Araştırma Makalesi
BibTex RIS Kaynak Göster

Azerbaycan'ın Gedebay ilçesinde dağlık tarım topraklarının ağır metal içeriği ve ekolojik risk değerlendirmesi

Yıl 2024, , 73 - 86, 18.04.2024
https://doi.org/10.20289/zfdergi.1386603

Öz

Amaç: Amaç: Çalışmanın amacı, i) ağır metallerin dağılım özelliklerini araştırmak, ii) temel toprak özellikleri ile ilişkilerini incelemek ve iii) potansiyel kaynaklarını ve ekolojik risklerini karakterize etmektir.
Materyal ve Yöntem: Kafkas Dağları'nda (Gadabay bölgesi) yer alan temsili bir tarım alanında Çernozem toprağının yüzey katmanından (0-15 cm) toplam 85 örnek toplanmış, ağır metal içerikleri ve temel toprak özellikleri belirlenmiştir.
Araştırma Bulguları: Ağır metallerin ortalamaları azalan bir sıra izlemiştir: Mn>Zn>Cu>Cr>Ni>Co>Pb>As>Se>Cd ve bazı ağır metaller (As, Cd, Se) parçalı bir dağılım sergilemiştir. Co, Cr, Mn, Se ve Zn içerikleri arka plan konsantrasyonundan daha yüksek iken diğerleri (As, Cd, Co, Cu, Pb ve Zn) izin verilen maksimum konsantrasyonu aştı.
Sonuç: Ağır metallerin uzaysal dağılımı, tipik ve elemente özgü dağılımlarıyla karakterize edilmiştir.. Belirtilen değişkenlik muhtemelen jeolojik özellikler (toprak mineralojisi), madencilik geçmişi ve tarımsal uygulamalarla ilgilidir. Kireçtaşı ve kil minerallerinin varlığı sırasıyla Cd, Cu ve Se ile Mn ve Pb'nin birlikteliğine katkıda bulunmuştur. Kum içeriği Cr ve Cu'nun hareketliliğini etkiledi. pH ile Cr, Ni ve Se arasındaki ilişkiler, ana materyalin bu metallerin dağılımı üzerindeki etkisinin göstergesiydi.

Kaynakça

  • Angelone, M. & C. Bini, 2009. “Trace Elements Concentrations in Soils and Plants of Western Europe, 19-44”. In: Biogeochemistry of Trace Metals. (Eds. D.C. Adriano), London, Tokyo, Boca Raton, Ann Arbor, Lewis Publishers, 59 pp.
  • Bayraklı, B. & D. Dengiz, 2019. Determination of heavy metal risk and their enrichment factor in intensive cultivated soils of Tokat Province. Eurasian Journal of Soil Science, 8 (3): 249-256.
  • Borůvka, L., O. Vacek & J. Jehlička, 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128 (3-4): 289-300.
  • Bos, R., M. Huijbregts & W. Peijnenburg, 2005. Soil type-specific environmental quality standards for zinc in Dutch soil. Integrated Environmental Assessment and Management, 1 (3): 252-258.
  • Bradley, R. I., 1980. Trace elements in soils around, Llechryd, Dyfed, Wales. Geoderma, 24: 17-23.
  • Brady, J.P., G.A. Ayoko, W.N. Martens & A. Goonetilleke, 2015. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187 (5): 306.
  • Celik, I., I. Ortas & S. Kilic, 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78: 59-67.
  • Chen, T.B., Y.M. Zheng, M.Lei, Z.C. Huang, H.T. Wu, H. Chen, K.K. Fan, K. Yu, X. Wu & Q.Z. Tian, 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60 (4): 542-551.
  • Dinh, Q.T., Z. Cui, J. Huang, T. Tran, D. Wang, W. Yang, F. Zhou, M. Wang, D. Yu & D. Liang. 2018. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112: 294-309.
  • Esser, K.B., J.G. Bockheim & P.A. Helme, 1991. Trace element distribution in soils formed in the Indiana dunes. United States of America Soil Science, 152: 340-350. http://dx.doi.org/10.1097/00010694-199111000-00005.
  • Fashola, M.O., V.M. Ngole-Jeme & O.O. Babalola, 2016. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13 (11): 1047. https://doi:10.3390/ijerph13111047.
  • Fleming, G.A., 1980. “Essential Micronutrients, 199-234”. In: Applied Soil Trace Elements (Eds: B.E. Davis), Vol 2, New York, John Wiley&Sons, 482 pp.
  • Fordyce, F.M., 2013. “Selenium Deficiency and Toxicity in the Environment, 375-416”. In: Essentials of Medical Geology (Eds. O. Selinus), Dordrech, Springer, 805 pp.
  • Gee, G.W., & J.W. Bauder, 1986. “Particle Size Analysis, 383-409”. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods (Eds. A. Klute), Madison, WI, ASA and SSSA, 1188 pp.
  • GN 2.1.7.2041-06. Native Standard on Maximum Permissible Concentrations of Toxic Substances in Atmosphere Air, Soils and Surface Water Resources Annexes to the Resolution of Cabinet of Ministers of the Republic of Azerbaijan about Confirmation of Legislative Regulatory Documents on the Maximum Permissible Concentrations of Toxic Substances in Atmosphere Air, Soils and Surface Water Resources. Baku, 2000, 58 pp.
  • Hadzi G.Y., G.A. Ayoko, D.K., Essumang & S.K.D. Osae, 2019. Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41: 2821-2843. https://doi:10.1007/s10653-019-00332-4.
  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14 (8): 975-1001.
  • Haluschak, P., R.G. Eilers, G.F. Mills & S. Grift, 1998. Status of Selected Trace Elements in Agricultural Soils of Southern Manitoba. Technical Report 1998-6E, Land Resource Unit. Brandon Research Centre, Research Branch. Agriculture and Agri-Food Canada, 70 pp.
  • Han, F.X., W.L. Kingery, J.E. Hargreaves & T.W. Walker, 2007. Effects of land uses on solid-phase distribution of micronutrients in selected vertisols of the Mississippi River Delta. Geoderma, 142: 96-103. https://doi:10.1016/j.geoderma.2007.08.006.
  • Han, J., Z. Mammadov, M. Kim, E. Mammadov, S. Lee, J. Park, G. Mammadov, A. Guliyev & H.M. Ro, 2021. Spatial distribution of salinity and heavy metals in surface soils on the Mugan Plain, the Republic of Azerbaijan. Environmental Monitoring and Assessment, 193 (95): 1-20. https://doi.org/10.1007/s10661-021-08877-7.
  • Hani, A. & E. Pazira, 2010. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176: 677-691.
  • Herencia, J.F., P.A. García-Galavís & C. Maqueda, 2011. Long-term effect of organic and mineral fertilization on soil physical properties under greenhouse and outdoor management practices. Pedosphere, 21: 443-453.
  • Hu, B., X. Jia, J. Hu, D. Xu, F. Xia & Y. Li, 2017. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14 (9): 1042.
  • Hu, Y., X. Liu, J. Bai, K. Shih, E. Zeng & H. Cheng, 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science Pollution Research, 20: 6150.
  • Ismayil, J., F. Arik & J. Özen, 2018. Preliminary geological and mineralogical features of Gedabek (western Azerbaijan) Au-Cu deposit. Omer Halisdemir University Journal of Engineering Sciences, 7 (1): 475-482.
  • IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106, FAO, Rome, Italy, 192 pp.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants IV. Boca Raton, FL, USA, CRC Press, Taylor and Francis Group, 548 pp.
  • Kandziora-Ciupa, M., A. Nadgórska-Socha & G. Barczyk, 2021. The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. Rhizosphere under different field conditions. Ecotoxicology, 30: 292-310. https://doi.org/10.1007/s10646-021-02345-1
  • Karimov, G.I., 1976. Gədəbəy Filiz Rayonunun Petrologiyası və Minerallaşması [Petrology and mineralization of Gadabay ore district]. Baku, Azerbaijan: Elm, 175 pp.
  • Kars, N. & O. Dengiz, 2020. Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological conditions. Eurasian Journal of Soil Science, 9 (3): 194-201.
  • Lasota, J., E. Błońska, S. Łyszczarz & M. Tibett, 2020. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water, Air, and Soil Pollution, 231 (80): 1-13.
  • Lee, B.D., B.J. Carter, N.T. Basta & B. Weaver, 1997. Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61: 218-223. http://dx.doi.org/10.2136/sssaj1997.03615995006100010030x
  • Li, Z., R.L. Schneider, S.J. Morreale, Y. Xie, C. Li & J. Li, 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma, 310: 143-152.
  • Mallants, D., B.P. Mohanty, D. Jacques & J. Feyen, 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 161 (3): 167-181.
  • Mammadov E., J. Nowosad & C. Glaesser, 2021. Estimation and mapping of surface soil properties in the Caucasus Mountains, Azerbaijan using high-resolution remote sensing data. Geoderma Regional, 26: e00411. https://doi.org/10.1016/j.geodrs.2021.e00411.
  • Mammadov, E., M. Denk, F. Riedel, C. Kažmierowski, K. Lewinska, R. Łukowiak, W. Grzebisz, A.I. Mamedov & C. Glaesser, 2022. Determination of Mehlich 3 extractable elements with visible and near ınfrared spectroscopy in a mountainous agricultural land, the Caucasus Mountains. Land, 11 (363): 1-24. https://doi:10.3390/land11030363
  • Moral, R., N. Javarro-Pedreño, I. Gómez & J. Mataix, 1996. Quantitative analysis of organic residues: effects of samples preparation in the determination of metal. Communications in Soil Science and Plant Analysis, 27: 753-761.
  • Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971 [Heavy metals in the sediments of the Rhine-changes since 1971]. Umschau, 24: 778-783.
  • Nelson, D.W. & L.E. Sommers, 1996. “Total carbon, organic carbon, and organic matter, 961-1010”. Part 3. In: Methods of Soil Analysis. (Eds. D.L. Sparks). Chemical Methods, Madison, WI, USA, SSSA, 1358 pp.
  • Nicholson, F.A., S.R. Smith, B.J. Alloway, C. Carlton-Smith & B.J. Chambers, 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science Total Environment, 311: 205-219.
  • Omran, E.E., 2016. Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr El Baqar, Egypt. Modeling Earth Systems and Environment, 2: 119.
  • Omwene, P.I., M.S. Öncel, M. Çelen, & M. Kobya, 2018. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey). Chemosphere, 208: 782-792. https://doi.org/10.1016/j.chemosphere.2018.06.031.
  • Shan, Y., M. Tysklind, F. Hao, W. Ouyang, S. Chen & C. Lin, 2013. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soil Sediments, 13: 720-729.
  • Sherrod, L.A., G. Dunn, C.A. Peterson & R.L Kolberg, 2002. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal, 66: 299-305.
  • Sun, C., S, Zhu, B. Zhao, W. Li, X. Gao & X. Wang, 2019. Effect of Land Use Conversion on Surface Soil Heavy Metal Contamination in a Typical Karst Plateau Lakeshore Wetland of Southwest China. International Journal of Environmental Research and Public Health, 17 (1): 84. https://doi:10.3390/ijerph17010084.
  • Sungur, A., M. Soylak & H. Ozcan, 2014. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation & Bioavailability, 26 (4): 219-230.
  • Tan, J., 1989. The atlas of Endemic Diseases and their Environments in the People’s Republic of China. Beijing/Chine, Science Press, 216 pp.
  • Veliyev, A., A. Bayramov, J. Ibrahimov, S. Mammadov & G. Alizadeh, 2018. Geological setting and ore perspective of the new discovered Gadir Low sulfidation epithermal deposit, Gedabek NW Flank, Lesser Caucasus, Azerbaijan. Universal Journal of Geoscience, 6 (3): 78-101.
  • Vodyanitskii, Y.N., 2016. Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14: 257e263.
  • Zinn, Y.L., J.A. Faria, M.A. Araujo & A.L.A. Skorupa, 2020. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena, 185: 104319.

Heavy metal content of mountainous agricultural soils and ecological risk assessment in Gadabay district, Azerbaijan

Yıl 2024, , 73 - 86, 18.04.2024
https://doi.org/10.20289/zfdergi.1386603

Öz

Objective: The objective of this study was to i) investigate the distribution characteristics of heavy metals, ii) examine their relationships with basic soil properties, and iii) characterize their potential sources and ecological risks.
Material and Methods: A total of 85 samples were collected from the surface horizon (0-15 cm) of Chernozem soil in a representative agricultural area located in the Lesser Caucasus Mountains (Gadabay district), and heavy metal contents and basic soil properties were determined.
Results: The mean of the heavy metals followed a decreasing order: Mn>Zn>Cu>Cr>Ni>Co>Pb>As>Se>Cd and some heavy metals (As, Cd, Se) exhibited a fragmented distribution. Co, Cr, Mn, Se and Zn contents were higher than the background concentration, while others (As, Cd, Co, Cu, Pb and Zn) exceeded the maximum permissible concentration.
Conclusion: The spatial distribution of heavy metals was characterized by their typical and element-specific distribution. The noted variability was likely related to geologic features (soil mineralogy), mining history and agricultural practices. Notably, the presence of limestone and clay minerals contributed to the association of Cd, Cu and Se and Mn and Pb, respectively. Sand content influenced the mobility of Cr and Cu. The relations between pH and Cr, Ni and Se was the indication of the influence of the parent material on the distribution of these metals.

Destekleyen Kurum

Institute of Soil Science and Agrochemistry, Ministry of Science and Education of Azerbaijan Republic

Teşekkür

The author thanks the Institute of Soil Science and Agrochemistry, Ministry of Science and Education of Azerbaijan Republic for the laboratory support.

Kaynakça

  • Angelone, M. & C. Bini, 2009. “Trace Elements Concentrations in Soils and Plants of Western Europe, 19-44”. In: Biogeochemistry of Trace Metals. (Eds. D.C. Adriano), London, Tokyo, Boca Raton, Ann Arbor, Lewis Publishers, 59 pp.
  • Bayraklı, B. & D. Dengiz, 2019. Determination of heavy metal risk and their enrichment factor in intensive cultivated soils of Tokat Province. Eurasian Journal of Soil Science, 8 (3): 249-256.
  • Borůvka, L., O. Vacek & J. Jehlička, 2005. Principal component analysis as a tool to indicate the origin of potentially toxic elements in soils. Geoderma, 128 (3-4): 289-300.
  • Bos, R., M. Huijbregts & W. Peijnenburg, 2005. Soil type-specific environmental quality standards for zinc in Dutch soil. Integrated Environmental Assessment and Management, 1 (3): 252-258.
  • Bradley, R. I., 1980. Trace elements in soils around, Llechryd, Dyfed, Wales. Geoderma, 24: 17-23.
  • Brady, J.P., G.A. Ayoko, W.N. Martens & A. Goonetilleke, 2015. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments. Environmental Monitoring and Assessment, 187 (5): 306.
  • Celik, I., I. Ortas & S. Kilic, 2004. Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78: 59-67.
  • Chen, T.B., Y.M. Zheng, M.Lei, Z.C. Huang, H.T. Wu, H. Chen, K.K. Fan, K. Yu, X. Wu & Q.Z. Tian, 2005. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60 (4): 542-551.
  • Dinh, Q.T., Z. Cui, J. Huang, T. Tran, D. Wang, W. Yang, F. Zhou, M. Wang, D. Yu & D. Liang. 2018. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environment International, 112: 294-309.
  • Esser, K.B., J.G. Bockheim & P.A. Helme, 1991. Trace element distribution in soils formed in the Indiana dunes. United States of America Soil Science, 152: 340-350. http://dx.doi.org/10.1097/00010694-199111000-00005.
  • Fashola, M.O., V.M. Ngole-Jeme & O.O. Babalola, 2016. Heavy metal pollution from gold mines: environmental effects and bacterial strategies for resistance. International Journal of Environmental Research and Public Health, 13 (11): 1047. https://doi:10.3390/ijerph13111047.
  • Fleming, G.A., 1980. “Essential Micronutrients, 199-234”. In: Applied Soil Trace Elements (Eds: B.E. Davis), Vol 2, New York, John Wiley&Sons, 482 pp.
  • Fordyce, F.M., 2013. “Selenium Deficiency and Toxicity in the Environment, 375-416”. In: Essentials of Medical Geology (Eds. O. Selinus), Dordrech, Springer, 805 pp.
  • Gee, G.W., & J.W. Bauder, 1986. “Particle Size Analysis, 383-409”. In: Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods (Eds. A. Klute), Madison, WI, ASA and SSSA, 1188 pp.
  • GN 2.1.7.2041-06. Native Standard on Maximum Permissible Concentrations of Toxic Substances in Atmosphere Air, Soils and Surface Water Resources Annexes to the Resolution of Cabinet of Ministers of the Republic of Azerbaijan about Confirmation of Legislative Regulatory Documents on the Maximum Permissible Concentrations of Toxic Substances in Atmosphere Air, Soils and Surface Water Resources. Baku, 2000, 58 pp.
  • Hadzi G.Y., G.A. Ayoko, D.K., Essumang & S.K.D. Osae, 2019. Contamination impact and human health risk assessment of heavy metals in surface soils from selected major mining areas in Ghana. Environmental Geochemistry and Health, 41: 2821-2843. https://doi:10.1007/s10653-019-00332-4.
  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14 (8): 975-1001.
  • Haluschak, P., R.G. Eilers, G.F. Mills & S. Grift, 1998. Status of Selected Trace Elements in Agricultural Soils of Southern Manitoba. Technical Report 1998-6E, Land Resource Unit. Brandon Research Centre, Research Branch. Agriculture and Agri-Food Canada, 70 pp.
  • Han, F.X., W.L. Kingery, J.E. Hargreaves & T.W. Walker, 2007. Effects of land uses on solid-phase distribution of micronutrients in selected vertisols of the Mississippi River Delta. Geoderma, 142: 96-103. https://doi:10.1016/j.geoderma.2007.08.006.
  • Han, J., Z. Mammadov, M. Kim, E. Mammadov, S. Lee, J. Park, G. Mammadov, A. Guliyev & H.M. Ro, 2021. Spatial distribution of salinity and heavy metals in surface soils on the Mugan Plain, the Republic of Azerbaijan. Environmental Monitoring and Assessment, 193 (95): 1-20. https://doi.org/10.1007/s10661-021-08877-7.
  • Hani, A. & E. Pazira, 2010. Heavy metals assessment and identification of their sources in agricultural soils of Southern Tehran, Iran. Environmental Monitoring and Assessment, 176: 677-691.
  • Herencia, J.F., P.A. García-Galavís & C. Maqueda, 2011. Long-term effect of organic and mineral fertilization on soil physical properties under greenhouse and outdoor management practices. Pedosphere, 21: 443-453.
  • Hu, B., X. Jia, J. Hu, D. Xu, F. Xia & Y. Li, 2017. Assessment of heavy metal pollution and health risks in the soil-plant-human system in the Yangtze River Delta, China. International Journal of Environmental Research and Public Health, 14 (9): 1042.
  • Hu, Y., X. Liu, J. Bai, K. Shih, E. Zeng & H. Cheng, 2013. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization. Environmental Science Pollution Research, 20: 6150.
  • Ismayil, J., F. Arik & J. Özen, 2018. Preliminary geological and mineralogical features of Gedabek (western Azerbaijan) Au-Cu deposit. Omer Halisdemir University Journal of Engineering Sciences, 7 (1): 475-482.
  • IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106, FAO, Rome, Italy, 192 pp.
  • Kabata-Pendias, A., 2011. Trace Elements in Soils and Plants IV. Boca Raton, FL, USA, CRC Press, Taylor and Francis Group, 548 pp.
  • Kandziora-Ciupa, M., A. Nadgórska-Socha & G. Barczyk, 2021. The influence of heavy metals on biological soil quality assessments in the Vaccinium myrtillus L. Rhizosphere under different field conditions. Ecotoxicology, 30: 292-310. https://doi.org/10.1007/s10646-021-02345-1
  • Karimov, G.I., 1976. Gədəbəy Filiz Rayonunun Petrologiyası və Minerallaşması [Petrology and mineralization of Gadabay ore district]. Baku, Azerbaijan: Elm, 175 pp.
  • Kars, N. & O. Dengiz, 2020. Assessment of potential ecological risk index based on heavy metal elements for organic farming in micro catchments under humid ecological conditions. Eurasian Journal of Soil Science, 9 (3): 194-201.
  • Lasota, J., E. Błońska, S. Łyszczarz & M. Tibett, 2020. Forest humus type governs heavy metal accumulation in specific organic matter fractions. Water, Air, and Soil Pollution, 231 (80): 1-13.
  • Lee, B.D., B.J. Carter, N.T. Basta & B. Weaver, 1997. Factors influencing heavy metal distribution in six Oklahoma benchmark soils. Soil Science Society of America Journal, 61: 218-223. http://dx.doi.org/10.2136/sssaj1997.03615995006100010030x
  • Li, Z., R.L. Schneider, S.J. Morreale, Y. Xie, C. Li & J. Li, 2018. Woody organic amendments for retaining soil water, improving soil properties and enhancing plant growth in desertified soils of Ningxia, China. Geoderma, 310: 143-152.
  • Mallants, D., B.P. Mohanty, D. Jacques & J. Feyen, 1996. Spatial variability of hydraulic properties in a multi-layered soil profile. Soil Science, 161 (3): 167-181.
  • Mammadov E., J. Nowosad & C. Glaesser, 2021. Estimation and mapping of surface soil properties in the Caucasus Mountains, Azerbaijan using high-resolution remote sensing data. Geoderma Regional, 26: e00411. https://doi.org/10.1016/j.geodrs.2021.e00411.
  • Mammadov, E., M. Denk, F. Riedel, C. Kažmierowski, K. Lewinska, R. Łukowiak, W. Grzebisz, A.I. Mamedov & C. Glaesser, 2022. Determination of Mehlich 3 extractable elements with visible and near ınfrared spectroscopy in a mountainous agricultural land, the Caucasus Mountains. Land, 11 (363): 1-24. https://doi:10.3390/land11030363
  • Moral, R., N. Javarro-Pedreño, I. Gómez & J. Mataix, 1996. Quantitative analysis of organic residues: effects of samples preparation in the determination of metal. Communications in Soil Science and Plant Analysis, 27: 753-761.
  • Müller, G., 1979. Schwermetalle in den Sedimenten des Rheins-Veränderungen seit 1971 [Heavy metals in the sediments of the Rhine-changes since 1971]. Umschau, 24: 778-783.
  • Nelson, D.W. & L.E. Sommers, 1996. “Total carbon, organic carbon, and organic matter, 961-1010”. Part 3. In: Methods of Soil Analysis. (Eds. D.L. Sparks). Chemical Methods, Madison, WI, USA, SSSA, 1358 pp.
  • Nicholson, F.A., S.R. Smith, B.J. Alloway, C. Carlton-Smith & B.J. Chambers, 2003. An inventory of heavy metals inputs to agricultural soils in England and Wales. Science Total Environment, 311: 205-219.
  • Omran, E.E., 2016. Environmental modelling of heavy metals using pollution indices and multivariate techniques in the soils of Bahr El Baqar, Egypt. Modeling Earth Systems and Environment, 2: 119.
  • Omwene, P.I., M.S. Öncel, M. Çelen, & M. Kobya, 2018. Heavy metal pollution and spatial distribution in surface sediments of Mustafakemalpaşa stream located in the world's largest borate basin (Turkey). Chemosphere, 208: 782-792. https://doi.org/10.1016/j.chemosphere.2018.06.031.
  • Shan, Y., M. Tysklind, F. Hao, W. Ouyang, S. Chen & C. Lin, 2013. Identification of sources of heavy metals in agricultural soils using multivariate analysis and GIS. Journal of Soil Sediments, 13: 720-729.
  • Sherrod, L.A., G. Dunn, C.A. Peterson & R.L Kolberg, 2002. Inorganic carbon analysis by modified pressure-calcimeter method. Soil Science Society of America Journal, 66: 299-305.
  • Sun, C., S, Zhu, B. Zhao, W. Li, X. Gao & X. Wang, 2019. Effect of Land Use Conversion on Surface Soil Heavy Metal Contamination in a Typical Karst Plateau Lakeshore Wetland of Southwest China. International Journal of Environmental Research and Public Health, 17 (1): 84. https://doi:10.3390/ijerph17010084.
  • Sungur, A., M. Soylak & H. Ozcan, 2014. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chemical Speciation & Bioavailability, 26 (4): 219-230.
  • Tan, J., 1989. The atlas of Endemic Diseases and their Environments in the People’s Republic of China. Beijing/Chine, Science Press, 216 pp.
  • Veliyev, A., A. Bayramov, J. Ibrahimov, S. Mammadov & G. Alizadeh, 2018. Geological setting and ore perspective of the new discovered Gadir Low sulfidation epithermal deposit, Gedabek NW Flank, Lesser Caucasus, Azerbaijan. Universal Journal of Geoscience, 6 (3): 78-101.
  • Vodyanitskii, Y.N., 2016. Standards for the contents of heavy metals in soils of some states. Annals of Agrarian Science, 14: 257e263.
  • Zinn, Y.L., J.A. Faria, M.A. Araujo & A.L.A. Skorupa, 2020. Soil parent material is the main control on heavy metal concentrations in tropical highlands of Brazil. Catena, 185: 104319.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Toprak Bilimi ve Ekolojisi
Bölüm Makaleler
Yazarlar

Mehmana Sadig 0009-0003-1083-3241

Erken Görünüm Tarihi 18 Nisan 2024
Yayımlanma Tarihi 18 Nisan 2024
Gönderilme Tarihi 28 Kasım 2023
Kabul Tarihi 28 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Sadig, M. (2024). Heavy metal content of mountainous agricultural soils and ecological risk assessment in Gadabay district, Azerbaijan. Journal of Agriculture Faculty of Ege University, 61(1), 73-86. https://doi.org/10.20289/zfdergi.1386603

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.