Effects of pesticides on Apis mellifera L. (Hymenoptera: Apidae) and their residues in honey
Yıl 2025,
Cilt: 62 Sayı: 4, 555 - 566, 12.12.2025
Alperen Kaan Bütüner
,
İ. Alper Susurluk
Öz
Objective: This review critically examines recent studies on the toxicological effects of pesticides in honey bee (Apis mellifera L. (Hymenoptera: Apidae)) and the subsequent residue levels in honey.
Material and Methods: The review synthesizes findings from various recent studies that investigate the acute and chronic toxicity of commonly used insecticides, acaricides, fungicides, and herbicides in honey bee behaviour, physiology, and colony health.
Results: The evidence suggests that even sub-lethal doses can impair foraging ability, navigation, and reproductive success, leading to long-term effects on colony stability.
Conclusion: Further research is required to elucidate the complex interactions between pesticides, bees, and environmental factors. Simultaneously, the development of more sustainable pest management strategies is vital to safeguarding pollinator health and preserving biodiversity.
Teşekkür
We would like to thank Assoc. Prof. Hilal SUSURLUK and Res. Assist. A. Selin ÖZGÖREN for their valuable support. The authors also thank İ.A. Susurluk's laboratory staff
Kaynakça
-
Ádám, B., P. Cocco & L. Godderis, 2024 Hazardous effects of pesticides on human health. Toxics, 12 (3): 186.
-
Bartlett, L., S. Alparslan, S. Bruckner, D. Delaney, J. Menz, G. Williams, K. Delaplane, 2024. Neonicotinoid exposure increases Varroa destructor (Mesostigmata: Varroidae) mite parasitism severity in honey bee colonies and is not mitigated by increased colony genetic diversity. Journal of Insect Science, 24 (3): 20.
-
Battisti, L., M. Potrich, R. Abati, A. R. Sampaio, G. Libardoni, F. M. Costa-Maia, E. A. Berté, C. B. dos Reis Martinez & S. H. Sofia, 2024. Toxicity of glyphosate herbicides formulated for Africanized Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Ecotoxicology and Environmental Safety, 287: 117247.
-
Bava, R., C. Lupia, F. Castagna, S. Ruga, S. Nucera, R. Caminiti, R. M. Bulotta, C. Naccari, C. Carresi, V. Mussolino, G. Statti, D. Britti, V. Mollace & E. Palma, 2024. Bergamot polyphenolic fraction for the control of flupyradifurone-induced poisoning in honeybees. Animals, 14 (4): 608.
-
Belsky, J. & N. K. Joshi, 2020. Effects of fungicide and herbicide chemical exposure on Apis and non-Apis bees in agricultural landscape. Frontiers in Environmental Science, 8: 81.
-
Bixby, M., S. K. French, S. B. Wizenberg, A. Jamieson, M. Pepinelli, M. M. Cunningham, I. M. Conflitti, L. J. Foster, A. Zayed & M. M. Guarna, 2024. Identifying and modeling the impact of neonicotinoid exposure on honey bee colony profit. Journal of Economic Entomology, 117 (6): 2228-2241.
-
Bütüner, A. K., Y. S. Şahin, A. Erdinç, H. Erdoğan & E. Lewis, 2024. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Journal of Agricultural Science, 30 (1): 99-107.
-
Cappellari, A., V. Malagnini, P. Fontana, L. Zanotelli, L. Tonidandel, G. Angeli, C. Ioriatti & L. Marini, 2024. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. Chemosphere, 349: 140829.
-
Chakrabarti, P., E. A. Carlson, H. M. Lucas, A. P. Melathopoulos & R. R. Sagili, 2020. Field rates of Sivanto™(flupyradifurone) and Transform®(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). Plos one, 15 (5): e0233033.
-
Chakrabarti, P., S. Rana, S. Sarkar, B. Smith & P. Basu, 2014. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two eastern indian states. Apidologie, 46 (1): 107-129.
-
Chaudhary, R., A. Nawaz, Z. Khattak, M. A. Butt, M. Fouillaud, L. Dufossé, M. Munir, I. ul Hag & H. Mukhtar, 2024. Microbial bio-control agents: a comprehensive analysis on sustainable pest management in agriculture. Journal of Agriculture and Food Research, 101421.
-
Chen, X., F. Wang, H. Guo, X. Liu, S. Wu, L. Lv & T. Tang, 2024. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. Science of the Total Environment, 933: 173126.
-
Choi, J. Y., K. Chon, J. Kim, B. M. K. Vasamsetti, B. S. Kim, C. Y. Yoon, S. Hwang, K-H. Park & J. H. Lee, 2024. Assessment of lambda-cyhalothrin and spinetoram toxicity and their effects on the activities of antioxidant enzymes and acetylcholinesterase in honey bee (Apis mellifera) larvae. Insects, 15 (8): 587.
-
Colin, T., J. Plath, S. Klein, P. Vine, J. Devaud, M. Lihoreau, W. G. Meikle & A. Barron, 2020. The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera). Apidologie, 51 (4): 499-509.
-
Colin, T., W. Meikle, X. Wu & A. Barron, 2019 Traces of a neonicotinoid induce precocious foraging and reduce foraging performance in honey bees. Environmental Science & Technology, 53 (14): 8252-8261.
-
Cook, S. 2019. Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects, 10 (1): 18.
-
Cullen, M. G., L. J. Thompson, J. C. Carolan, J. C. Stout & D. A. Stanley, 2019. Fungicides, herbicides and bees: A systematic review of existing research and methods. PloS one, 14 (12): e0225743.
-
Darko, G., J. Tabi, M. Adjaloo & L. Borquaye, 2017. Pesticide residues in honey from the major honey producing forest belts in ghana. Journal of Environmental and Public Health, 2017: 1-6.
-
Das, M., A. Paul, S. Bhattacharya & P. Basu, 2024. Pollinator visitation decline due to pesticide application beyond threshold frequency brings down crop yield. Ecological Entomology, 50 (1): 33-42. https://doi.org/10.1111/een.13375
-
Dede E., A. K. Bütüner & A. Susurluk, 2022. Biocontrol potential of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain against the beet webworm, Loxostege sticticalis L., 1761 (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 46 (4): 399-405.
-
Drummond, F., A. Averill & B. Eitzer, 2024. Pesticide contamination in native north american crops, part ii—comparison of flower, honey bee workers, and native bee residues in lowbush blueberry. Insects, 15 (8): 567.
-
Du, M., M. Li, X. Li, H. Yang & Y. Li, 2022. An insecticide application scheme in cotton fields with bi-directional selective effects on bees and pests. International Journal of Tropical Insect Science, 42 (5): 3499-3511.
-
El Agrebi, N., L. De Smet, C. Douny, M-L. Scippo, L. Svečnjak, D. C. de Graaf & C. Saegerman, 2024. A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression. PLoS one, 19 (6): e0302183.
-
Fasasi, K., O. Awodiran, D. Ayeni, O. Awoniyi & S. Awojide, 2024. Assessment of bee honey in some districts in south-western nigeria for agricultural pesticide residues and polycyclic aromatic hydrocarbons (pahs). Journal of Agricultural Sciences-Sri Lanka, 19 (1): 142-156.
-
Frizzera, D., V. Zanni, E. Seffin, J. R. de Miranda, F. Marroni, D. Annoscia & F. Nazzi, 2024. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. Science of the Total Environment, 948: 174892.
-
Haran, R., C. Sathyaseelan, E. Sumathi, J. Mannu, S. Vijay, G. Shandeep, V. R. Saminathan, M. R. Srinivasan & E. Kokiladevi, 2024. Unraveling the impact of pesticide exposure on Apis honey bees: an investigation on succinate dehydrogenase subunit a (sdha) inhibition mechanisms. Chemistryselect, 9 (15): e202305067.
-
Harbi, A., K. Abbes, R. Brahmi, R. Rahmouni & B. Chermiti, 2025. Efficacy of selected insecticides on Planococcus ficus and side effects on its natural enemies Leptomastix dactylopii and Cryptolaemus montrouzieri. International Journal of Tropical Insect Science, 1-9.
-
Heard, M. S., J. Baas, J. L. Dorne, E. Lahive, A. G. Robinson, A. Rortais, D. J. Spurgeon, C. Svendsen & H. Hesketh, 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. Science of the Total Environment, 578: 357-365.
-
Hrynko, I., B. Łozowicka & P. Kaczyński, 2018. Liquid chromatographic ms/ms analysis of a large group of insecticides in honey by modified quechers. Food Analytical Methods, 11 (8): 2307-2319.
-
Ilić, D., B. Brkić & M. Sekulić, 2024. Biomonitoring: developing a beehive air volatiles profile as an indicator of environmental contamination using a sustainable in-field technique. Sustainability, 16 (5): 1713.
-
Iqbal, S., Z. Zhuo, H. Ali, D. Xu, Y. Niaz, A. Shah, H. S. Almoallim, M. J. Ansari, M. A. Bodlah, B. Ali, M. Nawaz, M. S. Zaheer, J. Iqbal & N. Buttar, 2024. Exploring the synergistic toxicity of synthetic pesticides and their impact on development and behavior of honeybee (Apis mellifera L.). EJFA 36: 1-7.
-
Irungu, J., S. Raina & B. Torto, 2016. Determination of pesticide residues in honey: a preliminary study from two of africa’s largest honey producers. International Journal of Food Contamination, 3(1): 14.
-
Jaramillo-Zárate, M. & L. Londoño-Giraldo, 2023. Pesticides in honey: bibliographic and bibliometric analysis towards matrix quality for consumption. Brazilian Journal of Food Technology, 26: e2022112.
-
Jeschke, P., 2024. Recent developments in fluorine‐containing pesticides. Pest Management Science, 80 (7): 3065-3087.
-
Kaakinen, K., S. Ramula, O. Loukola & M. Helander, 2024. Effects of glyphosate and glyphosate‐based herbicide on learning and memory of the buff‐tailed bumblebee (Bombus terrestris). Entomologia Experimentalis et Applicata, 172 (4): 324-333.
-
Kadala, A., M. Kaabeche, M. Charreton, J. Mutterer, M. Pélissier, T. Cens, M. Rousset, M. Chanine, P. Charnet & C. Collet, 2024. Unravelling impacts of the insecticide deltamethrin on neuronal sodium channels in honey bees: Molecular insights and behavioural outcomes. Chemosphere, 369: 143852.
-
Kaur, R., D. Choudhary, S. Bali, S. S. Bandral, V. Singh, M. A. Ahmad, N. Rani, T. G. Singh & B. Chandrasekaran, 2024. Pesticides: An alarming detrimental to health and environment. Science of the Total Environment, 915: 170113.
-
Kuşaksız, E. K. & H. Çimer, 2019. Asma (Vitis vinifera var. Sultani çekirdeksiz) yapraklarında farklı salamura ortamlarının pestisit kalıntı düzeylerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 267-272.
-
Leite, D. T., R. B. Sampaio, E. D. Chambó, C. M. L., Aguiar, M. S. de Godoy & C. A. L. de Carvalho, 2022. Toxicity of chlorpyrifos, cyflumetofen, and difenoconazole on Tetragonisca angustula (Latreille, 1811) under laboratory conditions. International Journal of Tropical Insect Science, 42 (1): 435-443.
-
Li, W., Y. Zan, T. Wu, S. Yang, L. Liu, S. Li, P. Dai & J. Gao, 2024. Impact of chlorantraniliprole on honey bees: Differential sensitivity and biological responses in Apis mellifera and Apis cerana. Science of the Total Environment, 957: 177417.
-
Liu, X., C. Wang, W. Zhu, L. Lv, X. Wang, Y. Wang, Z. Wang & X. Gai, 2025. Influence of triflumezopyrim and triadimefon co-exposure on enzymatic activity and gene expression changes in honey bees (Apis mellifera L.). Pesticide Biochemistry and Physiology, 208: 106269.
-
Lucas, K., L. Fweja & M. Mihale, 2022. Determining pesticide residues in bee produce and their potential risk to consumers in Tanzania. International Journal of Agriculture, 7 (1): 26–42.
-
Mallinger, R., P. Werts & C. Gratton, 2015. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. Journal of Insect Conservation, 19 (5): 999-1010.
-
Margaoan, R., G. Papa, A. Nicolescu, M. Cornea-Cipcigan, M. Kösoğlu, E. Topal & I. Negri, 2024. Environmental pollution effect on honey bees and their derived products: A comprehensive analysis. Environmental Science and Pollution Research, 32: 10370–10391.
-
McArt, S., A. Fersch, N. Milano, L. Truitt & K. Böröczky, 2017. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Scientific Reports, 7: 46554.
-
McGruddy, R., J. Haywood & P. Lester, 2024. Beekeepers support the use of RNA interference (RNAi) to control Varroa destructor. Insects, 15 (7): 539.
-
Mohamed, I. A., E. M. Omar, A. I. Tawfik, A. M. Amro & Y. Al Naggar, 2023. Sublethal effects of herbicides clethodim, haloxyfop-P-methyl, and their mixture on honey bee health. Apidologie, 54 (1): 2.
-
Morrison, M., A. Linguadoca, P. Šima & M. Brown, 2025. Examining the effects of repeated pesticide exposure on bumblebee queen survival and reproduction. Ecological Solutions and Evidence, 6 (1): e70011.
-
Mullin, C. A., M. Frazier, J. L. Frazier, S. Ashcraft, R. Simonds, D. VanEngelsdorp & J. S. Pettis, 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PloS one 5 (3): e9754.
-
Naggar, Y. & B. Baer, 2019. Consequences of a short time exposure to a sublethal dose of flupyradifurone (sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Scietific Reports, 9 (1): 19753.
-
Oliveira, M. S. D., G. D. S. Pereira, L. C. Martinez, A. B. Reis, M. T. C. S. D. Resende, L. L. D. Silva, J. C. Zanuncio & J. E. Serrão, 2024. Effects of chronic oral exposure to insecticide teflubenzuron on the midgut of the honey bee Apis mellifera workers: histopathological insights into pesticide toxicity. Environmental Science and Pollution Research, 31 (32): 44908-44919.
-
Pawar, P., M. Jarpla, D. K. Narwade, R. Ghanghas & S. Sarangi, 2024. A review on the sublethal effects of pure and formulated glyphosate on bees, with a focus on social bee species. Archives of Current Research International, 24 (12): 28-42.
-
Pettis, J., D. vanEngelsdorp, J. Johnson & G. Dively, 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen nosema. The Science of Nature, 99 (2): 153-158.
-
Pettis, J., E. Lichtenberg, M. Andree, J. Stitzinger, R. Rose & D. vanEngelsdorp, 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. Plos One, 8 (7): e70182.
-
Pham, T. H., N. T. Phan, D. D. Trinh, H. N. Duong, P. T. Tran, K. D. Nguyen, G. V. P. Reddy, C. Jung & N. K. Joshi, 2025. Comparative toxicities of commonly used agricultural insecticides to four honey bee species (Hymenoptera: Apidae) in Vietnam. Environmental Toxicology and Pharmacology, 113: 104605.
-
Reis, A. B., M. S. de Oliveira, D. dos Santos Souza, D. S. Gomes, L. L. da Silva, L. C. Martínez & J. E. Serrão, 2024. Exploring the effects of the acaricide cyflumetofen on the vital organs of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. Science of the Total Environment, 929: 172640.
-
Rinkevich, F. D., D. Dodge & N. Egnew, 2025. Minimal toxicological impact of Chlorothalonil on adult honey bees (Apis mellifera, L.). Pesticide Biochemistry and Physiology, 208: 106300.
-
Rükün, T., N. Ercan, E. Canko, B. Avşar, A. G. Dyer, J. E. Garcia, İ. Çakmak & C. Mayack, 2025. Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours. Science of the Total Environment, 962: 178460.
-
Sadia, H., P. Karki, M. Afroz, H. Khan, M. Hossain & M. Rahman, 2024. The exposure of pesticides to honeybees: a global threat to food security. OnLine Journal of Biological Sciences, 24 (2): 232-243.
-
Sánchez‐Bayo, F. & K. Goka, 2014. Pesticide residues and bees – a risk assessment. PloS one, 9 (4): e94482.
-
Sansar, S., 2021. Influence of different classes of insecticides on honey bee survival. Bee Studies 13 (2): 43-49.
-
Schuhmann, A., A. P. Schmid, S. Manzer, J. Schulte & R. Scheiner, 2022. Interaction of insecticides and fungicides in bees. Frontiers in Insect Science, 1: 808335.
-
Scripcă, L. & S. Amariei, 2021. The influence of chemical contaminants on the physicochemical properties of unifloral and multifloral honey. Foods, 10 (5): 1039.
-
Silva, S., L. Marcolin, V. Borba, J. Arias, L. Kupski, S. Caldas & E. Prímel, 2024. Physicochemical characterization and determination of pesticides in Apis mellifera honey from southern brazil. Brazilian Journal of Food Technology, 27: e2023132.
-
Stevanović, N., W. Idbeaa, J. Bošković, R. Prodanović, I. Vapa, V. Bursić, N. Puvača & S. Vještica, 2024. Pesticide residues in different honey types and public health risk assessment. Acta Veterinaria Brno, 93 (1): 105-114.
-
Tosi, S., C. Sfeir, E. Carnesecchi & M. P. Chauzat, 2022. Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Science of the Total Environment, 844: 156857.
-
Villalba, A., F. Cecchetto, N. D. Vazquez, L. Amarilla, C. L. Ramirez, L. Galetto, M. Maggi & K. S. Miglioranza, 2024. Contaminant dynamics in honey bees and hive products of apiaries from environmentally contrasting Argentinean regions. Environmental Research, 249: 118306.
-
Vommaro, M. L. & A. Giglio, 2024. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. Ecotoxicology and Environmental Safety, 280: 116565.
-
Wang, S., X. Wang, Y. Liu & Q. Yao, 2025. Single and synergistic effects of microplastics and difenoconazole on oxidative stress, transcriptome, and microbiome traits in honey bees. Journal of Agricultural and Food Chemistry 73 (5): 3095-3105.
-
Williams, G., A. Troxler, G. Retschnig, K. Roth, O. Yañez, D. Shutler, P. Neumann & L. Gauthier, 2015. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports 5 (1): 14621.
-
Xue, Y., W. Zhao, Q. Meng, L. Yang, D. Zhi, Y. Guo, D. Yue, Y. Tian & K. Dong, 2024. Combined toxic effects of lead and glyphosate on Apis cerana. Insects, 15 (9): 644.
-
Yaraşır, O. N., A. K. Bütüner & H. Susurluk, 2024a. Recent advances on the potential control of Rhyzopertha dominica Fab. (Coleoptera: Bostrichidae). Uludağ Ünivesitesi Ziraat Fakültesi Dergisi, 38 (2): 449-456.
-
Yaraşır, O. N., E. Ergene, A. K. Bütüner, H. Susurluk & A. Susurluk, 2024b. Pathogenicity of the Steinernema feltiae TUR-S3 (Rhabditida: Steinernematidae) ısolate on Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Tribolium confusum (Coleoptera: Tenebrionidae). Türk Tarım ve Doğa Bilimleri Dergisi 11 (2): 409-416.
Pestisitlerin Apis mellifera L. (Hymenoptera: Apidae) üzerindeki etkileri ve baldaki kalıntıları
Yıl 2025,
Cilt: 62 Sayı: 4, 555 - 566, 12.12.2025
Alperen Kaan Bütüner
,
İ. Alper Susurluk
Öz
Amaç: Bu derleme, bal arılarında (Apis mellifera L. (Hymenoptera: Apidae)) pestisitlerin toksikolojik etkilerine ve balda kalıntı düzeylerine ilişkin son çalışmaları eleştirel bir bakış açısıyla incelemektedir.
Materyal ve Yöntem: Bu derleme, yaygın olarak kullanılan insektisit, akarisit, fungisit ve herbisitlerin bal arılarının davranışları, fizyolojileri ve koloni sağlığı üzerindeki akut ve kronik toksisitelerini inceleyen çeşitli güncel çalışmalardan elde edilen bulguları sentezlemektedir.
Araştırma Bulguları: Elde edilen bulgular, ölümcül olmayan dozların dahi arıların yiyecek arama yetilerini, yön bulma becerilerini ve üreme başarılarını olumsuz etkileyebileceğini, bunun da koloni stabilitesi üzerinde uzun vadeli sonuçlara yol açabileceğini ortaya koymaktadır.
Sonuç: Pestisitler, arılar ve çevresel faktörler arasındaki karmaşık etkileşimlerin anlaşılabilmesi için daha fazla araştırma yapılması gereklidir. Aynı zamanda, tozlayıcıların sağlığını ve biyolojik çeşitliliğini korumaya yönelik daha sürdürülebilir zararlı kontrol yöntemlerinin geliştirilmesi oldukça hayatidir.
Kaynakça
-
Ádám, B., P. Cocco & L. Godderis, 2024 Hazardous effects of pesticides on human health. Toxics, 12 (3): 186.
-
Bartlett, L., S. Alparslan, S. Bruckner, D. Delaney, J. Menz, G. Williams, K. Delaplane, 2024. Neonicotinoid exposure increases Varroa destructor (Mesostigmata: Varroidae) mite parasitism severity in honey bee colonies and is not mitigated by increased colony genetic diversity. Journal of Insect Science, 24 (3): 20.
-
Battisti, L., M. Potrich, R. Abati, A. R. Sampaio, G. Libardoni, F. M. Costa-Maia, E. A. Berté, C. B. dos Reis Martinez & S. H. Sofia, 2024. Toxicity of glyphosate herbicides formulated for Africanized Apis mellifera Linnaeus, 1758 (Hymenoptera: Apidae). Ecotoxicology and Environmental Safety, 287: 117247.
-
Bava, R., C. Lupia, F. Castagna, S. Ruga, S. Nucera, R. Caminiti, R. M. Bulotta, C. Naccari, C. Carresi, V. Mussolino, G. Statti, D. Britti, V. Mollace & E. Palma, 2024. Bergamot polyphenolic fraction for the control of flupyradifurone-induced poisoning in honeybees. Animals, 14 (4): 608.
-
Belsky, J. & N. K. Joshi, 2020. Effects of fungicide and herbicide chemical exposure on Apis and non-Apis bees in agricultural landscape. Frontiers in Environmental Science, 8: 81.
-
Bixby, M., S. K. French, S. B. Wizenberg, A. Jamieson, M. Pepinelli, M. M. Cunningham, I. M. Conflitti, L. J. Foster, A. Zayed & M. M. Guarna, 2024. Identifying and modeling the impact of neonicotinoid exposure on honey bee colony profit. Journal of Economic Entomology, 117 (6): 2228-2241.
-
Bütüner, A. K., Y. S. Şahin, A. Erdinç, H. Erdoğan & E. Lewis, 2024. Enhancing pest detection: Assessing Tuta absoluta (Lepidoptera: Gelechiidae) damage intensity in field images through advanced machine learning. Journal of Agricultural Science, 30 (1): 99-107.
-
Cappellari, A., V. Malagnini, P. Fontana, L. Zanotelli, L. Tonidandel, G. Angeli, C. Ioriatti & L. Marini, 2024. Impact of landscape composition on honey bee pollen contamination by pesticides: A multi-residue analysis. Chemosphere, 349: 140829.
-
Chakrabarti, P., E. A. Carlson, H. M. Lucas, A. P. Melathopoulos & R. R. Sagili, 2020. Field rates of Sivanto™(flupyradifurone) and Transform®(sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). Plos one, 15 (5): e0233033.
-
Chakrabarti, P., S. Rana, S. Sarkar, B. Smith & P. Basu, 2014. Pesticide-induced oxidative stress in laboratory and field populations of native honey bees along intensive agricultural landscapes in two eastern indian states. Apidologie, 46 (1): 107-129.
-
Chaudhary, R., A. Nawaz, Z. Khattak, M. A. Butt, M. Fouillaud, L. Dufossé, M. Munir, I. ul Hag & H. Mukhtar, 2024. Microbial bio-control agents: a comprehensive analysis on sustainable pest management in agriculture. Journal of Agriculture and Food Research, 101421.
-
Chen, X., F. Wang, H. Guo, X. Liu, S. Wu, L. Lv & T. Tang, 2024. Uncovering hidden dangers: The combined toxicity of abamectin and lambda-cyhalothrin on honey bees. Science of the Total Environment, 933: 173126.
-
Choi, J. Y., K. Chon, J. Kim, B. M. K. Vasamsetti, B. S. Kim, C. Y. Yoon, S. Hwang, K-H. Park & J. H. Lee, 2024. Assessment of lambda-cyhalothrin and spinetoram toxicity and their effects on the activities of antioxidant enzymes and acetylcholinesterase in honey bee (Apis mellifera) larvae. Insects, 15 (8): 587.
-
Colin, T., J. Plath, S. Klein, P. Vine, J. Devaud, M. Lihoreau, W. G. Meikle & A. Barron, 2020. The miticide thymol in combination with trace levels of the neonicotinoid imidacloprid reduces visual learning performance in honey bees (Apis mellifera). Apidologie, 51 (4): 499-509.
-
Colin, T., W. Meikle, X. Wu & A. Barron, 2019 Traces of a neonicotinoid induce precocious foraging and reduce foraging performance in honey bees. Environmental Science & Technology, 53 (14): 8252-8261.
-
Cook, S. 2019. Compound and dose-dependent effects of two neonicotinoid pesticides on honey bee (Apis mellifera) metabolic physiology. Insects, 10 (1): 18.
-
Cullen, M. G., L. J. Thompson, J. C. Carolan, J. C. Stout & D. A. Stanley, 2019. Fungicides, herbicides and bees: A systematic review of existing research and methods. PloS one, 14 (12): e0225743.
-
Darko, G., J. Tabi, M. Adjaloo & L. Borquaye, 2017. Pesticide residues in honey from the major honey producing forest belts in ghana. Journal of Environmental and Public Health, 2017: 1-6.
-
Das, M., A. Paul, S. Bhattacharya & P. Basu, 2024. Pollinator visitation decline due to pesticide application beyond threshold frequency brings down crop yield. Ecological Entomology, 50 (1): 33-42. https://doi.org/10.1111/een.13375
-
Dede E., A. K. Bütüner & A. Susurluk, 2022. Biocontrol potential of Heterorhabditis bacteriophora Poinar, 1976 (Rhabditida: Heterorhabditidae) HBH hybrid strain against the beet webworm, Loxostege sticticalis L., 1761 (Lepidoptera: Pyralidae). Turkish Journal of Entomology, 46 (4): 399-405.
-
Drummond, F., A. Averill & B. Eitzer, 2024. Pesticide contamination in native north american crops, part ii—comparison of flower, honey bee workers, and native bee residues in lowbush blueberry. Insects, 15 (8): 567.
-
Du, M., M. Li, X. Li, H. Yang & Y. Li, 2022. An insecticide application scheme in cotton fields with bi-directional selective effects on bees and pests. International Journal of Tropical Insect Science, 42 (5): 3499-3511.
-
El Agrebi, N., L. De Smet, C. Douny, M-L. Scippo, L. Svečnjak, D. C. de Graaf & C. Saegerman, 2024. A field realistic model to assess the effects of pesticides residues and adulterants on honey bee gene expression. PLoS one, 19 (6): e0302183.
-
Fasasi, K., O. Awodiran, D. Ayeni, O. Awoniyi & S. Awojide, 2024. Assessment of bee honey in some districts in south-western nigeria for agricultural pesticide residues and polycyclic aromatic hydrocarbons (pahs). Journal of Agricultural Sciences-Sri Lanka, 19 (1): 142-156.
-
Frizzera, D., V. Zanni, E. Seffin, J. R. de Miranda, F. Marroni, D. Annoscia & F. Nazzi, 2024. Assessing lethal and sublethal effects of pesticides on honey bees in a multifactorial context. Science of the Total Environment, 948: 174892.
-
Haran, R., C. Sathyaseelan, E. Sumathi, J. Mannu, S. Vijay, G. Shandeep, V. R. Saminathan, M. R. Srinivasan & E. Kokiladevi, 2024. Unraveling the impact of pesticide exposure on Apis honey bees: an investigation on succinate dehydrogenase subunit a (sdha) inhibition mechanisms. Chemistryselect, 9 (15): e202305067.
-
Harbi, A., K. Abbes, R. Brahmi, R. Rahmouni & B. Chermiti, 2025. Efficacy of selected insecticides on Planococcus ficus and side effects on its natural enemies Leptomastix dactylopii and Cryptolaemus montrouzieri. International Journal of Tropical Insect Science, 1-9.
-
Heard, M. S., J. Baas, J. L. Dorne, E. Lahive, A. G. Robinson, A. Rortais, D. J. Spurgeon, C. Svendsen & H. Hesketh, 2017. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species?. Science of the Total Environment, 578: 357-365.
-
Hrynko, I., B. Łozowicka & P. Kaczyński, 2018. Liquid chromatographic ms/ms analysis of a large group of insecticides in honey by modified quechers. Food Analytical Methods, 11 (8): 2307-2319.
-
Ilić, D., B. Brkić & M. Sekulić, 2024. Biomonitoring: developing a beehive air volatiles profile as an indicator of environmental contamination using a sustainable in-field technique. Sustainability, 16 (5): 1713.
-
Iqbal, S., Z. Zhuo, H. Ali, D. Xu, Y. Niaz, A. Shah, H. S. Almoallim, M. J. Ansari, M. A. Bodlah, B. Ali, M. Nawaz, M. S. Zaheer, J. Iqbal & N. Buttar, 2024. Exploring the synergistic toxicity of synthetic pesticides and their impact on development and behavior of honeybee (Apis mellifera L.). EJFA 36: 1-7.
-
Irungu, J., S. Raina & B. Torto, 2016. Determination of pesticide residues in honey: a preliminary study from two of africa’s largest honey producers. International Journal of Food Contamination, 3(1): 14.
-
Jaramillo-Zárate, M. & L. Londoño-Giraldo, 2023. Pesticides in honey: bibliographic and bibliometric analysis towards matrix quality for consumption. Brazilian Journal of Food Technology, 26: e2022112.
-
Jeschke, P., 2024. Recent developments in fluorine‐containing pesticides. Pest Management Science, 80 (7): 3065-3087.
-
Kaakinen, K., S. Ramula, O. Loukola & M. Helander, 2024. Effects of glyphosate and glyphosate‐based herbicide on learning and memory of the buff‐tailed bumblebee (Bombus terrestris). Entomologia Experimentalis et Applicata, 172 (4): 324-333.
-
Kadala, A., M. Kaabeche, M. Charreton, J. Mutterer, M. Pélissier, T. Cens, M. Rousset, M. Chanine, P. Charnet & C. Collet, 2024. Unravelling impacts of the insecticide deltamethrin on neuronal sodium channels in honey bees: Molecular insights and behavioural outcomes. Chemosphere, 369: 143852.
-
Kaur, R., D. Choudhary, S. Bali, S. S. Bandral, V. Singh, M. A. Ahmad, N. Rani, T. G. Singh & B. Chandrasekaran, 2024. Pesticides: An alarming detrimental to health and environment. Science of the Total Environment, 915: 170113.
-
Kuşaksız, E. K. & H. Çimer, 2019. Asma (Vitis vinifera var. Sultani çekirdeksiz) yapraklarında farklı salamura ortamlarının pestisit kalıntı düzeylerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 267-272.
-
Leite, D. T., R. B. Sampaio, E. D. Chambó, C. M. L., Aguiar, M. S. de Godoy & C. A. L. de Carvalho, 2022. Toxicity of chlorpyrifos, cyflumetofen, and difenoconazole on Tetragonisca angustula (Latreille, 1811) under laboratory conditions. International Journal of Tropical Insect Science, 42 (1): 435-443.
-
Li, W., Y. Zan, T. Wu, S. Yang, L. Liu, S. Li, P. Dai & J. Gao, 2024. Impact of chlorantraniliprole on honey bees: Differential sensitivity and biological responses in Apis mellifera and Apis cerana. Science of the Total Environment, 957: 177417.
-
Liu, X., C. Wang, W. Zhu, L. Lv, X. Wang, Y. Wang, Z. Wang & X. Gai, 2025. Influence of triflumezopyrim and triadimefon co-exposure on enzymatic activity and gene expression changes in honey bees (Apis mellifera L.). Pesticide Biochemistry and Physiology, 208: 106269.
-
Lucas, K., L. Fweja & M. Mihale, 2022. Determining pesticide residues in bee produce and their potential risk to consumers in Tanzania. International Journal of Agriculture, 7 (1): 26–42.
-
Mallinger, R., P. Werts & C. Gratton, 2015. Pesticide use within a pollinator-dependent crop has negative effects on the abundance and species richness of sweat bees, Lasioglossum spp., and on bumble bee colony growth. Journal of Insect Conservation, 19 (5): 999-1010.
-
Margaoan, R., G. Papa, A. Nicolescu, M. Cornea-Cipcigan, M. Kösoğlu, E. Topal & I. Negri, 2024. Environmental pollution effect on honey bees and their derived products: A comprehensive analysis. Environmental Science and Pollution Research, 32: 10370–10391.
-
McArt, S., A. Fersch, N. Milano, L. Truitt & K. Böröczky, 2017. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Scientific Reports, 7: 46554.
-
McGruddy, R., J. Haywood & P. Lester, 2024. Beekeepers support the use of RNA interference (RNAi) to control Varroa destructor. Insects, 15 (7): 539.
-
Mohamed, I. A., E. M. Omar, A. I. Tawfik, A. M. Amro & Y. Al Naggar, 2023. Sublethal effects of herbicides clethodim, haloxyfop-P-methyl, and their mixture on honey bee health. Apidologie, 54 (1): 2.
-
Morrison, M., A. Linguadoca, P. Šima & M. Brown, 2025. Examining the effects of repeated pesticide exposure on bumblebee queen survival and reproduction. Ecological Solutions and Evidence, 6 (1): e70011.
-
Mullin, C. A., M. Frazier, J. L. Frazier, S. Ashcraft, R. Simonds, D. VanEngelsdorp & J. S. Pettis, 2010. High levels of miticides and agrochemicals in North American apiaries: implications for honey bee health. PloS one 5 (3): e9754.
-
Naggar, Y. & B. Baer, 2019. Consequences of a short time exposure to a sublethal dose of flupyradifurone (sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Scietific Reports, 9 (1): 19753.
-
Oliveira, M. S. D., G. D. S. Pereira, L. C. Martinez, A. B. Reis, M. T. C. S. D. Resende, L. L. D. Silva, J. C. Zanuncio & J. E. Serrão, 2024. Effects of chronic oral exposure to insecticide teflubenzuron on the midgut of the honey bee Apis mellifera workers: histopathological insights into pesticide toxicity. Environmental Science and Pollution Research, 31 (32): 44908-44919.
-
Pawar, P., M. Jarpla, D. K. Narwade, R. Ghanghas & S. Sarangi, 2024. A review on the sublethal effects of pure and formulated glyphosate on bees, with a focus on social bee species. Archives of Current Research International, 24 (12): 28-42.
-
Pettis, J., D. vanEngelsdorp, J. Johnson & G. Dively, 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen nosema. The Science of Nature, 99 (2): 153-158.
-
Pettis, J., E. Lichtenberg, M. Andree, J. Stitzinger, R. Rose & D. vanEngelsdorp, 2013. Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. Plos One, 8 (7): e70182.
-
Pham, T. H., N. T. Phan, D. D. Trinh, H. N. Duong, P. T. Tran, K. D. Nguyen, G. V. P. Reddy, C. Jung & N. K. Joshi, 2025. Comparative toxicities of commonly used agricultural insecticides to four honey bee species (Hymenoptera: Apidae) in Vietnam. Environmental Toxicology and Pharmacology, 113: 104605.
-
Reis, A. B., M. S. de Oliveira, D. dos Santos Souza, D. S. Gomes, L. L. da Silva, L. C. Martínez & J. E. Serrão, 2024. Exploring the effects of the acaricide cyflumetofen on the vital organs of the honey bee Apis mellifera (Hymenoptera: Apidae) workers. Science of the Total Environment, 929: 172640.
-
Rinkevich, F. D., D. Dodge & N. Egnew, 2025. Minimal toxicological impact of Chlorothalonil on adult honey bees (Apis mellifera, L.). Pesticide Biochemistry and Physiology, 208: 106300.
-
Rükün, T., N. Ercan, E. Canko, B. Avşar, A. G. Dyer, J. E. Garcia, İ. Çakmak & C. Mayack, 2025. Sub-lethal pesticide exposure interferes with honey bee memory of learnt colours. Science of the Total Environment, 962: 178460.
-
Sadia, H., P. Karki, M. Afroz, H. Khan, M. Hossain & M. Rahman, 2024. The exposure of pesticides to honeybees: a global threat to food security. OnLine Journal of Biological Sciences, 24 (2): 232-243.
-
Sánchez‐Bayo, F. & K. Goka, 2014. Pesticide residues and bees – a risk assessment. PloS one, 9 (4): e94482.
-
Sansar, S., 2021. Influence of different classes of insecticides on honey bee survival. Bee Studies 13 (2): 43-49.
-
Schuhmann, A., A. P. Schmid, S. Manzer, J. Schulte & R. Scheiner, 2022. Interaction of insecticides and fungicides in bees. Frontiers in Insect Science, 1: 808335.
-
Scripcă, L. & S. Amariei, 2021. The influence of chemical contaminants on the physicochemical properties of unifloral and multifloral honey. Foods, 10 (5): 1039.
-
Silva, S., L. Marcolin, V. Borba, J. Arias, L. Kupski, S. Caldas & E. Prímel, 2024. Physicochemical characterization and determination of pesticides in Apis mellifera honey from southern brazil. Brazilian Journal of Food Technology, 27: e2023132.
-
Stevanović, N., W. Idbeaa, J. Bošković, R. Prodanović, I. Vapa, V. Bursić, N. Puvača & S. Vještica, 2024. Pesticide residues in different honey types and public health risk assessment. Acta Veterinaria Brno, 93 (1): 105-114.
-
Tosi, S., C. Sfeir, E. Carnesecchi & M. P. Chauzat, 2022. Lethal, sublethal, and combined effects of pesticides on bees: A meta-analysis and new risk assessment tools. Science of the Total Environment, 844: 156857.
-
Villalba, A., F. Cecchetto, N. D. Vazquez, L. Amarilla, C. L. Ramirez, L. Galetto, M. Maggi & K. S. Miglioranza, 2024. Contaminant dynamics in honey bees and hive products of apiaries from environmentally contrasting Argentinean regions. Environmental Research, 249: 118306.
-
Vommaro, M. L. & A. Giglio, 2024. Cytotoxic and genotoxic effects of a pendimethalin-based herbicide in Apis mellifera. Ecotoxicology and Environmental Safety, 280: 116565.
-
Wang, S., X. Wang, Y. Liu & Q. Yao, 2025. Single and synergistic effects of microplastics and difenoconazole on oxidative stress, transcriptome, and microbiome traits in honey bees. Journal of Agricultural and Food Chemistry 73 (5): 3095-3105.
-
Williams, G., A. Troxler, G. Retschnig, K. Roth, O. Yañez, D. Shutler, P. Neumann & L. Gauthier, 2015. Neonicotinoid pesticides severely affect honey bee queens. Scientific Reports 5 (1): 14621.
-
Xue, Y., W. Zhao, Q. Meng, L. Yang, D. Zhi, Y. Guo, D. Yue, Y. Tian & K. Dong, 2024. Combined toxic effects of lead and glyphosate on Apis cerana. Insects, 15 (9): 644.
-
Yaraşır, O. N., A. K. Bütüner & H. Susurluk, 2024a. Recent advances on the potential control of Rhyzopertha dominica Fab. (Coleoptera: Bostrichidae). Uludağ Ünivesitesi Ziraat Fakültesi Dergisi, 38 (2): 449-456.
-
Yaraşır, O. N., E. Ergene, A. K. Bütüner, H. Susurluk & A. Susurluk, 2024b. Pathogenicity of the Steinernema feltiae TUR-S3 (Rhabditida: Steinernematidae) ısolate on Oryzaephilus surinamensis (Coleoptera: Silvanidae) and Tribolium confusum (Coleoptera: Tenebrionidae). Türk Tarım ve Doğa Bilimleri Dergisi 11 (2): 409-416.