Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Mycorrhiza and Rhizobacteria Application on Growth and Some Physiological Parameters of Pepper (Capsicum annuum L.) Under Salt Stres

Yıl 2020, , 501 - 510, 30.12.2020
https://doi.org/10.20289/zfdergi.655491

Öz

Objective: This research was conducted to study effects of mycorrhiza (Glomus intraradices) and rhizobacteria (Bacillus subtilis) applications on plant growth, relative water content (RWC), membrane permeability, proline and chlorophyll content of pepper (Capsicum annuum L. cv Seki F1) under different salt conditions (1.5, 3, 6 dS m-1).
Material and Methods: Three pepper seedlings were planted in long pots (60 x 18 x 21 cm) have a volume of 22 liters and filled with perlite: peat mixture (1:1, v:v). In the study, microorganisms were inoculated together during planting and salt was used at 15 days after planting. After 40 days of salt applications, the physiological parameters such as RWC, , membran permability, chlorophyll and proline content were determined. The study was completed 160 days after planting. At the end of the study, plant growth parameters such as shoot height, stem diameter, dry and fresh weights of shoots and roots were investigated.
Results: The results showed that increasing concentrations of salt decreased all growth parameters. Salt application caused an increase in the proline content, membran permability of plant. But RWC and chlorophyll content were decreased. Mycorrhiza, rhizobacteria and mycorrhiza plus rhizobacteria treatments positively improved plant growth and physiological parameters of pepper plants under all salinity stress levels. G. intraradices plus B. subtilis treated plants were shown highest impact on all parameters under salt stress. The plants (G. intraradices plus B. subtilis application) were followed by only mycorrhiza inoculated plants and only B. subsilis inoculated plants under salt stress.
Conclusion: The results of the study clearly showed that application of G. intraradices plus B. subtilis in pepper cultivation under salt conditions may be a good alternative to decrease negative effects of salt.

Kaynakça

  • Abdel-Rahman, S.S., A.A. Abdel-Kader and S.E. Khalil, 2011. Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nat. Sci. 9(6): 93-111.
  • Abdulhadi, S.A.A., 2017. Tuzlu toprak koşullarında çerezlik kabakta arbusküler mikoriza fungi uygulamalarının fide gelişmesine etkisi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 205 s
  • Ahmad, M., Z.A. Zahir, H.N. Asghar and M. Arshad, 2012. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of microbiology. 62(3): 1321-1330.
  • Ahmad, P. and R. Jhon, 2005. Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archives of Agronomy and Soil Science. 51: 665-672.
  • Akat, H. and H. Altunlu. 2019. The Effects of Sewage Sludge Applications on Growth, Yield and Flower Quality of Limonium sinuatum (Statice) under Salinity Conditions. Ege Üniversitesi Ziraat Fakültesi Dergisi. 56 (1):111-120 . DOI: 10.20289/zfdergi.423273
  • Akat, H. and Ö. Saraçoğlu Akat. 2017. The Effects of Organic Substances and Foliar Calcium Applications on Limonium sinuatum Cultivation in Saline Conditions, Current Trends in Science and Landscape Management, Sofia St. Kliment Ohridski University Press, ISBN 978-954-07-4338-7, Chapter: 25, 285-295 pp,
  • Aksoy, U., S. Hepaksoy, H.Z. Can, D. Anaç, B. Okur, C.C. Kılıç, S. Anaç, M.A. Ul ve Y. Kukul. 1998. Akdeniz havzasında çölleşme ve tuzlanma problemine karşı yeni tekniklerin geliştirilmesi, Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu Bildirileri. 126-137, İzmir.
  • Altunlu, H. 2019. Tuzlu Koşullarda Mikoriza Uygulamasının Kapya Biberde (Capsicum Annuum L.) Fide Gelişimi ve Antioksidant Enzimler Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi. 56(2), 139-146.
  • Amjad, M., J. Akhtar, M. Anwar-ul-Haq, M.A. Riaz, Z.A. Saqib, B. Murtaza and M.A. Naeem. 2016. Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting tomato genotypes. Journal of Plant Nutrition. 39(13): 1926-1935.
  • Arcak, S. ve N. Güder. 2004. Biyolojik Gübrelemenin Sürdürülebilir Ekosistemdeki Önemi. Türkiye 3. Ulusal Gübre Kongresi, Tarım-Sanayi-Çevre, 11-13 Ekim, 837-844, Tokat.
  • Aroca, R., R. Porcel and J.M. Ruiz-Lozano. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist. 173(4): 808-816.
  • Aroca, R., R. Porcel and J.M. Ruiz-Lozano. 2011. Regulation of root water uptake under abiotic stress conditions. Journal of experimental botany. 63(1): 43-57.
  • Asri, F.Ö. ve S. Sönmez. 2009. Antalya Yöresinde Topraksız Kültür Sistemiyle Yetiştirilen Domates Bitkilerinin Beslenme Durumunun ve Sulama Suyu Kalite Kriterlerinin Belirlenmesi. Mediterranean Agrıcultural Scıences. 22(2): 191-200.
  • Ayrancı, Y. 2006. Muğla-Ortaca yöresi sera sulama sularının kalitelerinin belirlenmesi. Selçuk Üniv. Ziraat Fak. Dergisi. 20(39): 32- 36.
  • Badizi, B. M. and M.M. Zarandi. 2016. Some Physiological and Growth Parameters of Pistachio vera L. under coinoculation with endomycorrhizae and Bacillus subtilis in response to salinity. Bull. Env. Pharmacol. Life Sci.(Spl. Issue 1): 70-77.
  • Balliu, A., G. Sallaku and B. Rewald. 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability. 7(12): 15967-15981.
  • Bates, L.S.. R.P Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stres studies. Plant and Soil. 39(1): 205-207.
  • Bochow, H., S.F. El-Sayed, H. Junge, A. Stavropoulou and G. Schmiedeknecht. 2001. Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection. 21-30.
  • Brill, J., T. Hoffmann, M. Bleisteiner and E. Bremer. 2011. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. Journal of bacteriology. 193(19):5335-5346.
  • Bsoul, E.Y., S. Jaradat, S. Al-Kofahi, A.A. Al-Hammouri and R. Alkhatib. 2016. Growth, Water Relation and Physiological Responses of Three Eggplant Cultivars under Different Salinity Levels. Jordan Journal of Biological Sciences. 9(2).
  • Cantrell, I.C. and R.G. Linderman. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil. 233:269-281. Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae. 86: 247- 260.
  • Chinnusamy, V., A. Jagendorf and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci.. 45: 437-448.
  • Colla, G., Y. Rouphael, C. Leonardi and Z. Bie. 2010. Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2): 147-155.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C. M. Rivera and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils. 44(3): 501-509.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C.M. Rivera and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44(3): 501-509.
  • Dişli, Y. 1997. Antalya İli Kale (Derme) İlçesi Yer altı Sulama Suyu Kalitesi Üzerine Bir Araştırma. Selçuk Üni. Fen Bilimleri Ens. Tarımsal Yapılar ve Sulama Anabilim Dalı, Konya.
  • El-Katatny, M.H. and M.M. Idres. 2014. Effects of single and combined inoculations with Azospirillum brasilense and Trichoderma harzianum on seedling growth or yield parameters of wheat (Triticum vulgaris L., Giza 168) and corn (Zea mays L., hybrid 310). Journal of plant nutrition. 37(12): 1913-1936.
  • Erzurumlu, G.S. and E.E. Kara. 2014. Mikoriza Konusunda Türkiye’de Yapılan Çalışmalar. Türk Bilimsel Derlemeler Dergisi, 7(2): 55-65.
  • Evelin, H. and R. Kapoor. 2013. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt stressed Trigonella foenum – graecum plants. Mycorrhiza. 24 :197 – 208.
  • Evelin, H., R. Kapoor and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104(7): 1263-1280.
  • Fernández-García, N., V. Martínez and M. Carvajal. 2004. Effect of salinity on growth mineral composition and water relations of grafted tomato plants. J. Plant Nutr. Soil Sci.. 167: 616-622.
  • Giri, B. and K.G. Mukerji. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field condition: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14:307–312.
  • Goreta, S., V. Bucevic-Popovic, G. V. Selak, M. Pavela-Vrancic and S. Perica. 2008. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. The Journal of Agricultural Science. 146(6): 695-704.
  • Greenway, H. and S.R. Munns. 1980. Mechanisms of salt tolerance in non halophytes. Annals Review of Plant Physiology. 31:149-159. Hajbagheri S and S. Enteshari. 2011. Effects of mycorrhizal fungi on photosynthetic pigments, root mycorrhizal colonization and morphological characteristics of salt stressed Ocimum basilicum L. Iran J Plant Physiol. 1(4):215–222.
  • Hajiboland, R., N. Aliasgharzadeh, S. F. Laiegh and C. Poschenrieder. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil. 331(1-2):313-327.
  • Hasegawa, P.M., R. A. Bressan, J.K. Zhu and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant. Physiol.. 51:463–499.
  • Hegazi, A.M., A.M. El-Shraiy and A.A. Ghoname. 2017. Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs). Gesunde Pflanzen. 69(2): 91-102.
  • Huang, Y., Z. Bie, S. He, B. Hua, A. Zhen and Z. Liu. 2010. Imoroving cucumber tolerance to major nutrient induced salinity by grafting onto Cucurbita ficifolia. Enviromental and Experimental Botany. 69:32-38.
  • Karlidağ, H., E. Yildirim, M. Turan, M. Pehluvan and F. Donmez. 2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). Hortscience. 48(5): 563-567.
  • Kaya, C. and D. Higgs. 2003. Supplementary KNO3 Improves Salt Tolerance in Bell Pepper Plants, J. of Plant Nutr. 26(7):1367–1382.
  • Kaya, C., A.L.Tuna, M. Ashraf And H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany. 60(3): 397-403.
  • Kaya, C., M. Ashraf, O. Sonmez, S. Aydemir, A. L. Tuna and M. A. Cullu. 2009. The influence of Arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic. 121:1–6.
  • Koc, A., G. Balci, Y. Erturk, H. Keles, N. Bakoglu and S. Ercisli. 2016. Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria x ananassa) under salt stress. Journal of Applied Botany and Food Quality. 89.
  • Latef, A. A. H. A. And H. Chaoxing. 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?. Journal of Plant Growth Regulation. 33(3): 644-653. Li, C., P. Wang, Z. Wei, D. Liang, C. Liu, L. Yin and F. Ma. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of pineal research, 53(3):298-306.
  • Lutts, S., J.M. Kinet and J. Bouharmont. 1996. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78(3):389-398. Madhava, R.K.V. and T.V.S. Sresty. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157:113-128.
  • Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. – Arch. Biochem. Bioph. 444:139-158.
  • Marulanda, A., R. Azcón, F. Chaumont, J.M. Ruiz-Lozano and R. Aroca. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 232(2): 533-543.
  • Mayak, S, T. Tirosh and B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance in tomato plant to salt stress. Plant Physiol Biochem.. 142:565–572.
  • Misra, M., U. Kumar, P.K. Misra and V. Prakash. 2010. Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Advances in Biological Research. 4(2):92-96.
  • Mohamed, H. I., and E.Z. Gomaa. 2012. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica. 50(2):263-272.
  • Mohammad, A. and B. Mittra. 2013. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science. 59(2):173-183.
  • Rayavarapu, V. B. and T. Padmavathı. 2016. Effect of Bacillus sp and Glomus monosporum on growth and antıoxıdant actıvıty of bell pepper (Capsicum annuum) under salınıty stress. Journal of Global Agriculture and Ecology. 6(1): 57-67.
  • Reetha, S., G. Bhuvaneswari, P. Thamizhiniyan and T.R. Mycin. 2014. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allium cepa. L). Int. J. Curr. Microbiol Appl. Sci.. 3(2):568-574.
  • Safronova, V.I., V.V. Stepanok, G.L. Engqvist, Y.V. Alekseyev and A.A. Belimov. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil, Biology and Fertility of Soils. 42(3): 267-272.
  • Sevgican, A. 2002. Örtüaltı Yetiştiriciliği- Topraksız Tarım. Cilt II, Ege Üniv. Ziraat Fakültesi Yayınları.
  • Sharma, N., A. Aggarwal and K. Yadav. 2017. Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. European Journal of Environmental Sciences, 7(1):22-27.
  • Sheng M, M. Tang, H. Chan, B. Yang, F. Zhang and Y. Huang. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296.
  • Sheng, M., M. Tang, F. Zhang and Y. Huang. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza. 21:423–430.
  • Smart, R. E. and G. E. Bingham. 1974. Rapid estimates of relative water content. Plant physiology. 53(2): 258-260.
  • Smith S.E. and D. J. Read. 1997. Mycorrhizal symbiosis 1997 San Diego, CA Academic press.
  • Sönmez, İ. and M. Kaplan., 2004. Demre yöresi seralarında toprak ve sulama sularının tuz içeriğinin belirlenmesi. Akdeniz Üniv. Ziraat Fakültesi Dergisi. 17(2):155–160.
  • Strain, H.H. and W.A. Svec. 1966. Extraction, Separation, Estimation and Isolation of Chlorophylls. In The Chlorophylls, Vernon, L.P. ; Seely, G.R. Acad. Press, N.Y. 21-66.
  • Trung, N.T., H.V. Hieu and N.H. Thuan. 2016. Screening of Strong 1- Aminocyclopropane-1-Carboxylate Deaminase Producing Bacteria for Improving the Salinity Tolerance of Cowpea, Applied Microbiology: open access, 2016.
  • Turhan, A, H. Kuşçu, N. Özmen, and A. O. Demir. 2014. Kırmızı biberde (Capsicum annum cv. kapija) verim ve kalite parametreleri ile sulama suyu tuzluluk düzeyleri arasındaki ilişkiler. Anadolu Tarım Bilim. Derg.. 29(3):186-193.
  • Türkmen, Ö., S. Şensoy, İ. Erdal ve T. Kabay. 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 12(2):53-57.
  • Vivas, A., A. Marulanda, J.M. Ruiz-Lozano, J.M. Barea and R. Azcón. 2003b. Influence of Bacillus spp on physiological activities of two arbuscular mycorrhizal fungi and plant responses to PEG-induced drought stress . Mycorrhiza. 13:249-256.
  • Vivas, A., R. Azcon, B. Biro, J.M. Barea and J.M. RuizLozano. 2003a. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can. J. Microbiol. 2003;49:577-588.
  • Wagi, S., and A. Ahmed. 2019. Bacillus spp.: potent microfactories of bacterial IAA. Peer J. 7:7258-7262.
  • Woitke, M., H. Junge and W.H. Schnitzler. 2004. Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition 659: 363-369.
  • Yıldırım, E. And I. Guvenc. 2006. Salt tolerance of pepper cultivars during germination and seedling growth. Turk J. Agric. For.. 30:347-353.
  • Yıldırım, E., M. Turan and I. Guvenc. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of plant nutrition. 31(3):593-612.
  • Yıldız, M., H. Terzi, S. Cenkçi, E.S.A. Terzi ve B. Uruşak. 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri ve Biyoteknoloji, 1(1):1-33.
  • Yılmaz, E., A.L. Tuna and B. Bürün. 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 7(1):47-66.
  • Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ. 53:283–289.

Tuz Stresi Altındaki Biberde (Capsicum annuum L.) Mikoriza ve Rizobakteri Uygulamasının Bitki Gelişimi ve Bazı Fizyolojik Parametreler Üzerine Etkisi

Yıl 2020, , 501 - 510, 30.12.2020
https://doi.org/10.20289/zfdergi.655491

Öz

Amaç: Farklı tuzlu koşullar (1.5, 3, 6 dSm-1) altında mikoriza (Glomus intraradices) ve rizobakteri (Bacillus subtilis) uygulamasının biber (Capsicum annuum L. cv Seki F1 ) bitki gelişimi, yaprak oransal su içeriği (YOS), membran geçirgenliği (MG), prolin ve klorofil içeriği üzerine etkisini belirlemek amacıyla yürütülmüştür.
Materyal ve Metot: Biber fideleri perlit:torf karışımı (1:1, v:v) ile doldurulmuş 22.7 litre hacimli uzun saksılara (60x18x21 cm) her bir saksıda 3 adet olacak şekilde dikilmiştir. Çalışmada, mikroorganizma uygulaması fide dikimi ile yapılmış, dikimden 15 gün sonra da tuz uygulamasına başlanmıştır. Tuz uygulamasından 40 gün sonra yaprak oransal su içeriği, membrane geçirgenliği, prolin ve klorofil içeriği gibi fizyolojik parametreler incelenmiştir. Dikimden 160 gün sonra çalışma sonlandırılmıştır. Çalışmanın sonunda, bitki boyu, gövde çapı, gövde ile kök yaş ve kuru ağırlıkları gibi bitki büyüme parametreleri belirlenmiştir.
Bulgular: Sonuçlara göre artan tuzluluk bitki gelişimini olumsuz etkilemiştir. Tuz uygulaması, prolin içeriği ve bitkinin MG’nde bir artışa neden olmuş, klorofil içeriği ve YOS değerini ise azaltmıştır. Tüm tuz stresi seviyelerinde, mikoriza, rizobakteri ve mikoriza artı rizobakteri uygulamaları, biber bitki gelişimini ve fizyolojik parametrelerini olumlu etkilemiştir. G. intraradices ve B. subtilis’in birlikte uygulanması tuz stresinde incelenen parametrelerin tamamında en yüksek etkiyi göstermiştir. Bu bitkileri sadece mikoriza uygulanan ve sadece Bacillus subtilis aşılı bitkiler izlemiştir.
Sonuç: Çalışma sonuçları açıklıkla göstermiştir ki, tuzlu koşullar altında biber yetiştiriciliğinde G. intraradices ve B. subtilis’in beraber uygulanması tuz zararının olumsuz etkilerini azaltmada iyi bir alternatif olabilir.

Kaynakça

  • Abdel-Rahman, S.S., A.A. Abdel-Kader and S.E. Khalil, 2011. Response of three sweet basil cultivars to inoculation with Bacillus subtilis and arbuscular mycorrhizal fungi under salt stress conditions. Nat. Sci. 9(6): 93-111.
  • Abdulhadi, S.A.A., 2017. Tuzlu toprak koşullarında çerezlik kabakta arbusküler mikoriza fungi uygulamalarının fide gelişmesine etkisi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 205 s
  • Ahmad, M., Z.A. Zahir, H.N. Asghar and M. Arshad, 2012. The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Annals of microbiology. 62(3): 1321-1330.
  • Ahmad, P. and R. Jhon, 2005. Effect of salt stress on growth and biochemical parameters of Pisum sativum L. Archives of Agronomy and Soil Science. 51: 665-672.
  • Akat, H. and H. Altunlu. 2019. The Effects of Sewage Sludge Applications on Growth, Yield and Flower Quality of Limonium sinuatum (Statice) under Salinity Conditions. Ege Üniversitesi Ziraat Fakültesi Dergisi. 56 (1):111-120 . DOI: 10.20289/zfdergi.423273
  • Akat, H. and Ö. Saraçoğlu Akat. 2017. The Effects of Organic Substances and Foliar Calcium Applications on Limonium sinuatum Cultivation in Saline Conditions, Current Trends in Science and Landscape Management, Sofia St. Kliment Ohridski University Press, ISBN 978-954-07-4338-7, Chapter: 25, 285-295 pp,
  • Aksoy, U., S. Hepaksoy, H.Z. Can, D. Anaç, B. Okur, C.C. Kılıç, S. Anaç, M.A. Ul ve Y. Kukul. 1998. Akdeniz havzasında çölleşme ve tuzlanma problemine karşı yeni tekniklerin geliştirilmesi, Bitkilerde Stres Fizyolojisinin Moleküler Temelleri Sempozyumu Bildirileri. 126-137, İzmir.
  • Altunlu, H. 2019. Tuzlu Koşullarda Mikoriza Uygulamasının Kapya Biberde (Capsicum Annuum L.) Fide Gelişimi ve Antioksidant Enzimler Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi. 56(2), 139-146.
  • Amjad, M., J. Akhtar, M. Anwar-ul-Haq, M.A. Riaz, Z.A. Saqib, B. Murtaza and M.A. Naeem. 2016. Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting tomato genotypes. Journal of Plant Nutrition. 39(13): 1926-1935.
  • Arcak, S. ve N. Güder. 2004. Biyolojik Gübrelemenin Sürdürülebilir Ekosistemdeki Önemi. Türkiye 3. Ulusal Gübre Kongresi, Tarım-Sanayi-Çevre, 11-13 Ekim, 837-844, Tokat.
  • Aroca, R., R. Porcel and J.M. Ruiz-Lozano. 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytologist. 173(4): 808-816.
  • Aroca, R., R. Porcel and J.M. Ruiz-Lozano. 2011. Regulation of root water uptake under abiotic stress conditions. Journal of experimental botany. 63(1): 43-57.
  • Asri, F.Ö. ve S. Sönmez. 2009. Antalya Yöresinde Topraksız Kültür Sistemiyle Yetiştirilen Domates Bitkilerinin Beslenme Durumunun ve Sulama Suyu Kalite Kriterlerinin Belirlenmesi. Mediterranean Agrıcultural Scıences. 22(2): 191-200.
  • Ayrancı, Y. 2006. Muğla-Ortaca yöresi sera sulama sularının kalitelerinin belirlenmesi. Selçuk Üniv. Ziraat Fak. Dergisi. 20(39): 32- 36.
  • Badizi, B. M. and M.M. Zarandi. 2016. Some Physiological and Growth Parameters of Pistachio vera L. under coinoculation with endomycorrhizae and Bacillus subtilis in response to salinity. Bull. Env. Pharmacol. Life Sci.(Spl. Issue 1): 70-77.
  • Balliu, A., G. Sallaku and B. Rewald. 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability. 7(12): 15967-15981.
  • Bates, L.S.. R.P Waldren and I.D. Teare. 1973. Rapid determination of free proline for water stres studies. Plant and Soil. 39(1): 205-207.
  • Bochow, H., S.F. El-Sayed, H. Junge, A. Stavropoulou and G. Schmiedeknecht. 2001. Use of Bacillus subtilis as biocontrol agent. IV. Salt-stress tolerance induction by Bacillus subtilis FZB24 seed treatment in tropical vegetable field crops, and its mode of action. Journal of Plant Diseases and Protection. 21-30.
  • Brill, J., T. Hoffmann, M. Bleisteiner and E. Bremer. 2011. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. Journal of bacteriology. 193(19):5335-5346.
  • Bsoul, E.Y., S. Jaradat, S. Al-Kofahi, A.A. Al-Hammouri and R. Alkhatib. 2016. Growth, Water Relation and Physiological Responses of Three Eggplant Cultivars under Different Salinity Levels. Jordan Journal of Biological Sciences. 9(2).
  • Cantrell, I.C. and R.G. Linderman. 2001. Preinoculation of lettuce and onion with VA mycorrhizal fungi reduces deleterious effects of soil salinity. Plant Soil. 233:269-281. Chartzoulakis, K. and G. Klapaki. 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae. 86: 247- 260.
  • Chinnusamy, V., A. Jagendorf and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci.. 45: 437-448.
  • Colla, G., Y. Rouphael, C. Leonardi and Z. Bie. 2010. Role of grafting in vegetable crops grown under saline conditions. Scientia Horticulturae, 127(2): 147-155.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C. M. Rivera and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils. 44(3): 501-509.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C.M. Rivera and E. Rea. 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44(3): 501-509.
  • Dişli, Y. 1997. Antalya İli Kale (Derme) İlçesi Yer altı Sulama Suyu Kalitesi Üzerine Bir Araştırma. Selçuk Üni. Fen Bilimleri Ens. Tarımsal Yapılar ve Sulama Anabilim Dalı, Konya.
  • El-Katatny, M.H. and M.M. Idres. 2014. Effects of single and combined inoculations with Azospirillum brasilense and Trichoderma harzianum on seedling growth or yield parameters of wheat (Triticum vulgaris L., Giza 168) and corn (Zea mays L., hybrid 310). Journal of plant nutrition. 37(12): 1913-1936.
  • Erzurumlu, G.S. and E.E. Kara. 2014. Mikoriza Konusunda Türkiye’de Yapılan Çalışmalar. Türk Bilimsel Derlemeler Dergisi, 7(2): 55-65.
  • Evelin, H. and R. Kapoor. 2013. Arbuscular mycorrhizal symbiosis modulates antioxidant response in salt stressed Trigonella foenum – graecum plants. Mycorrhiza. 24 :197 – 208.
  • Evelin, H., R. Kapoor and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of Botany. 104(7): 1263-1280.
  • Fernández-García, N., V. Martínez and M. Carvajal. 2004. Effect of salinity on growth mineral composition and water relations of grafted tomato plants. J. Plant Nutr. Soil Sci.. 167: 616-622.
  • Giri, B. and K.G. Mukerji. 2004. Mycorrhizal inoculant alleviates salt stress in Sesbania aegyptiaca and Sesbania grandiflora under field condition: evidence for reduced sodium and improved magnesium uptake. Mycorrhiza. 14:307–312.
  • Goreta, S., V. Bucevic-Popovic, G. V. Selak, M. Pavela-Vrancic and S. Perica. 2008. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. The Journal of Agricultural Science. 146(6): 695-704.
  • Greenway, H. and S.R. Munns. 1980. Mechanisms of salt tolerance in non halophytes. Annals Review of Plant Physiology. 31:149-159. Hajbagheri S and S. Enteshari. 2011. Effects of mycorrhizal fungi on photosynthetic pigments, root mycorrhizal colonization and morphological characteristics of salt stressed Ocimum basilicum L. Iran J Plant Physiol. 1(4):215–222.
  • Hajiboland, R., N. Aliasgharzadeh, S. F. Laiegh and C. Poschenrieder. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil. 331(1-2):313-327.
  • Hasegawa, P.M., R. A. Bressan, J.K. Zhu and H.J. Bohnert. 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant. Physiol.. 51:463–499.
  • Hegazi, A.M., A.M. El-Shraiy and A.A. Ghoname. 2017. Mitigation of salt stress negative effects on sweet pepper using arbuscular mycorrhizal fungi (AMF), Bacillus megaterium and brassinosteroids (BRs). Gesunde Pflanzen. 69(2): 91-102.
  • Huang, Y., Z. Bie, S. He, B. Hua, A. Zhen and Z. Liu. 2010. Imoroving cucumber tolerance to major nutrient induced salinity by grafting onto Cucurbita ficifolia. Enviromental and Experimental Botany. 69:32-38.
  • Karlidağ, H., E. Yildirim, M. Turan, M. Pehluvan and F. Donmez. 2013. Plant growth-promoting rhizobacteria mitigate deleterious effects of salt stress on strawberry plants (Fragaria× ananassa). Hortscience. 48(5): 563-567.
  • Kaya, C. and D. Higgs. 2003. Supplementary KNO3 Improves Salt Tolerance in Bell Pepper Plants, J. of Plant Nutr. 26(7):1367–1382.
  • Kaya, C., A.L.Tuna, M. Ashraf And H. Altunlu. 2007. Improved salt tolerance of melon (Cucumis melo L.) by the addition of proline and potassium nitrate. Environmental and Experimental Botany. 60(3): 397-403.
  • Kaya, C., M. Ashraf, O. Sonmez, S. Aydemir, A. L. Tuna and M. A. Cullu. 2009. The influence of Arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci. Hortic. 121:1–6.
  • Koc, A., G. Balci, Y. Erturk, H. Keles, N. Bakoglu and S. Ercisli. 2016. Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria x ananassa) under salt stress. Journal of Applied Botany and Food Quality. 89.
  • Latef, A. A. H. A. And H. Chaoxing. 2014. Does inoculation with Glomus mosseae improve salt tolerance in pepper plants?. Journal of Plant Growth Regulation. 33(3): 644-653. Li, C., P. Wang, Z. Wei, D. Liang, C. Liu, L. Yin and F. Ma. 2012. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. Journal of pineal research, 53(3):298-306.
  • Lutts, S., J.M. Kinet and J. Bouharmont. 1996. NaCl induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany. 78(3):389-398. Madhava, R.K.V. and T.V.S. Sresty. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157:113-128.
  • Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: an overview. – Arch. Biochem. Bioph. 444:139-158.
  • Marulanda, A., R. Azcón, F. Chaumont, J.M. Ruiz-Lozano and R. Aroca. 2010. Regulation of plasma membrane aquaporins by inoculation with a Bacillus megaterium strain in maize (Zea mays L.) plants under unstressed and salt-stressed conditions. Planta. 232(2): 533-543.
  • Mayak, S, T. Tirosh and B.R. Glick. 2004. Plant growth-promoting bacteria that confer resistance in tomato plant to salt stress. Plant Physiol Biochem.. 142:565–572.
  • Misra, M., U. Kumar, P.K. Misra and V. Prakash. 2010. Efficiency of plant growth promoting rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Advances in Biological Research. 4(2):92-96.
  • Mohamed, H. I., and E.Z. Gomaa. 2012. Effect of plant growth promoting Bacillus subtilis and Pseudomonas fluorescens on growth and pigment composition of radish plants (Raphanus sativus) under NaCl stress. Photosynthetica. 50(2):263-272.
  • Mohammad, A. and B. Mittra. 2013. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science. 59(2):173-183.
  • Rayavarapu, V. B. and T. Padmavathı. 2016. Effect of Bacillus sp and Glomus monosporum on growth and antıoxıdant actıvıty of bell pepper (Capsicum annuum) under salınıty stress. Journal of Global Agriculture and Ecology. 6(1): 57-67.
  • Reetha, S., G. Bhuvaneswari, P. Thamizhiniyan and T.R. Mycin. 2014. Isolation of indole acetic acid (IAA) producing rhizobacteria of Pseudomonas fluorescens and Bacillus subtilis and enhance growth of onion (Allium cepa. L). Int. J. Curr. Microbiol Appl. Sci.. 3(2):568-574.
  • Safronova, V.I., V.V. Stepanok, G.L. Engqvist, Y.V. Alekseyev and A.A. Belimov. 2006. Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil, Biology and Fertility of Soils. 42(3): 267-272.
  • Sevgican, A. 2002. Örtüaltı Yetiştiriciliği- Topraksız Tarım. Cilt II, Ege Üniv. Ziraat Fakültesi Yayınları.
  • Sharma, N., A. Aggarwal and K. Yadav. 2017. Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. European Journal of Environmental Sciences, 7(1):22-27.
  • Sheng M, M. Tang, H. Chan, B. Yang, F. Zhang and Y. Huang. 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza. 18:287–296.
  • Sheng, M., M. Tang, F. Zhang and Y. Huang. 2011. Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza. 21:423–430.
  • Smart, R. E. and G. E. Bingham. 1974. Rapid estimates of relative water content. Plant physiology. 53(2): 258-260.
  • Smith S.E. and D. J. Read. 1997. Mycorrhizal symbiosis 1997 San Diego, CA Academic press.
  • Sönmez, İ. and M. Kaplan., 2004. Demre yöresi seralarında toprak ve sulama sularının tuz içeriğinin belirlenmesi. Akdeniz Üniv. Ziraat Fakültesi Dergisi. 17(2):155–160.
  • Strain, H.H. and W.A. Svec. 1966. Extraction, Separation, Estimation and Isolation of Chlorophylls. In The Chlorophylls, Vernon, L.P. ; Seely, G.R. Acad. Press, N.Y. 21-66.
  • Trung, N.T., H.V. Hieu and N.H. Thuan. 2016. Screening of Strong 1- Aminocyclopropane-1-Carboxylate Deaminase Producing Bacteria for Improving the Salinity Tolerance of Cowpea, Applied Microbiology: open access, 2016.
  • Turhan, A, H. Kuşçu, N. Özmen, and A. O. Demir. 2014. Kırmızı biberde (Capsicum annum cv. kapija) verim ve kalite parametreleri ile sulama suyu tuzluluk düzeyleri arasındaki ilişkiler. Anadolu Tarım Bilim. Derg.. 29(3):186-193.
  • Türkmen, Ö., S. Şensoy, İ. Erdal ve T. Kabay. 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi. 12(2):53-57.
  • Vivas, A., A. Marulanda, J.M. Ruiz-Lozano, J.M. Barea and R. Azcón. 2003b. Influence of Bacillus spp on physiological activities of two arbuscular mycorrhizal fungi and plant responses to PEG-induced drought stress . Mycorrhiza. 13:249-256.
  • Vivas, A., R. Azcon, B. Biro, J.M. Barea and J.M. RuizLozano. 2003a. Influence of bacterial strains isolated from lead-polluted soil and their interactions with arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can. J. Microbiol. 2003;49:577-588.
  • Wagi, S., and A. Ahmed. 2019. Bacillus spp.: potent microfactories of bacterial IAA. Peer J. 7:7258-7262.
  • Woitke, M., H. Junge and W.H. Schnitzler. 2004. Bacillus subtilis as growth promotor in hydroponically grown tomatoes under saline conditions. In VII International Symposium on Protected Cultivation in Mild Winter Climates: Production, Pest Management and Global Competition 659: 363-369.
  • Yıldırım, E. And I. Guvenc. 2006. Salt tolerance of pepper cultivars during germination and seedling growth. Turk J. Agric. For.. 30:347-353.
  • Yıldırım, E., M. Turan and I. Guvenc. 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of plant nutrition. 31(3):593-612.
  • Yıldız, M., H. Terzi, S. Cenkçi, E.S.A. Terzi ve B. Uruşak. 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri ve Biyoteknoloji, 1(1):1-33.
  • Yılmaz, E., A.L. Tuna and B. Bürün. 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi. 7(1):47-66.
  • Zuccarini, P. 2007. Mycorrhizal infection ameliorates chlorophyll content and nutrient uptake of lettuce exposed to saline irrigation. Plant Soil Environ. 53:283–289.
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hakan Altunlu 0000-0001-6219-577X

Yayımlanma Tarihi 30 Aralık 2020
Gönderilme Tarihi 5 Aralık 2019
Kabul Tarihi 8 Nisan 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Altunlu, H. (2020). Tuz Stresi Altındaki Biberde (Capsicum annuum L.) Mikoriza ve Rizobakteri Uygulamasının Bitki Gelişimi ve Bazı Fizyolojik Parametreler Üzerine Etkisi. Journal of Agriculture Faculty of Ege University, 57(4), 501-510. https://doi.org/10.20289/zfdergi.655491

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.