Araştırma Makalesi
BibTex RIS Kaynak Göster

Kentsel ve kırsal yerleşim alanlarında rüzgar koridorlarının termal konfora etkisi

Yıl 2025, Cilt: 62 Sayı: 4, 493 - 509, 12.12.2025
https://doi.org/10.20289/zfdergi.1677528

Öz

Amaç: Bu çalışma, rakımı yüksek, farklı iklim ve topoğrafya özelliklerine sahip kentsel ve kırsal alanlarda, yaya seviyesindeki rüzgâr hızının termal konfor üzerindeki etkilerini incelemeyi amaçlamaktadır.
Materyal ve Yöntem: Van ilinin Çaldıran, Muradiye ve Erciş ilçelerine ait 2018-2023 dönemi saatlik meteorolojik verileri kullanılarak, RayMan Pro 2.1 programı ile fizyolojik eşdeğer sıcaklık (FES) hesaplanmıştır. FES ile meteorolojik değişkenler arasındaki ilişkiler, Çoklu Doğrusal Regresyon ve Pearson Korelasyon analizleriyle değerlendirilmiş; bulgular haritalar ile görselleştirilmiştir.
Araştırma Bulguları: Ortalama maksimum sıcaklık 37.8ºC ile Temmuz ayında Muradiye'de yaşanırken, en düşük sıcaklığın ise -9.5ºC ile Çaldıran'da yaşandığı, aylık ortalama rüzgar değerlerinde ise Çaldıranın uzun yıllar ortalamasında 0.3-0.8 m/s en yüksek seviyede seyrederken, Muradiye 0.3-0.6 m/s aralığında, Erciş ise her ay 0.1 m/s olduğu ortaya konmuştur.
Sonuç: Kentsel ve kırsal alanlarda farklı termal konfor dinamikleri söz konusudur. Bu nedenle, mikroklimatik tasarım ve rüzgâr koridorlarının planlanması, yerleşim tipine göre şekillendirilmelidir.

Kaynakça

  • Blocken, B., T. Hooff & W. Janssen, 2013. Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study. Building and Environment, 59: 547-562.
  • Çağlak, S. & A. Matzarakis, 2024. Evaluation of the relationship between thermal comfort conditions and respiratory diseases in Amasya City, Turkey. Journal of Public Health (Berlin), 32: 967-977.
  • Climate and Weather Conditions Throughout the Year in the Çaldıran Region. (Web page: https: //tr.weatherspark.com/y/102798/%C3%87ald%C4%B1ran-T%C3%BCrkiye-Ortalama-Hava-Durumu-Y%C4%B1l-Boyunca) (Date accessed: January 14, 2024).
  • Connors, J.P., C.S. Galletti & W.T.L. Chow, 2013. Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28: 271-283.
  • Hajat, S., R. S. Kovats & K. Lachowycz, 2007. Heat-related and cold-related deaths in England and Wales: who is at risk?. Occupational and Environmental Medicine, 64 (2): 93-100.
  • Höppe, P., 1999.The physiological equivalent temperature universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43: 71-75.
  • Irmak, M. A., S. Yilmaz, E. Mutlu & H. Yilmaz, 2020. Analysis of different urban spaces on thermal comfort in cold regions: a case from Erzurum. Theoretical and Applied Climatology, 141: 1593-1609.
  • Kılıç, O., 2021. Van Tarihine Genel Bir Bakış. Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (Van Özel Sayısı), 19-42.
  • Kılıç, S., 2013. Linear regression analysis. Journal of Mood Disorders, 3 (2): 90-92.
  • Koss, H. H., 2006. On differences and similarities of applied wind comfort criteria. Journal of Wind Engineering and Industrial Aerodynamics, 94 (11): 781-797.
  • Kurt Konakoğlu, S.S. & G. Büyükgüner, 2021. Urban Equipment Design Process in the Example of Hatuniye and Nergis (Helkıs) Neighborhoods of Amasya City. Humanities Sciences, 16 (2): 131-154.
  • Laschewski, G. & G. Jendritzky, 2002. Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21 (1): 91-103.
  • Matzarakis, A. Rutz, F. & H. Mayer, 2007. Modelling radiation fluxes in simple and complex environments - application of the RayMan model. International Journal of Biometeorology, 51: 323-334.
  • Matzarakis, A. & H. Mayer, (1999). Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43:76–84.
  • Ministry of National Education, 2024. General Information About Van and Erciş. (Web page: https: //ercisataturkanadolulisesi.meb.k12.tr/icerikler/van-hakkinda-genel-bilgi_6493494.html) (Date accessed: January 14, 2024).
  • Nakayama, T. & T. Fujita, 2010. Cooling effect of water-holding pavements made of new materials on water and heat budgets in urban areas. Landscape and Urban Planning, 96 (2): 57-67.
  • Nastos, P. T. & A. Matzarakis, 2019. Present and future climate—tourism conditions in Milos Island, Greece. Atmosphere, 10 (3): 145.
  • Norouziasas, A., Pilehchi Ha, P. Ahmadi, M. & H. Bahadur Rijal, 2022. Evaluation of urban form influence on pedestrians' wind comfort. Building and Environment, 224: 109522,
  • Ozlü, T., S. Çaglak & S. Toy, 2019. Urban-Rural Differences of Climate Data Under the Sea Effect, Samsun City Example. Igdir University Journal of Science Institute, 9 (1): 330-338.
  • Rahmstorf, S. & D. Coumou, 2011. Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108 (44): 17905-17909.
  • Rizwan, A. M., L. Y. Dennis & L. I. U. Chunho, 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20 (1): 120-128.
  • Shi, X., Y. Zhu, J. Duan, R. Shao & J. Wang, 2015. Assessment of pedestrian wind environment in urban planning design. Landscape and Urban Planning, 140: 17-28.
  • Shui, T., J. Liu, Q. Yuan, Y. Qu, H. Jin, J. Cao & X. Chen, 2018. Assessment of pedestrian-level wind conditions in severe cold regions of China. Building and Environment, 135: 53-67.
  • Takebayashi, H. & M. Moriyama, 2009. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83 (8): 1211-1223.
  • Tomczyk, M., J. L. Heileson, M. Babiarz & P. C. Calder, 2023. Athletes can benefit from increased intake of EPA and DHA—evaluating the evidence. Nutrients, 15 (23): 4925.
  • Urban, A., H. Hanzlíková, J. Kyselý & E. Plavcová, 2017. Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. International Journal of Environmental Research and Public Health, 14 (12): 1562.
  • Wang, X., H. Li & S. Sodoudi, 2022. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217: 109082.
  • Yilmaz, S., E. Mutlu & H. Yılmaz, 2018. Alternative scenarios for ecological urbanizations using envi-met model. Environmental Science Pollution Research, 25 (26): 26307-26321.
  • Yilmaz, S., I. Sezen, M. A. Irmak & E. A. Kulekci, 2021. Analysis of outdoor thermal comfort and air pollution under the influence of urban morphology in cold-climate cities: Erzurum/Turkey. Environmental Science and Pollution Research, 28 (45): 64068-64083.

Effect of wind corridors on thermal comfort in urban and rural settlement areas

Yıl 2025, Cilt: 62 Sayı: 4, 493 - 509, 12.12.2025
https://doi.org/10.20289/zfdergi.1677528

Öz

Objective: This study aims to investigate the impact of pedestrian-level wind speed on thermal comfort in urban and rural areas with high elevation and distinct climatic and topographic characteristics.
Materials and Methods: Hourly meteorological data from the districts of Çaldıran, Muradiye, and Erciş in Van Province were used for the period 2018–2023. Physiological Equivalent Temperature (PET) values were calculated using RayMan Pro 2.1 software. Relationships between PET and meteorological variables were evaluated using Multiple Linear Regression and Pearson Correlation analyses, and the results were visualized using maps.
Results: While the average maximum temperature is experienced in Muradiye in July with 37.8ºC, the lowest temperature is experienced in Çaldıran with -9.5ºC, and the monthly average wind values are found to be the highest in Çaldıran with a long-term average of 0.3-0.8 m/s, in Muradiye it is between 0.3-0.6 m/s, and in Erciş it is 0.1 m/s every month.
Conclusion: Thermal comfort dynamics differ between urban and rural areas. Therefore, microclimatic design and wind corridor planning should be adapted to the settlement type.

Kaynakça

  • Blocken, B., T. Hooff & W. Janssen, 2013. Pedestrian wind comfort around buildings: Comparison of wind comfort criteria based on whole-flow field data for a complex case study. Building and Environment, 59: 547-562.
  • Çağlak, S. & A. Matzarakis, 2024. Evaluation of the relationship between thermal comfort conditions and respiratory diseases in Amasya City, Turkey. Journal of Public Health (Berlin), 32: 967-977.
  • Climate and Weather Conditions Throughout the Year in the Çaldıran Region. (Web page: https: //tr.weatherspark.com/y/102798/%C3%87ald%C4%B1ran-T%C3%BCrkiye-Ortalama-Hava-Durumu-Y%C4%B1l-Boyunca) (Date accessed: January 14, 2024).
  • Connors, J.P., C.S. Galletti & W.T.L. Chow, 2013. Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona. Landscape Ecology, 28: 271-283.
  • Hajat, S., R. S. Kovats & K. Lachowycz, 2007. Heat-related and cold-related deaths in England and Wales: who is at risk?. Occupational and Environmental Medicine, 64 (2): 93-100.
  • Höppe, P., 1999.The physiological equivalent temperature universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43: 71-75.
  • Irmak, M. A., S. Yilmaz, E. Mutlu & H. Yilmaz, 2020. Analysis of different urban spaces on thermal comfort in cold regions: a case from Erzurum. Theoretical and Applied Climatology, 141: 1593-1609.
  • Kılıç, O., 2021. Van Tarihine Genel Bir Bakış. Yüzüncü Yıl Üniversitesi Sosyal Bilimler Enstitüsü Dergisi (Van Özel Sayısı), 19-42.
  • Kılıç, S., 2013. Linear regression analysis. Journal of Mood Disorders, 3 (2): 90-92.
  • Koss, H. H., 2006. On differences and similarities of applied wind comfort criteria. Journal of Wind Engineering and Industrial Aerodynamics, 94 (11): 781-797.
  • Kurt Konakoğlu, S.S. & G. Büyükgüner, 2021. Urban Equipment Design Process in the Example of Hatuniye and Nergis (Helkıs) Neighborhoods of Amasya City. Humanities Sciences, 16 (2): 131-154.
  • Laschewski, G. & G. Jendritzky, 2002. Effects of the thermal environment on human health: an investigation of 30 years of daily mortality data from SW Germany. Climate Research, 21 (1): 91-103.
  • Matzarakis, A. Rutz, F. & H. Mayer, 2007. Modelling radiation fluxes in simple and complex environments - application of the RayMan model. International Journal of Biometeorology, 51: 323-334.
  • Matzarakis, A. & H. Mayer, (1999). Iziomon, M.G. Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43:76–84.
  • Ministry of National Education, 2024. General Information About Van and Erciş. (Web page: https: //ercisataturkanadolulisesi.meb.k12.tr/icerikler/van-hakkinda-genel-bilgi_6493494.html) (Date accessed: January 14, 2024).
  • Nakayama, T. & T. Fujita, 2010. Cooling effect of water-holding pavements made of new materials on water and heat budgets in urban areas. Landscape and Urban Planning, 96 (2): 57-67.
  • Nastos, P. T. & A. Matzarakis, 2019. Present and future climate—tourism conditions in Milos Island, Greece. Atmosphere, 10 (3): 145.
  • Norouziasas, A., Pilehchi Ha, P. Ahmadi, M. & H. Bahadur Rijal, 2022. Evaluation of urban form influence on pedestrians' wind comfort. Building and Environment, 224: 109522,
  • Ozlü, T., S. Çaglak & S. Toy, 2019. Urban-Rural Differences of Climate Data Under the Sea Effect, Samsun City Example. Igdir University Journal of Science Institute, 9 (1): 330-338.
  • Rahmstorf, S. & D. Coumou, 2011. Increase of extreme events in a warming world. Proceedings of the National Academy of Sciences, 108 (44): 17905-17909.
  • Rizwan, A. M., L. Y. Dennis & L. I. U. Chunho, 2008. A review on the generation, determination and mitigation of Urban Heat Island. Journal of Environmental Sciences, 20 (1): 120-128.
  • Shi, X., Y. Zhu, J. Duan, R. Shao & J. Wang, 2015. Assessment of pedestrian wind environment in urban planning design. Landscape and Urban Planning, 140: 17-28.
  • Shui, T., J. Liu, Q. Yuan, Y. Qu, H. Jin, J. Cao & X. Chen, 2018. Assessment of pedestrian-level wind conditions in severe cold regions of China. Building and Environment, 135: 53-67.
  • Takebayashi, H. & M. Moriyama, 2009. Study on the urban heat island mitigation effect achieved by converting to grass-covered parking. Solar Energy, 83 (8): 1211-1223.
  • Tomczyk, M., J. L. Heileson, M. Babiarz & P. C. Calder, 2023. Athletes can benefit from increased intake of EPA and DHA—evaluating the evidence. Nutrients, 15 (23): 4925.
  • Urban, A., H. Hanzlíková, J. Kyselý & E. Plavcová, 2017. Impacts of the 2015 heat waves on mortality in the Czech Republic—A comparison with previous heat waves. International Journal of Environmental Research and Public Health, 14 (12): 1562.
  • Wang, X., H. Li & S. Sodoudi, 2022. The effectiveness of cool and green roofs in mitigating urban heat island and improving human thermal comfort. Building and Environment, 217: 109082.
  • Yilmaz, S., E. Mutlu & H. Yılmaz, 2018. Alternative scenarios for ecological urbanizations using envi-met model. Environmental Science Pollution Research, 25 (26): 26307-26321.
  • Yilmaz, S., I. Sezen, M. A. Irmak & E. A. Kulekci, 2021. Analysis of outdoor thermal comfort and air pollution under the influence of urban morphology in cold-climate cities: Erzurum/Turkey. Environmental Science and Pollution Research, 28 (45): 64068-64083.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Fiziksel Çevre Kontrolü, Peyzaj Mimarlığı (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Nursevil Yuca 0000-0002-7985-7706

Şevket Alp 0000-0002-9552-4848

Mehmet Akif Irmak 0000-0001-8285-5341

Gönderilme Tarihi 22 Nisan 2025
Kabul Tarihi 11 Ekim 2025
Yayımlanma Tarihi 12 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 62 Sayı: 4

Kaynak Göster

APA Yuca, N., Alp, Ş., & Irmak, M. A. (2025). Effect of wind corridors on thermal comfort in urban and rural settlement areas. Journal of Agriculture Faculty of Ege University, 62(4), 493-509. https://doi.org/10.20289/zfdergi.1677528

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.