azar, M. H., & Saadatirad, A. (2008). Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. Journal of Electroanalytical Chemistry, 624(1-2), 293-298. https://doi.org/10.1016/j.jelechem.2008.09.016
-
Rajalakshmi, K., & John, S. A. (2015). Highly sensitive determination of nitrite using FMWCNTs-conducting polymer composite modified electrode. Sensors and Actuators B: Chemical, 215, 119-124. https://doi.org/10.1016/j.snb.2015.03.050
-
Reçber, T., Timur, S. S., Kablan, S. E., Yalçın, F., Karabulut, T. C., Gürsoy, R. N., ... & Nemutlu, E. (2022). A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies. Journal of Pharmaceutical and Biomedical Analysis, 214, 114693. https://doi.org/10.1016/j.jpba.2022.114693
-
Salarizadeh, N., Sadri, M., Hosseini, H., & Sajedi, R. (2017). Synthesis and physicochemical characterization of Ni x Zn x-Fe 2 O 4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity. Carbon Letters, 24, 103-110. https://doi.org/10.5714/CL.2017.24.103
-
Saraya, R. E., Deeb, S. E., Salman, B. I., & Ibrahim, A. E. (2022). Highly sensitive high‐performance thin‐layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations. Journal of Separation Science, 45(14), 2582-2590. https://doi.org/10.1002/jssc.202200178
-
Sharaf, Y. A., El Deeb, S., Ibrahim, A. E., Al-Harrasi, A., & Sayed, R. A. (2022). Two green micellar HPLC and mathematically assisted UV spectroscopic methods for the simultaneous determination of molnupiravir and favipiravir as a novel combined COVID-19 antiviral regimen. Molecules, 27(7), 2330. https://doi.org/10.3390/molecules27072330
-
Sharma, T., Baig, M. H., Khan, M. I., Alotaibi, S. S., Alorabi, M., & Dong, J. J. (2022). Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharmaceutical Journal, 30(3), 217-224. https://doi.org/10.1016/j.jsps.2022.01.005
-
Sherigara, B. S., Kutner, W., & D'Souza, F. (2003). Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis, 15(9), 753–772. https://doi.org/10.1002/elan.200390094
-
Sohouli, E., Ghalkhani, M., Rostami, M., Rahimi-Nasrabadi, M., & Ahmadi, F. (2020). A noble electrochemical sensor based on TiO2@ CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Materials Science and Engineering: C, 117, 111300. https://doi.org/10.1016/j.msec.2020.111300
-
Sohouli, E., Ghalkhani, M., Shahdost-fard, F., Khosrowshahi, E. M., Rahimi-Nasrabadi, M., & Ahmadi, F. (2021). Sensitive sensor based on TiO2NPs nano-composite for the rapid analysis of Zolpidem, a psychoactive drug with cancer-causing potential. Materials Today Communications, 26, 101945. https://doi.org/10.1016/j.mtcomm.2020.101945
-
Tajik, S., Beitollahi, H., Shahsavari, S., & Nejad, F. G. (2022). Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere, 291, 132736. https://doi.org/10.1016/j.chemosphere.2021.132736
-
Tonelli, D., Scavette, E., & Gualandi, I. (2019). Electrochemical deposition of nanomaterials for electrochemical sensing. Sensorsa, 19(5), 1189. https://doi.org/10.3390/s19051186
-
Vural, K., Karakaya, S., Dilgin, D. G., Gökçel, H. İ., & Dilgin, Y. (2023). Voltammetric determination of Molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. Microchemical Journal, 184, 108195. https://doi.org/10.1016/j.microc.2022.108195
-
Wang, J. (1991). Modified electrodes for electrochemical sensors. Electroanalysis, 3(4‐5), 255-259. https://doi.org/10.1002/elan.1140030404
-
Wu, Y., Yang, X., Liu, S., Xing, Y., Peng, J., Peng, Y., Ni, G., & Jin, X. (2020). One-step synthesis of Ni (OH) 2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O 2 fuel cell. RSC Advances, 10(65), 39447-39454. https://doi.org/10.1039/D0RA00622J
-
Zamorano-Cuervo, N., & Grandvaux, N. (2020). ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife, 9, e61390. https://doi.org/10.7554/eLife.61390
-
Zhang, Z., Li, W., Zou, R., Kang, W., Chui, Y. S., Yuen, M. F., Lee, C. S., & Zhang, W. (2015). Layer stacked cobalt ferrite (CoFe₂O₄) mesoporous platelets for high performance lithium ion battery anodes. Journal of Materials Chemistry A, 3, 6990–6997. https://doi.org/10.1039/C5TA00073D
Kovid-19 Hastalığında Kullanılan İlaç Etken Maddesi Molnupiravirin Elektrokimyasal Yöntemlerle Belirlenmesi
Yıl 2025,
Cilt: 30 Sayı: 2, 752 - 770, 31.08.2025
Mehmet Işıklı
,
Hilal Çelik Kazıcı
Öz
SARS-CoV-2’nin mutasyon kapasitesi ve öngörülemeyen yayılımı, enfeksiyonun kontrol altına alınmasını zorlaştırmakta ve antiviral ilaçların hassas analizine yönelik gelişmiş sensör teknolojilerine duyulan ihtiyacı artırmaktadır. Bu çalışmada, birlikte çöktürme yöntemiyle hazırlanmış çok duvarlı karbon nanotüp (MWCNT) destekli ferrit nanopartikül modifiye camımsı karbon elektrodu (CrFe2O4@MWCNT) kullanılarak MLP'nin elektrokimyasal davranışı ve hassas voltammetrik tayini ilk kez tanımlanmıştır. Hazırlanan CrFe₂O₄ nanopartikülleri, transmisyon elektron mikroskobu (TEM) görüntüleri, enerji dağılımlı X-ışını (SEM/EDX) ve X-ışını kırınımı (XRD) spektrumları ile karakterize edilmiştir. Döngüsel voltammetri (CV) ölçümleri, MWCNT destekli ferrit nanopartiküllerinin MLP'nin 0.1M fosfat tamponunda oksidasyonuna karşı iyi bir elektrokimyasal aktivite göstermiştir. CrFe₂O₄ nanopartiküllerinin yüksek elektrokimyasal aktivitesi sayesinde, MLP'nin pik akımı, yalın camımsı karbon elektrot ile karşılaştırıldığında CrFe₂O₄@MWCNT elektrodunda belirgin bir artış göstermiştir. Diferansiyel puls voltammetri (DPV) çalışmalarına göre, geliştirilen elektrot geniş bir doğrusal aralık (LR) sergileyerek yüksek duyarlılık ve düşük tespit sınırı (LOD) ile başarılı sonuçlar elde edilmesini sağlamıştır. Girişim çalışmaları kapsamında, dopamin (DA), askorbik asit (AA), Glukoz (Gl) ve ürik asit (UA) gibi biyomoleküllerin ve K+, Na+, Cl- gibi iyonların varlığında sensörün performansının önemli ölçüde etkilenmediği gözlemlenmiştir. Stabilite çalışmaları sonucunda, sensörün 3 gün boyunca kararlılığını koruduğu belirlenmiştir. Sonuç olarak, geliştirilen MWCNT destekli CrFe₂O₄ tabanlı elektrokimyasal sensör, MLP analizinde yüksek hassasiyet, seçicilik ve stabilite sunarak mevcut yöntemlere kıyasla güçlü bir alternatif oluşturmuştur.
Etik Beyan
Çalışmanın tüm süreçlerinin araştırma ve yayın etiğine uygun olduğunu, etik kurallara ve bilimsel atıf gösterme ilkelerine uyduğumu beyan ederim.
Destekleyen Kurum
Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Proje Numarası
FYL-2024-11170
Teşekkür
Bu çalışma Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP) projesi (Proje No: FYL-2024-11170) tarafından desteklenmiştir
Kaynakça
-
Aalami, Z., Hoseinzadeh, M., Manesh, P. H., Aalami, A. H., Es' haghi, Z., Darroudi, M., Sahebkar, A., & Hosseini, H. A. (2024). Synthesis, characterization, and photocatalytic activities of green sol-gel ZnO nanoparticles using Abelmoschus esculentus and Salvia officinalis: A comparative study versus co-precipitation-synthesized nanoparticles. Heliyon, 10(2). https://doi.org/10.1016/j.heliyon.2024.e24212
-
Adams, F., & Barbante, C. (2015). Chapter 4 - Nanotechnology and analytical chemistry. In F. Adams & C. Barbante (Eds.), Comprehensive analytical chemistry (Vol. 69, pp. 125–157). Elsevier. https://doi.org/10.1016/B978-0-444-63439-9.00004-9
-
Afkhami, A., Khoshsafar, H., Bagheri, H., & Madrakian, T. (2014). Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sensors and Actuators B: Chemical, 203, 909-918. https://doi.org/10.1016/j.snb.2014.07.031
-
Al-Zahrani, E., Soomro, M. T., Bashami, R. M., Rehman, A. U., Danish, E., Ismail, I. M., Aslam, M., & Hameed, A. (2016). Fabrication and performance of magnetite (Fe3O4) modified carbon paste electrode for the electrochemical detection of chlorite ions in aqueous medium. Journal of Environmental Chemical Engineering, 4(4), 4330-4341. https://doi.org/10.1016/j.jece.2016.09.036
-
Amara, A., Penchala, S. D., Else, L., Hale, C., FitzGerald, R., Walker, L., Lyons, R., Fletcher, T., & Khoo, S. (2021). The development and validation of a novel LC-MS/MS method for the simultaneous quantification of Molnupiravir and its metabolite ß-d-N4-hydroxycytidine in human plasma and saliva. Journal of Pharmaceutical and Biomedical Analysis, 206, 114356. https://doi.org/10.1016/j.jpba.2021.114356
-
Bagheri, H., Afkhami, A., Saber-Tehrani, M., & Khoshsafar, H. (2012). Preparation and characterization of magnetic nanocomposite of Schiff base/silica/magnetite as a preconcentration phase for the trace determination of heavy metal ions in water, food and biological samples using atomic absorption spectrometry. Talanta, 97, 87-95. https://doi.org/10.1016/j.talanta.2012.03.066
-
Baig, N., Sajid, M., & Saleh, T. A. (2019). Recent trends in nanomaterial-modified electrodes for electroanalytical applications. TrAC Trends in Analytical Chemistry, 111, 47-61. https://doi.org/10.1016/j.trac.2018.11.044
-
Bard, A. J., & Faulkner, L. R. (2001). Electrochemical methods: Fundamentals and applications (2nd ed.). Wiley.
-
Brycht, M., Konecka, K., Sipa, K., Skrzypek, S., & Mirčeski, V. (2019). Electroanalysis of the anthelmintic drug bithionol at edge plane pyrolytic graphite electrode. Electroanalysis, 31(11), 2246-2253. https://doi.org/10.1002/elan.201900322
-
Cao, Y., Mohamed, A. M., Mousavi, M., & Akinay, Y. (2021). Poly (pyrrole-co-styrene sulfonate)-encapsulated MWCNT/Fe–Ni alloy/NiFe2O4 nanocomposites for microwave absorption. Materials Chemistry and Physics, 259, 124169. https://doi.org/10.1016/j.matchemphys.2020.124169
-
Casas, C., & Li, W. (2012). A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources, 208, 74–85. https://doi.org/10.1016/j.jpowsour.2012.02.013
-
Cui, R., Han, Z., Pan, J., Abdel-Halim, E. S., & Zhu, J. J. (2011). Direct electrochemistry of glucose oxidase and biosensing for glucose based on helical carbon nanotubes modified magnetic electrodes. Electrochimica acta, 58, 179-183. https://doi.org/10.1016/j.electacta.2011.09.030
-
David, I. G., Buleandra, M., Popa, D. E., Cheregi, M. C., David, V., Iorgulescu, E. E., & Tartareanu, G. O. (2022). Recent developments in voltammetric analysis of pharmaceuticals using disposable pencil graphite electrodes. Processes, 10(3), 472. https://doi.org/10.3390/pr10030472
-
Demir, A., Oturan, N., Özyurt, B., Trellu, C., & Oturan, M. A. (2024). Degradation of antiviral drug molnupiravir using a dual function FeIIFeIIILDH@ carbon felt cathode in the heterogeneous electro-Fenton process: Kinetics and mineralization study. Journal of Environmental Chemical Engineering, 12(5), 113665. https://doi.org/10.1016/j.jece.2024.113665
-
Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., & Thio, T. (1996). Electrical conductivity of individual carbon nanotubes. Nature, 382(6586), 54-56. https://doi.org/10.1038/382054a0
-
Ensafi, A. A., Ahmadi, N., Rezaei, B., & Mokhtari Abarghoui, M. (2015). A new electrochemical sensor for the simultaneous determination of acetaminophen and codeine based on porous silicon/palladium nanostructure. Talanta, 134, 745–753. https://doi.org/10.1016/j.talanta.2014.12.028
-
Erk, N., Bouali, W., Mehmandoust, M., & Soylak, M. (2022). An electrochemical sensor for molnupiravir based on a metal‐organic framework composited with poly (3, 4‐ethylene dioxythiophene): poly (styrene sulfonate). ChemistrySelect, 7(46), e202203325. https://doi.org/10.1002/slct.202203325
-
Erşan, T., Giray Dilgin, D., Kumrulu, E., Kumrulu, U., & Dilgin, Y. (2022). Voltammetric determination of favipiravir used as an antiviral drug for the treatment of COVID-19 at pencil graphite electrode. Electroanalysis, 35(4), e202200295. https://doi.org/10.1002/elan.202200295
-
Ganjali, M. R., Norouzi, P., Dinarvand, R., Farrokhi, R., & Moosavi-Movahedi, A. A. (2008). Development of fast Fourier transformations with continuous cyclic voltammetry at an Au microelectrode and its application for the sub nano-molar monitoring of methyl morphine trace amounts. Materials Science and Engineering: C, 28(8), 1311–1318. https://doi.org/10.1016/j.msec.2007.10.077
-
Güneş, M., Karakaya, S., Kocaağa, T., Yıldırım, F., & Dilgin, Y. (2021). Sensitive voltammetric determination of oxymetazoline hydrochloride at a disposable electrode. Monatshefte für Chemie-Chemical Monthly, 152(12), 1505-1513. https://doi.org/10.1007/s00706-021-02862-z
-
İlhan, A. Ş. (2020). Sars-Cov-2 ve COVID-19 Patogenezi. Gazi Sağlık Bilimleri Dergisi, 78-87.
-
Jain, R. (2011). Voltammetric determination of cefpirome at multiwalled carbon nanotube modified glassy carbon sensor based electrode in bulk form and pharmaceutical formulation. Colloids and Surfaces B: Biointerfaces, 87(2), 423–426. https://doi.org/10.1016/j.colsurfb.2011.06.001
-
Jang, B., Chae, O. B., Park, S. K., Ha, J., Oh, S. M., Na, H. B., & Piao, Y. (2013). Solventless synthesis of an iron-oxide/graphene nanocomposite and its application as an anode in high-rate Li-ion batteries. Journal of Materials Chemistry A, 1(48), 15442-15446. https://doi.org/10.1039/C3TA13717A
-
Kablan, S. E., Reçber, T., Tezel, G., Timur, S. S., Karabulut, C., Karabulut, T. C., ... & Nemutlu, E. (2022). Voltammetric sensor for COVID-19 drug Molnupiravir on modified glassy carbon electrode with electrochemically reduced graphene oxide. Journal of Electroanalytical Chemistry, 920, 116579. https://doi.org/10.1016/j.jelechem.2022.116579
-
Karakaya, S., & Dilgin, Y. (2024). Disposable and sensitive electrochemical determination of molnupiravir at a pencil graphite electrode (PGE) by differential pulse voltammetry (DPV). Analytical Letters, 57(5), 783-796. https://doi.org/10.1080/00032719.2023.2224908
-
Kazemi-Abatary, Z., Naderi, L., & Shahrokhian, S. (2024). CuCoP@ Cu (OH) 2 core-shell nanostructure as a robust electrochemical sensor for glucose detection in biological and beverage samples. Microchemical Journal, 200, 110369. https://doi.org/10.1016/j.microc.2024.110369
-
Khezerloo, E., Hekmat, F., Shahrokhian, S., & Iraji Zad, A. (2024). A step toward Molnupiravir, COVID-19 antiviral, detection using cauliflower-like cobalt sulfide-decorated carbon nanotube modified glassy carbon electrodes. Microchemical Journal, 204, 111072. https://doi.org/10.1016/j.microc.2024.111072
-
Khodadadian, M., Jalili, R., Bahrami, M. T., & Bahrami, G. (2017). Adsorptive behavior and voltammetric determination of hydralazine hydrochloride at a glassy carbon electrode modified with multiwalled carbon nanotubes. Iranian Journal of Pharmaceutical Research: IJPR, 16(4), 1312. https://doi.org/10.22037/ijpr.2017.2134
-
Lee, P. L., Chiu, Y. K., Sun, Y. C., & Ling, Y. C. (2010). Synthesis of a hybrid material consisting of magnetic iron-oxide nanoparticles and carbon nanotubes as a gas adsorbent. Carbon, 48(5), 1397-1404. https://doi.org/10.1016/j.carbon.2009.12.030
-
Li, X., Wang, J., Zhang, S., Sun, L., Zhang, W., Dang, F., Seifert, H. J., & Du, Y. (2021). Intrinsic defects in LiMn₂O₄: First-principles calculations. ACS Omega, 6(33), 21255-21264. https://doi.org/10.1021/acsomega.1c01162
-
Liu, L., Cui, H., An, H., Zhai, J., & Pan, Y. (2017). Electrochemical detection of aqueous nitrite based on poly(aniline-co-o-aminophenol)-modified glassy carbon electrode. Ionics, 23(6), 1517–1523. https://doi.org/10.1007/s11581-017-1970-3
-
Majumder, S., Haripriya, V., Karade, S. S., Kim, D., Venkatesan, R., Nguyen, H. M., Pabba, D. P., Alshehri, S. A., & Kim, K. H. (2025). Nanostructured CuFe₂O₄ via urea tuning: A new avenue for energy storage. Journal of Alloys and Compounds, 1031, 180997. https://doi.org/10.1016/j.jallcom.2025.180997
-
Mashhadizadeh, M. H., & Rasouli, F. (2014). Design of a new carbon paste electrode modified with TiO₂ nanoparticles to use in an electrochemical study of codeine and simultaneous determination of codeine and acetaminophen in human plasma serum samples. Electroanalysis, 26(10), 2033–2042. https://doi.org/10.1002/elan.201400141
-
Medetalibeyoğlu, A., Ezirmik, E., Şenkal, N., Bayrakdar, S., Aktar, İ., Akas, R., ... & Tükek, T. (2022). Patient characteristics and risk factors for mortality in 504 hospitalized patients due to COVID-19. Journal of Istanbul Faculty of Medicine, 85(1), 1-8.
-
Mubasher, M., Hassan, M., Ullah, S., & Ahmad, Z. (2021). Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: High performance anode material for lithium-ion batteries. Carbon, 171, 179-187. https://doi.org/10.1016/j.carbon.2020.08.080
-
Ozkan, S. A., Kauffmann, J. M., & Zuman, P. (2015). Electroanalytical techniques most frequently used in drug analysis. Electroanalysis in Biomedical and Pharmaceutical Sciences: Voltammetry, Amperometry, Biosensors, Applications (pp. 45-81). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-47138-8_3
-
Qu, J., Dong, Y., Wang, Y., & Xing, H. (2015). A novel sensor based on Fe3O4 nanoparticles–multiwalled carbon nanotubes composite film for determination of nitrite. Sensing and Bio-Sensing Research, 3, 74-78. https://doi.org/10.1016/j.sbsr.2014.10.009
-
Patil, R. P., Delekar, S. D., Mane, D. R., & Hankare, P. P. (2013). Synthesis, structural and magnetic properties of different metal ion substituted nanocrystalline zinc ferrite. Results in Physics, 3, 129-133. https://doi.org/10.1016/j.rinp.2013.08.002
-
Pournaghi-Azar, M. H., & Saadatirad, A. (2008). Simultaneous voltammetric and amperometric determination of morphine and codeine using a chemically modified-palladized aluminum electrode. Journal of Electroanalytical Chemistry, 624(1-2), 293-298. https://doi.org/10.1016/j.jelechem.2008.09.016
-
Rajalakshmi, K., & John, S. A. (2015). Highly sensitive determination of nitrite using FMWCNTs-conducting polymer composite modified electrode. Sensors and Actuators B: Chemical, 215, 119-124. https://doi.org/10.1016/j.snb.2015.03.050
-
Reçber, T., Timur, S. S., Kablan, S. E., Yalçın, F., Karabulut, T. C., Gürsoy, R. N., ... & Nemutlu, E. (2022). A stability indicating RP-HPLC method for determination of the COVID-19 drug molnupiravir applied using nanoformulations in permeability studies. Journal of Pharmaceutical and Biomedical Analysis, 214, 114693. https://doi.org/10.1016/j.jpba.2022.114693
-
Salarizadeh, N., Sadri, M., Hosseini, H., & Sajedi, R. (2017). Synthesis and physicochemical characterization of Ni x Zn x-Fe 2 O 4/MWCNT nanostructures as enzyme mimetics with peroxidase-like catalytic activity. Carbon Letters, 24, 103-110. https://doi.org/10.5714/CL.2017.24.103
-
Saraya, R. E., Deeb, S. E., Salman, B. I., & Ibrahim, A. E. (2022). Highly sensitive high‐performance thin‐layer chromatography method for the simultaneous determination of molnupiravir, favipiravir, and ritonavir in pure forms and pharmaceutical formulations. Journal of Separation Science, 45(14), 2582-2590. https://doi.org/10.1002/jssc.202200178
-
Sharaf, Y. A., El Deeb, S., Ibrahim, A. E., Al-Harrasi, A., & Sayed, R. A. (2022). Two green micellar HPLC and mathematically assisted UV spectroscopic methods for the simultaneous determination of molnupiravir and favipiravir as a novel combined COVID-19 antiviral regimen. Molecules, 27(7), 2330. https://doi.org/10.3390/molecules27072330
-
Sharma, T., Baig, M. H., Khan, M. I., Alotaibi, S. S., Alorabi, M., & Dong, J. J. (2022). Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharmaceutical Journal, 30(3), 217-224. https://doi.org/10.1016/j.jsps.2022.01.005
-
Sherigara, B. S., Kutner, W., & D'Souza, F. (2003). Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis, 15(9), 753–772. https://doi.org/10.1002/elan.200390094
-
Sohouli, E., Ghalkhani, M., Rostami, M., Rahimi-Nasrabadi, M., & Ahmadi, F. (2020). A noble electrochemical sensor based on TiO2@ CuO-N-rGO and poly (L-cysteine) nanocomposite applicable for trace analysis of flunitrazepam. Materials Science and Engineering: C, 117, 111300. https://doi.org/10.1016/j.msec.2020.111300
-
Sohouli, E., Ghalkhani, M., Shahdost-fard, F., Khosrowshahi, E. M., Rahimi-Nasrabadi, M., & Ahmadi, F. (2021). Sensitive sensor based on TiO2NPs nano-composite for the rapid analysis of Zolpidem, a psychoactive drug with cancer-causing potential. Materials Today Communications, 26, 101945. https://doi.org/10.1016/j.mtcomm.2020.101945
-
Tajik, S., Beitollahi, H., Shahsavari, S., & Nejad, F. G. (2022). Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere, 291, 132736. https://doi.org/10.1016/j.chemosphere.2021.132736
-
Tonelli, D., Scavette, E., & Gualandi, I. (2019). Electrochemical deposition of nanomaterials for electrochemical sensing. Sensorsa, 19(5), 1189. https://doi.org/10.3390/s19051186
-
Vural, K., Karakaya, S., Dilgin, D. G., Gökçel, H. İ., & Dilgin, Y. (2023). Voltammetric determination of Molnupiravir used in treatment of the COVID-19 at magnetite nanoparticle modified carbon paste electrode. Microchemical Journal, 184, 108195. https://doi.org/10.1016/j.microc.2022.108195
-
Wang, J. (1991). Modified electrodes for electrochemical sensors. Electroanalysis, 3(4‐5), 255-259. https://doi.org/10.1002/elan.1140030404
-
Wu, Y., Yang, X., Liu, S., Xing, Y., Peng, J., Peng, Y., Ni, G., & Jin, X. (2020). One-step synthesis of Ni (OH) 2/MWCNT nanocomposites for constructing a nonenzymatic hydroquinone/O 2 fuel cell. RSC Advances, 10(65), 39447-39454. https://doi.org/10.1039/D0RA00622J
-
Zamorano-Cuervo, N., & Grandvaux, N. (2020). ACE2: Evidence of role as entry receptor for SARS-CoV-2 and implications in comorbidities. eLife, 9, e61390. https://doi.org/10.7554/eLife.61390
-
Zhang, Z., Li, W., Zou, R., Kang, W., Chui, Y. S., Yuen, M. F., Lee, C. S., & Zhang, W. (2015). Layer stacked cobalt ferrite (CoFe₂O₄) mesoporous platelets for high performance lithium ion battery anodes. Journal of Materials Chemistry A, 3, 6990–6997. https://doi.org/10.1039/C5TA00073D