Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination of germination and seedling characteristics of common grasspea (Lathyrus sativus L.) genotypes under salt stress

Yıl 2024, , 425 - 436, 16.12.2024
https://doi.org/10.20289/zfdergi.1476142

Öz

Objective: In this study, the aim was to determine the germination and seedling development responses of common grasspea (Lathyrus sativus L.) genotypes under salt stress and to identify genotypes sensitive or tolerant to salinity.
Materials and Methods: The research was conducted at the Field Crops Laboratory of the Faculty of Agriculture, Siirt University, under controlled conditions at 25±1°C. The plant material of the study consists of 2 cultivars and 8 genotypes. The study investigated the doses of NaCl at 0, 50, 100, 150, and 200 mM. The laboratory experiment was conducted by a completely randomized factorial design with four replications.
Results: The increase in salt levels significantly (p<0.01) affected the germination and seedling characteristics of grasspea genotypes. It was determined that common grasspea genotypes were significantly affected by increasing salt concentrations with regard to germination parameters starting from the 50 mM salt dose. Regarding seedling parameters, grasspea genotypes were affected by salt concentrations beyond 50 mM in relation to seedling length and seedling dry weight, while other seedling parameters were negatively impacted even at the lowest salt dose.
Conclusion: When all examined parameters were considered together, the Sel 668 genotype stood out for its tolerance to salinity and its performance in germination and seedling development.

Destekleyen Kurum

Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the framework of the 2209-A University Students Research Projects Support Program

Proje Numarası

1919B012311926

Teşekkür

This research was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the framework of the 2209-A University Students Research Projects Support Program, with project number 1919B012311926. The authors would like to thank TÜBİTAK for the financial support.

Kaynakça

  • Acikbas, S., M.A. Ozyazici & H. Bektas, 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research-An International Journal, 44 (4): 407-412.
  • Açıkbaş, S. & M.A. Özyazıcı, 2021. “The effects of silicon priming application on germination in common grasspea (Lathyrus sativus L.), 404-412”. 3rd International African Conference on Current Studies, (27-28 February, Abomey-Calavi, Benin), Vol. III, 625 pp.
  • Açıkbaş, S., M.A. Özyazıcı, E. Bıçakçı & G. Özyazıcı, 2023. Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4 (2): 108-118.
  • Açıkgöz N. & N. Açıkgöz 2001. Common mistakes in the statistical analyzes of agricultural experiments I. Single factorials. Anadolu, 11 (1): 135-147.
  • Ahanger, M.A., N.A. Akram, M. Ashraf, M.N. Alyemeni, L. Wijaya & P. Ahmad, 2017. Plant responses to environmental stresses-From gene to biotechnology. AoB Plants, 9: plx025.
  • Ahmadi, J., B. Vaezi & A. Pour-Aboughadareh, 2015. Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biologist, 9 (1): 29-34.
  • Ahmed, B., M. Sultana, M.R. Karim, T. Halder & M.M. Rahman, 2014. Screening of grasspea (Lathyrus sativus) genotypes against salinity. International Journal of Biological Research, 17: 48-54.
  • Ahmed, R., M.M. Islam, H.M.U. Sarker, M. Hasan, M.R. Hossain, A. Shila & R. Ahammed, 2023. Morphological responses of three contrasting soybean (Glycine max (L.) Merrill) genotypes under different levels of salinity stress in the coastal region of Bangladesh. Journal of Plant Stress Physiology, 9: 18-26.
  • Ali, R., R. Ali, S.M. Sundas, Z. Xiling, Z. Xuekun, L. Yan & X. Jinsong, 2019. Impact of climate change on crops adaptation and strategies to tackle ıts outcome: a review. Plants, 8: 34.
  • Almodares, A., M.R. Hadi & B. Dosti, 2007. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. Journal of Biological Sciences, 7 (8): 1492-1495.
  • Anderson, R., P.E. Bayer & D. Edwards, 2020. Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56: 197-202.
  • Arshad, N., S. Akhtar, T. Ismail, W. Saeed, M. Qamar, F. Özogul, E. Bartkiene & J.M. Rocha, 2023. The comparative effect of lactic acid fermentation and germination on the levels of neurotoxin, anti-nutrients, and nutritional attributes of sweet blue pea (Lathyrus sativus L.). Foods, 12 (15): 2851.
  • Arslan, M. & B. Aydınoğlu, 2018. Effect of salinity (NaCl) stress on germination and seedling growth characteristics in grass pea (Lathyrus sativus L.). Academic Journal of Agriculture, 7 (1): 49-54.
  • Bewely, J.D. & M. Black, 1994. Seeds: Physiology of Development and Germination. Springer New York, NY, USA, 445 pp.
  • Bijanzadeh, E. & T.P. Egan, 2018. Silicon priming benefits germination, ion balance, and root structure in salt-stressed durum wheat (Triticum durum desf.). Journal of Plant Nutrition, 41 (20): 2560-2571.
  • Ceritoğlu, M., M. Erman & F. Yıldız, 2020. Effect of salinity on germination and some agro-morphological traits in chickpea seedlings. ISPEC Journal of Agricultural Sciences, 4 (1): 82-96.
  • Chen, T., I.M.G. Pineda, A.M. Brand & H. Stützel, 2020. Determining ion toxicity in cucumber under salinity stress. Agronomy, 10 (5): 677.
  • Cocks, P., K. Siddique & C. Hanbury, 2000. “Lathyrus A New Grain Legume, 5-15”. A report for the Rural Industries Research and Development Corporation. Faculty of Agriculture, The University of Western Australia, Nedlands, WA (6907).
  • Dan, T.H. & H. Brix, 2007. The influence of temperature, light, salinity and seed pre-treatment on the germination of sesbania sesban seeds. African Journal of Biotechnology, 6 (19): 2231-2235.
  • Day, S. & S. Uzun, 2016. Impact of different NaCl doses on germination and early seedling growth of common vetch cultivars (Vicia sativa L.). Turkish Journal of Agriculture-Food Science and Technology, 4 (8): 636-641.
  • Dere, S., 2021. The Effects of different salt concentration pretreatments on germination and seedling growth parameters in tomato (Solanum lycopersicum). Journal of the Institute of Science and Technology, 11 (Special Issue): 3324-3335.
  • Ellis, R.A. & E.H. Roberts, 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9 (2): 373-409.
  • Fagodiya, R.K., S.K. Malyan, D. Singh, A. Kumar, R.K. Yadav, P.C. Sharma & H. Pathak, 2022. Greenhouse gas emissions from salt-affected soils: Mechanistic understanding of interplay factors and reclamation approaches. Sustainability, 14: 11876.
  • Fallahi, H.R., G. Fadaeian, M. Gholami, O. Daneshkhah, F.S. Hosseini, M. Aghhavani-Shajari & A. Samadzadeh, 2015. Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breeding and Seed Science, 71 (1): 97.
  • Feyzi, S., E. Milani & Q.A. Golimovahhed, 2018. Grass pea (Lathyrus sativus L.) protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74: 187-196.
  • Flowers, T.A., 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55 (396): 307.
  • Garg, R., R. Shankar, B. Thakkar, H. Kudapa, L. Krishnamurthy, N. Mantri, R.K. Varshney, S. Bhatia & M. Jain, 2016. Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6: 19228.
  • Gonçalves, L., D. Rubiales, M.R. Bronze & M.C. Vaz Patto, 2022. Grass pea (Lathyrus sativus L.)-A sustainable and resilient answer to climate challenges. Agronomy, 12 (6): 1324.
  • Hasegawa, P.M., R.A. Bressan, J.K. Zhu & H.J. Bohnert, 2000. Plant cellular andmolecular responses to high salinity. Annual Review of Plant Biology, 51: 463-499.
  • Ivani, R., S.H. Sanaei Nejad, B. Ghahraman, A.R. Astaraei & H. Feizi, 2018. Role of bulk and nanosized SiO2 to overcome salt stress during fenugreek germination (Trigonella foenum-graceum L.). Plant Signaling & Behavior, 13 (7): e1044190.
  • Kalsa, K.K. & B. Abebie, 2012. Influence of seed priming on seed germination and vigor traits of Vicia villosa ssp, dasycarpa (Ten.). African Journal of Agricultural Research, 7 (21): 3202-3208.
  • Kondetti, P., N. Jawali, S.K. Apte & M.G. Shitole, 2012. Salt tolerance in Indian soybean (Glycine max (L.) Merrill) varieties at germination and early seedling growth. Annals of Biological, 3 (3): 1489-1498.
  • Kumar, G. & R. Tripathi, 2008. Lead-induced cytotoxicity and mutagenicity in grass pea. Turkish Journal of Biology, 32 (2): 73-78.
  • Lambein, F., S. Travella, Y.H. Kuo, M. Van Montagu & M. Heijde, 2019. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food?. Planta, 250: 821-838.
  • Li, W., H. Zhang, Y. Zeng, L. Xiang, Z. Lei, Q. Huang, T. Li, F. Shen & Q. Cheng, 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports, 10 (1): 1-9.
  • Mahdavi, B. & S.A.M.M. Sanavy, 2007. Germination and seedling growth in grasspea (Lathyrus sativus) cultivars under salinity conditions. Pakistan Journal of Biological Sciences, 10 (2): 273-279.
  • Moghaddam, S.S., A. Rahimi, L. Pourakbar & F. Jangjoo, 2020. Seed Priming with salicylic acid improves germination and growth of Lathyrus sativus L. under salinity stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 30 (1): 68-79.
  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651- 681.
  • Okçu, G., M.D. Kaya & M. Atak, 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry, 29 (4): 237-242.
  • Omidi, M., A. Khandan-Mirkohi, M. Kaf, Z. Zamani, L. Ajdanian & M. Babaei, 2022. Biochemical and molecular responses of Rosa damascena Mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology, 22: 373.
  • Özyazıcı, M.A. & S. Açıkbaş, 2021. Effects of different salt concentrations on germination and seedling growth of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] cultivars. Turkish Journal of Agriculture Research, 8 (2): 133-143.
  • Parida, A.K. & A.B. Das, 2005. Salt tolerance and salinity effects on plants. A-review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Rajabi Dehnavi, A., M. Zahedi, A. Ludwiczak, S. Cardenas Perez & A. Piernik, 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10 (6): 859.
  • Rueden, C.T., J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena & K.W. Eliceiri, 2017. ImageJ2: Imagej for the next generation of scientific image data. BMC Bioinformatics, 18 (1): 529.
  • Saxena, R., M. Kumar & R.S. Tomar, 2019. Plant responses and resilience towards drought and salinity stress. Plant Arch, 19: 50-58.
  • Scott, S.J., R.A. Jones & W.A. Williams, 1984. Review of data analysis methods for seed germination. Crop Science, 24 (6): 1192-1199.
  • Shakeri, E. & Y. Emam, 2017. Selectable traits in sorghum genotypes for tolerance to salinity stress. Jomo Kenyatta University of Agriculture and Technology, 19 (6): 1319-1332.
  • Soleymani, A. & M.H. Shahrajabian, 2018. Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercetări Agronomice în Moldova, 1 (173): 91-100.
  • Tavili, A. & M. Biniaz, 2009. Different salts effects on the germination of Hordeum vulgare and Hordeum bulbosum. Pakistan Journal of Nutrition, 8 (1): 63-68.
  • Tokarz, B., T. Wójtowicz, W. Makowski, R.J. Jędrzejczyk & K.M. Tokarz, 2020. What is the difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?-A physiological study. Agronomy, 10 (6): 833.
  • Wang, Y.R., L. Yu, Z.B. Nan & Y.L. Liu, 2004. Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Sciences, 44 (2): 535-541.
  • Xu, Q., B. Song, F. Liu, Y. Song, P. Chen, S. Liu & H. B. Krishnan, 2018. Identification and characterization of β-Lathyrin, an abundant glycoprotein of grass pea (Lathyrus sativus L.), as a potential allergen. Journal of Agricultural and Food Chemistry, 66 (32): 8496-8503.
  • Zörb, C., C.M. Geilfus & K.J. Dietz, 2019. Salinity and crop yield. Plant Biology, 21 (Suppl. 1): 31-38.

Yaygın mürdümük (Lathyrus sativus L.) genotiplerinin tuz stresi altında çimlenme ve fide özelliklerinin belirlenmesi

Yıl 2024, , 425 - 436, 16.12.2024
https://doi.org/10.20289/zfdergi.1476142

Öz

Amaç: Bu çalışmada, yaygın mürdümük (Lathyrus sativus L.) genotiplerinin tuz stresi altında çimlenme ve fide gelişim tepkilerinin belirlenmesi ve tuzluluğa hassas ya da tolerant genotiplerin ortaya konulması amaçlanmıştır.
Materyal ve Yöntem: Araştırma, Siirt Üniversitesi, Ziraat Fakültesi, Tarla Bitkileri Laboratuvarı’nda, 25±1°C kontrollü şartlar altında yürütülmüştür. Çalışmanın bitkisel materyali 2 çeşit ve 8 genotipten oluşmaktadır. Çalışmada; tuzun (NaCl) 0, 50, 100, 150 ve 200 mM dozları araştırmanın konusunu teşkil etmiştir. Laboratuvar deneyi tesadüf parsellerinde faktöriyel deneme desenine göre 4 tekrarlamalı olarak yürütülmüştür.
Araştırma Bulguları: Tuz seviyesindeki artış, mürdümük genotiplerinin çimlenme ve fide özelliklerini çok önemli (p<0.01) derecede etkilemiştir. Yaygın mürdümük genotiplerinin artan tuz konsantrasyonlarına bağlı olarak çimlenme parametreleri açısından 50 mM tuz dozundan itibaren anlamlı olarak etkilediği belirlenmiştir. Fide parametrelerinde ise fide uzunluğu ve fide kuru ağırlığı bakımından 50 mM tuz konsantrasyonundan sonra mürdümük genotipleri etkilenirken, diğer fide parametrelerinin ise kontrolden itibaren en düşük tuz dozunda bile olumsuz yönde etkilendiği belirlenmiştir.
Sonuç: Tüm incelenen parametreler birlikte değerlendirildiğinde ise Sel 668 genotipi tuzluluğu dayanıklılığı ve çimlenme ve fide gelişimi açısından ön plana çıkmıştır.

Destekleyen Kurum

This research was supported by the Scientific and Technological Research Council of Türkiye (TÜBİTAK) under the framework of the 2209-A University Students Research Projects Support Program, with project number 1919B012311926. The authors would like to thank TÜBİTAK for the financial support.

Proje Numarası

1919B012311926

Kaynakça

  • Acikbas, S., M.A. Ozyazici & H. Bektas, 2021. The effect of salinity on root architecture in forage pea (Pisum sativum ssp. arvense L.). Legume Research-An International Journal, 44 (4): 407-412.
  • Açıkbaş, S. & M.A. Özyazıcı, 2021. “The effects of silicon priming application on germination in common grasspea (Lathyrus sativus L.), 404-412”. 3rd International African Conference on Current Studies, (27-28 February, Abomey-Calavi, Benin), Vol. III, 625 pp.
  • Açıkbaş, S., M.A. Özyazıcı, E. Bıçakçı & G. Özyazıcı, 2023. Germination and seedling development performances of some soybean (Glycine max (L.) Merrill) cultivars under salinity stress. Turkish Journal of Range and Forage Science, 4 (2): 108-118.
  • Açıkgöz N. & N. Açıkgöz 2001. Common mistakes in the statistical analyzes of agricultural experiments I. Single factorials. Anadolu, 11 (1): 135-147.
  • Ahanger, M.A., N.A. Akram, M. Ashraf, M.N. Alyemeni, L. Wijaya & P. Ahmad, 2017. Plant responses to environmental stresses-From gene to biotechnology. AoB Plants, 9: plx025.
  • Ahmadi, J., B. Vaezi & A. Pour-Aboughadareh, 2015. Assessment of heritability and relationships among agronomic characters in grass pea (Lathyrus sativus L.) under rainfed conditions. Biharean Biologist, 9 (1): 29-34.
  • Ahmed, B., M. Sultana, M.R. Karim, T. Halder & M.M. Rahman, 2014. Screening of grasspea (Lathyrus sativus) genotypes against salinity. International Journal of Biological Research, 17: 48-54.
  • Ahmed, R., M.M. Islam, H.M.U. Sarker, M. Hasan, M.R. Hossain, A. Shila & R. Ahammed, 2023. Morphological responses of three contrasting soybean (Glycine max (L.) Merrill) genotypes under different levels of salinity stress in the coastal region of Bangladesh. Journal of Plant Stress Physiology, 9: 18-26.
  • Ali, R., R. Ali, S.M. Sundas, Z. Xiling, Z. Xuekun, L. Yan & X. Jinsong, 2019. Impact of climate change on crops adaptation and strategies to tackle ıts outcome: a review. Plants, 8: 34.
  • Almodares, A., M.R. Hadi & B. Dosti, 2007. Effects of salt stress on germination percentage and seedling growth in sweet sorghum cultivars. Journal of Biological Sciences, 7 (8): 1492-1495.
  • Anderson, R., P.E. Bayer & D. Edwards, 2020. Climate change and the need for agricultural adaptation. Current Opinion in Plant Biology, 56: 197-202.
  • Arshad, N., S. Akhtar, T. Ismail, W. Saeed, M. Qamar, F. Özogul, E. Bartkiene & J.M. Rocha, 2023. The comparative effect of lactic acid fermentation and germination on the levels of neurotoxin, anti-nutrients, and nutritional attributes of sweet blue pea (Lathyrus sativus L.). Foods, 12 (15): 2851.
  • Arslan, M. & B. Aydınoğlu, 2018. Effect of salinity (NaCl) stress on germination and seedling growth characteristics in grass pea (Lathyrus sativus L.). Academic Journal of Agriculture, 7 (1): 49-54.
  • Bewely, J.D. & M. Black, 1994. Seeds: Physiology of Development and Germination. Springer New York, NY, USA, 445 pp.
  • Bijanzadeh, E. & T.P. Egan, 2018. Silicon priming benefits germination, ion balance, and root structure in salt-stressed durum wheat (Triticum durum desf.). Journal of Plant Nutrition, 41 (20): 2560-2571.
  • Ceritoğlu, M., M. Erman & F. Yıldız, 2020. Effect of salinity on germination and some agro-morphological traits in chickpea seedlings. ISPEC Journal of Agricultural Sciences, 4 (1): 82-96.
  • Chen, T., I.M.G. Pineda, A.M. Brand & H. Stützel, 2020. Determining ion toxicity in cucumber under salinity stress. Agronomy, 10 (5): 677.
  • Cocks, P., K. Siddique & C. Hanbury, 2000. “Lathyrus A New Grain Legume, 5-15”. A report for the Rural Industries Research and Development Corporation. Faculty of Agriculture, The University of Western Australia, Nedlands, WA (6907).
  • Dan, T.H. & H. Brix, 2007. The influence of temperature, light, salinity and seed pre-treatment on the germination of sesbania sesban seeds. African Journal of Biotechnology, 6 (19): 2231-2235.
  • Day, S. & S. Uzun, 2016. Impact of different NaCl doses on germination and early seedling growth of common vetch cultivars (Vicia sativa L.). Turkish Journal of Agriculture-Food Science and Technology, 4 (8): 636-641.
  • Dere, S., 2021. The Effects of different salt concentration pretreatments on germination and seedling growth parameters in tomato (Solanum lycopersicum). Journal of the Institute of Science and Technology, 11 (Special Issue): 3324-3335.
  • Ellis, R.A. & E.H. Roberts, 1981. The quantification of ageing and survival in orthodox seeds. Seed Science and Technology, 9 (2): 373-409.
  • Fagodiya, R.K., S.K. Malyan, D. Singh, A. Kumar, R.K. Yadav, P.C. Sharma & H. Pathak, 2022. Greenhouse gas emissions from salt-affected soils: Mechanistic understanding of interplay factors and reclamation approaches. Sustainability, 14: 11876.
  • Fallahi, H.R., G. Fadaeian, M. Gholami, O. Daneshkhah, F.S. Hosseini, M. Aghhavani-Shajari & A. Samadzadeh, 2015. Germination response of grasspea (Lathyrus sativus L.) and arugula (Eruca sativa L.) to osmotic and salinity stresses. Plant Breeding and Seed Science, 71 (1): 97.
  • Feyzi, S., E. Milani & Q.A. Golimovahhed, 2018. Grass pea (Lathyrus sativus L.) protein isolate: The effect of extraction optimization and drying methods on the structure and functional properties. Food Hydrocolloids, 74: 187-196.
  • Flowers, T.A., 2004. Improving crop salt tolerance. Journal of Experimental Botany, 55 (396): 307.
  • Garg, R., R. Shankar, B. Thakkar, H. Kudapa, L. Krishnamurthy, N. Mantri, R.K. Varshney, S. Bhatia & M. Jain, 2016. Transcriptome analyses reveal genotype-and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Scientific Reports, 6: 19228.
  • Gonçalves, L., D. Rubiales, M.R. Bronze & M.C. Vaz Patto, 2022. Grass pea (Lathyrus sativus L.)-A sustainable and resilient answer to climate challenges. Agronomy, 12 (6): 1324.
  • Hasegawa, P.M., R.A. Bressan, J.K. Zhu & H.J. Bohnert, 2000. Plant cellular andmolecular responses to high salinity. Annual Review of Plant Biology, 51: 463-499.
  • Ivani, R., S.H. Sanaei Nejad, B. Ghahraman, A.R. Astaraei & H. Feizi, 2018. Role of bulk and nanosized SiO2 to overcome salt stress during fenugreek germination (Trigonella foenum-graceum L.). Plant Signaling & Behavior, 13 (7): e1044190.
  • Kalsa, K.K. & B. Abebie, 2012. Influence of seed priming on seed germination and vigor traits of Vicia villosa ssp, dasycarpa (Ten.). African Journal of Agricultural Research, 7 (21): 3202-3208.
  • Kondetti, P., N. Jawali, S.K. Apte & M.G. Shitole, 2012. Salt tolerance in Indian soybean (Glycine max (L.) Merrill) varieties at germination and early seedling growth. Annals of Biological, 3 (3): 1489-1498.
  • Kumar, G. & R. Tripathi, 2008. Lead-induced cytotoxicity and mutagenicity in grass pea. Turkish Journal of Biology, 32 (2): 73-78.
  • Lambein, F., S. Travella, Y.H. Kuo, M. Van Montagu & M. Heijde, 2019. Grass pea (Lathyrus sativus L.): orphan crop, nutraceutical or just plain food?. Planta, 250: 821-838.
  • Li, W., H. Zhang, Y. Zeng, L. Xiang, Z. Lei, Q. Huang, T. Li, F. Shen & Q. Cheng, 2020. A salt tolerance evaluation method for sunflower (Helianthus annuus L.) at the seed germination stage. Scientific Reports, 10 (1): 1-9.
  • Mahdavi, B. & S.A.M.M. Sanavy, 2007. Germination and seedling growth in grasspea (Lathyrus sativus) cultivars under salinity conditions. Pakistan Journal of Biological Sciences, 10 (2): 273-279.
  • Moghaddam, S.S., A. Rahimi, L. Pourakbar & F. Jangjoo, 2020. Seed Priming with salicylic acid improves germination and growth of Lathyrus sativus L. under salinity stress. Yuzuncu Yıl University Journal of Agricultural Sciences, 30 (1): 68-79.
  • Munns, R. & M. Tester, 2008. Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59: 651- 681.
  • Okçu, G., M.D. Kaya & M. Atak, 2005. Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turkish Journal of Agriculture and Forestry, 29 (4): 237-242.
  • Omidi, M., A. Khandan-Mirkohi, M. Kaf, Z. Zamani, L. Ajdanian & M. Babaei, 2022. Biochemical and molecular responses of Rosa damascena Mill. cv. Kashan to salicylic acid under salinity stress. BMC Plant Biology, 22: 373.
  • Özyazıcı, M.A. & S. Açıkbaş, 2021. Effects of different salt concentrations on germination and seedling growth of some sweet sorghum [Sorghum bicolor var. saccharatum (L.) Mohlenbr.] cultivars. Turkish Journal of Agriculture Research, 8 (2): 133-143.
  • Parida, A.K. & A.B. Das, 2005. Salt tolerance and salinity effects on plants. A-review. Ecotoxicology and Environmental Safety, 60: 324-349.
  • Rajabi Dehnavi, A., M. Zahedi, A. Ludwiczak, S. Cardenas Perez & A. Piernik, 2020. Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10 (6): 859.
  • Rueden, C.T., J. Schindelin, M.C. Hiner, B.E. DeZonia, A.E. Walter, E.T. Arena & K.W. Eliceiri, 2017. ImageJ2: Imagej for the next generation of scientific image data. BMC Bioinformatics, 18 (1): 529.
  • Saxena, R., M. Kumar & R.S. Tomar, 2019. Plant responses and resilience towards drought and salinity stress. Plant Arch, 19: 50-58.
  • Scott, S.J., R.A. Jones & W.A. Williams, 1984. Review of data analysis methods for seed germination. Crop Science, 24 (6): 1192-1199.
  • Shakeri, E. & Y. Emam, 2017. Selectable traits in sorghum genotypes for tolerance to salinity stress. Jomo Kenyatta University of Agriculture and Technology, 19 (6): 1319-1332.
  • Soleymani, A. & M.H. Shahrajabian, 2018. Changes in germination and seedling growth of different cultivars of cumin to drought stress. Cercetări Agronomice în Moldova, 1 (173): 91-100.
  • Tavili, A. & M. Biniaz, 2009. Different salts effects on the germination of Hordeum vulgare and Hordeum bulbosum. Pakistan Journal of Nutrition, 8 (1): 63-68.
  • Tokarz, B., T. Wójtowicz, W. Makowski, R.J. Jędrzejczyk & K.M. Tokarz, 2020. What is the difference between the response of grass pea (Lathyrus sativus L.) to salinity and drought stress?-A physiological study. Agronomy, 10 (6): 833.
  • Wang, Y.R., L. Yu, Z.B. Nan & Y.L. Liu, 2004. Vigor tests used to rank seed lot quality and predict field emergence in four forage species. Crop Sciences, 44 (2): 535-541.
  • Xu, Q., B. Song, F. Liu, Y. Song, P. Chen, S. Liu & H. B. Krishnan, 2018. Identification and characterization of β-Lathyrin, an abundant glycoprotein of grass pea (Lathyrus sativus L.), as a potential allergen. Journal of Agricultural and Food Chemistry, 66 (32): 8496-8503.
  • Zörb, C., C.M. Geilfus & K.J. Dietz, 2019. Salinity and crop yield. Plant Biology, 21 (Suppl. 1): 31-38.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çayır-Mera ve Yem Bitkileri
Bölüm Makaleler
Yazarlar

Serhan Kaya 0009-0003-6527-6737

Semih Açıkbaş 0000-0003-4384-3908

Proje Numarası 1919B012311926
Erken Görünüm Tarihi 16 Aralık 2024
Yayımlanma Tarihi 16 Aralık 2024
Gönderilme Tarihi 30 Nisan 2024
Kabul Tarihi 5 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Kaya, S., & Açıkbaş, S. (2024). Determination of germination and seedling characteristics of common grasspea (Lathyrus sativus L.) genotypes under salt stress. Journal of Agriculture Faculty of Ege University, 61(4), 425-436. https://doi.org/10.20289/zfdergi.1476142

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.