Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effects of Mycorrhiza Application on Growth and Antioxidative Enzymes of Capia Type Pepper (Capsicum Annuum L.) Seedling Under Salty Conditions

Yıl 2019, Cilt: 56 Sayı: 2, 139 - 146, 27.06.2019
https://doi.org/10.20289/zfdergi.426553

Öz

Objective: This study conducted to determine the effects of mycorrhiza (Glomus fasciculatum) application on plant growth, some physiological parameters (relative water content, membrane permeability, content of proline, chlorophyll and carotenoid) and leaves within antioxidative enzyme activities (Superoxid dismutase-SOD, catalase-CAT, peroxidase-POX) of the kapya type pepper (Capsicum annuum L. cv Aydemir F1) seedling under salty conditions in climate cabinet.


Material and Methods: In experiment, seedlings were planted to the soil in 1.0 lt pots, mycorrhiza was applied together with seedling planting and 50 mM NaCl was applied to pepper at 10 day after planting. After 40 days of NaCl application, mycorrhizal colonization rate of plant roots plant growth, some physiological parameters and leaves within antioxidative enzyme activities were determined.


Results: 50 mM salt level negatively affected all measured parameters compareted control. In salt applied parcels, mycorrhiza application increased plant growth, leaf  relative water content, protection of photosynthetic pigment, decreased proline amount. Antioxidant enzymes activities decreased in the salt and mycorrhiza-treated plants very effectively compared to salt plants. The all effects was clearer in 2g Mycorrhiza application of pot (TM2) than 1 g Mycorrhiza of pot (TM1) in salt parcels.


Conclusion: The application of glomus fasciculatum mycorrhiza in capia-type pepper cultivation under moderate salt conditions may be a good alternative to reduce the effects of salt.

Kaynakça

  • Abdulhadi S. A. A., 2017. Tuzlu toprak koşullarında çerezlik kabakta arbusküler mikoriza fungi uygulamalarının fide gelişmesine etkisi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü)
  • Al-aghabary, K., Z. Zhu and Q Shi, 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of plant nutrition, 27(12), 2101-2115.
  • Al-Karaki G. N. and R. B. Clark, 1998. Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276.
  • Al-Karaki G. N., 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54
  • Al-Karaki G. N., 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7
  • Al-Karaki G. N., R. Hammad and M. Rusan, 2001 Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47
  • Allen M. F. , T.S. Jr. Moore, M. Christensen, 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-Arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374
  • Amjad, M., J. Akhtar, M. Anwar-ul-Haq, M. A. Riaz, Z. A. Saqib, B. Murtaza ans M.A. Naeem, 2016. Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting tomato genotypes. Journal of Plant Nutrition, 39(13), 1926-1935.
  • Aroca, R., R Porcel and J. M. Ruiz‐Lozano, 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytologist, 173(4), 808-816.
  • Aroca, R., R. Porcel and J. M. Ruiz-Lozano, 2011. Regulation of root water uptake under abiotic stress conditions. Journal of experimental botany, 63(1), 43-57.
  • Ashraf, M.Y. and A. S. Bhatti,2000. Effect of salinity on growth and chlorophyll content in rice. Pak. J. Sci. Ind. Res. 43, 130– 131.
  • Avcıoğlu,R., G.Demiroğlu, M.A.Khalvati ve H.Geren 2003. Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri II-Prolin, Klorofil birikimi ve zar dayanıklılığı. Ege Üniversitesi Ziraat Fakültesi Dergisi 40(2):9-16.
  • Aydemir, T. ve Z. Erez, 2010. NaCl stresine karşı Lens culinars’in biyokimyasal ve fizyolojik cevabı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 6(2): 89- 104.
  • Balliu, A., G. Sallaku and B. Rewald, 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Başak, H., R. KASIM and F. Y. Okay, 2011. The effect of endo-mycorrhiza (VAM) treatment on growth of tomato seedling grown under saline conditions. African Journal of Agricultural Research, 6(11), 2532-2538.
  • Bates, L. S., R. P. Waldren and I. D. Teare, 1973. Rapid determination of free proline for water stres studies. Plant and Soil, 39(1): 205-207.
  • Bayat, R., Ş. Kuşvuran, A. S. Üstün ve Ş. Ellialtıoğlu, 2012. Tuza tolerans özelliği farklı iki kabak genotipine ait fidelere yapılan dışsal prolin uygulamalarının etkileri üzerinde araştırmalar. 9. Ulusal Sebze Tarımı Sempozyumu, 12-14.
  • Beauchamp, C. And I. Fridovich, 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1): 276-287.
  • Bergmeyer, H. U., 1970. Methoden der enzymatischen analyse. Akademie Verlag, 1: 636-647.
  • Chance, B. and A.C. Maehly, 1955. Assay of catalase and peroxidases. Methods Enzymologia, 2: 764-775.
  • Chartzoulakis, K. And G. Klapaki, 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86: 247- 260.
  • Chinnusamy, V., A. Jagendorf and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45: 437-448.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C: M. Rivera and E. Rea, 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44(3), 501-509.
  • Çekiç, F. Ö., S. Ünyayar ve İ. Ortaş, 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36(1), 63-72.
  • Deveci, M. ve B. Tuğrul,2017. Ispanakta tuz stresinin yaprak fizyolojik özelliklerine etkisi. Akademik Ziraat Dergisi, 6, 89-98.
  • Doğan, M., 2012. Azot uygulamasının tuz stresi ve antioksidan enzim aktivitesine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(3):297-306.
  • Estañ, M. T., M. M. Martinez-Rodriguez, F. Perez-Alfocea, T. J. Flowers and M. C. Bolarin, 2004. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of experimental botany, 56(412), 703-712.
  • Evelin, H., R. Kapoor and B. Giri, 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7), 1263-1280.
  • Flowers, T.J. and A. R. Yeo, 1995. Breeding for salinity resistance in crop plants where next. Australian J. Plant Physiol. 22: 875–884.
  • Gerdemann, J.W. and T. H. Nicolson, 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, 235/244.
  • Geren, H., H. Okkaoğlu and R. Avcıoğlu, 2011. Mikorizanın Farklı Tuz (NaCl) Konsantrasyonlarında Kıbrıs Mürdümüğü (Lathyrus ochrus)'nün Verim ve Bazı Fizyolojik Özellikleri Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(1):88-95.
  • Hajiboland, R., N. Aliasgharzadeh, S. F. Laiegh and C. Poschenrieder, 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331(1-2), 313-327.
  • Hasanuzzaman, M., K. Nahar and M. Fujita, 2013. Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages. P.Ahmad, M.M. Azooz, M.M.VProsod (Eds.), in: Ecophysiology and responses of plants under salt stress, pp: 25-87
  • Hasegawa, P.M., R. A. Bressan, J. K. Zhu and H. J. Bohnert, 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant. Physiol. 51, 463–499.
  • He, Z., C. He,Z. Zhang, Z. Zou and H. Wang, 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59(2), 128-133.
  • Jan, A. U. and F. Hadi, 2015. Potassium, zinc and gibberellic acid foliar application enhanced salinity stress tolerance, proline and total phenolic in sunflower (Helianthus annuus L.). AmericanEurasian Journal of Agricultural and Environmental Sciences, 15(9): 1835-1844.
  • Jeffries, P., S. Gianinazzi, S. Perotto, K. Turnau andJ. M. Barea, 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and fertility of soils, 37(1), 1-16.
  • Kalefetoğlu, T. and Y. Ekmekci, 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • Kaya C, M. Ashraf, O. Sonmez, S. Aydemir, A. L. Tuna and M. A. Cullu,2009. The influence of Arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6
  • Kaya, C. and A: L. Tuna, 2005. The role and importance of potassium in the plant grown under salt stress. Int. Potash Institute. Optimizing Crop Nutrition, Potassium in Soil, Plant and Agro Ecosystem. http://www.ipipotash.org/en/speech/index.php?o=270.
  • Kaya, C., D. Higgs and H. Kirnak, 2001. The effects of high salinity and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgarian Journal of Plant Physiology, 27(3-4): 47-59.
  • Koc, A., G. Balci, Y. Erturk, H. Keles, N. Bakoglu and S. Ercisli, 2016. Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria x ananassa) under salt stress. Journal of Applied Botany and Food Quality, 89.
  • Kuşvuran, Ş., 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Adana.
  • Lutts, S., J. M. Kinet and J. Bouharmont, 1996. NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3): 389-398.
  • Madhava, R. K. V. and T. V. S. Sresty, 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. - Plant Sci. 157: 113-128.
  • McGonigle, T.P., M. H. Miller, D. G. Evans, D. L. Fairchild and G. A. Swan, 1990. A new method which gives an objective measure of colonisation of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol, 115: 495-501.
  • Mittova, V., M. Tal, M. Volokitta and M. Guy, 2002. Salt Stres Induces Up-regulation of an Efficient Chloroplast Antioxidant System in the SAlt-tolerant wild Tomato Species Lycopersicon pennellii but not in the Cultivated Species. Physiologia Pantarum, 115, 393-400.
  • Mohammad, A. And B. Mittra, 2013. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science, 59(2), 173-183.
  • Ruiz-Lozano J.M.,2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:307–317.
  • Ruiz-Lozano, J. M., R. Azcón and M. Gòmez 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant., 98:767–772.
  • Sannazzaro, A. I., A. O. Ruiz, E. O. Albertó and A. B. Menéndez, 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and soil, 285(1-2), 279-287.
  • Shabala, S. And T. A. Cuin, 2008. Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669.
  • Sharma, N., A. Aggarwal and K. Yadav, 2017. Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. European Journal of Environmental Sciences, 7(1).
  • Sheng, M., M. Tang, H. Chen, B. Yang, F. Zhang and Y. Huang, 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296.
  • Smart, R. E. And G. E. Bingham, 1974. Rapid estimates of relative water content. Plant physiology, 53(2), 258-260.
  • Smith S.E. and D. J. Read, 1997. Mycorrhizal symbiosis 1997 San Diego, CA Academic press
  • Strain, H.H. and W. A. Svec, 1966. Extraction, Separation, Estimation and Isolation of Chlorophylls. In The Chlorophylls, Vernon, L.P. ; Seely, G.R. Acad. Press, N.Y. 21-66.
  • Tambussi, E.A., C. G. Bartoli, J. Beltrano, J. J. Guiamet . and J. L. Araus, 200. “Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum)”, Physiol. Plant., 108: 398-404 (2000).
  • Tuna, A. L. ve B. Eroğlu, 2017. Tuz stresi altindaki biber (Capsicum Annuum L.) bitkisinde bazi organik ve inorganik bileşiklerin antioksidatif sisteme etkileri.
  • Tuna, A. L., C. Kaya, M. Ashraf, H. Altunlu, I. Yokas and B. Yagmur, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59(2), 173-178.
  • Turhan, A, H. Kuşçu, N. Özmen, and A. O. Demir, 2014. Kırmızı biberde (capsicum annum cv. kapija) verim ve kalite parametreleri ile sulama suyu tuzluluk düzeyleri arasındaki ilişkiler. Anadolu Tarım Bilim. Derg., 2014,29(3):186-193.
  • Türkmen, Ö., S. Şensoy, İ. Erdal ve T. Kabay, 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 12(2), 53-57.
  • Yıldız, M., H. Terzi, S. Cenkçi, E. S. A. Terzi ve B. Uruşak, 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri ve Biyoteknoloji, 1(1): 1-33.
  • Yılmaz, E., A. L. Tuna and B. Bürün, 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 7(1), 47-66.
  • ZhongQun H., H. Chao Xing, Z. Zhi Bin, Z. Zhi Rong and W. Huai Song, 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces 59: 128-133.
  • Zhu, Z., G. Wei, J. Li, Q. Qian and J. Yu, 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.
  • Zuccarini P. and P. Okurowska, 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513

Tuzlu Koşullarda Mikoriza Uygulamasının Kapya Biberde (Capsicum Annuum L.) Fide Gelişimi ve Antioksidant Enzimler Üzerine Etkisi

Yıl 2019, Cilt: 56 Sayı: 2, 139 - 146, 27.06.2019
https://doi.org/10.20289/zfdergi.426553

Öz

Amaç: Bu çalışma, tuzlu koşullar altında mikoriza (Glomus fasciculatum) uygulamasının kapya tipi biber (Capsicum annuum L. cv Aydemir F1 ) fidelerinde bitki gelişimi, bazı fizyolojik özellikler (yaprak oransal su içeriği, membran geçirgenliği, prolin, klorofil ve karetenoid içeriği) ve yapraklardaki antioksidatif enzim aktiviteleri (superoksit dismutaz-SOD, katalaz-CAT, peroksidaz-POX) üzerine etkisini belirlemek amacıyla iklim kabininde yürütülmüştür.

Materyal ve Metot: Denemede fideler 1.0 litrelik toprak doldurulmuş saksılara dikilmiş, fide şaşırtması ile beraber mikoriza uygulaması yapılmış ve fidelere dikimden 10 gün sonra 50 mM NaCl uygulanmıştır. NaCl uygulamasından 40 gün sonar köklerdeki mikoriza kolonizasyon oranı, bitki gelişimi, bazı fizyolojik özellikler ve yapraklardaki antioksidatif enzim aktiviteleri incelenmiştir.

Bulgular: 50 mM tuz seviyesi kontrol uygulamasına göre incelenen tüm parametreleri olumsuz etkilemiştir. Tuz uygulanan parsellerde, mikoriza uygulaması bitki gelişimini, yaprak oransal su içeriğini, fotosentetik pigment korunumunu artırmış, prolin miktarını azatmıştır. Tuz ve mikoriza uygulanan bitkilerde antioksidatif enzim aktivitesi sadece tuz uygulanan bitkilerle karşılaştırıldığında azalmıştır. Bu etkiler saksı başına 2 g mikoriza dozunda (TM2) saksı başına 1 g dozuna (TM1) göre daha belirgindir.

Sonuç: Orta tuzlu koşullar altında kapya tipi biber yetiştiriciliğinde Glomus fasciculatum cinsi mikoriza uygulaması tuz zararının etkilerini hafifletmede iyi bir alternatif olabilir.

Kaynakça

  • Abdulhadi S. A. A., 2017. Tuzlu toprak koşullarında çerezlik kabakta arbusküler mikoriza fungi uygulamalarının fide gelişmesine etkisi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü)
  • Al-aghabary, K., Z. Zhu and Q Shi, 2005. Influence of silicon supply on chlorophyll content, chlorophyll fluorescence, and antioxidative enzyme activities in tomato plants under salt stress. Journal of plant nutrition, 27(12), 2101-2115.
  • Al-Karaki G. N. and R. B. Clark, 1998. Growth, mineral acquisition, and water use by mycorrhizal wheat grown under water stress. J Plant Nutr 21:263–276.
  • Al-Karaki G. N., 2000. Growth of mycorrhizal tomato and mineral acquisition under salt stress. Mycorrhiza 10:51–54
  • Al-Karaki G. N., 2006. Nursery inoculation of tomato with arbuscular mycorrhizal fungi and subsequent performance under irrigation with saline water. Sci Hortic 109:1–7
  • Al-Karaki G. N., R. Hammad and M. Rusan, 2001 Response of two tomato cultivars differing in salt tolerance to inoculation with mycorrhizal fungi under salt stress. Mycorrhiza 11:43–47
  • Allen M. F. , T.S. Jr. Moore, M. Christensen, 1980. Phytohormone changes in Bouteloua gracilis infected by vesicular-Arbuscular mycorrhizae: I. Cytokinin increases in the host plant. Can J Bot 58:371–374
  • Amjad, M., J. Akhtar, M. Anwar-ul-Haq, M. A. Riaz, Z. A. Saqib, B. Murtaza ans M.A. Naeem, 2016. Effectiveness of potassium in mitigating the salt-induced oxidative stress in contrasting tomato genotypes. Journal of Plant Nutrition, 39(13), 1926-1935.
  • Aroca, R., R Porcel and J. M. Ruiz‐Lozano, 2007. How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses?. New Phytologist, 173(4), 808-816.
  • Aroca, R., R. Porcel and J. M. Ruiz-Lozano, 2011. Regulation of root water uptake under abiotic stress conditions. Journal of experimental botany, 63(1), 43-57.
  • Ashraf, M.Y. and A. S. Bhatti,2000. Effect of salinity on growth and chlorophyll content in rice. Pak. J. Sci. Ind. Res. 43, 130– 131.
  • Avcıoğlu,R., G.Demiroğlu, M.A.Khalvati ve H.Geren 2003. Ozmotik basıncın bazı kültür bitkilerinin erken gelişme dönemindeki etkileri II-Prolin, Klorofil birikimi ve zar dayanıklılığı. Ege Üniversitesi Ziraat Fakültesi Dergisi 40(2):9-16.
  • Aydemir, T. ve Z. Erez, 2010. NaCl stresine karşı Lens culinars’in biyokimyasal ve fizyolojik cevabı. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 6(2): 89- 104.
  • Balliu, A., G. Sallaku and B. Rewald, 2015. AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967-15981.
  • Başak, H., R. KASIM and F. Y. Okay, 2011. The effect of endo-mycorrhiza (VAM) treatment on growth of tomato seedling grown under saline conditions. African Journal of Agricultural Research, 6(11), 2532-2538.
  • Bates, L. S., R. P. Waldren and I. D. Teare, 1973. Rapid determination of free proline for water stres studies. Plant and Soil, 39(1): 205-207.
  • Bayat, R., Ş. Kuşvuran, A. S. Üstün ve Ş. Ellialtıoğlu, 2012. Tuza tolerans özelliği farklı iki kabak genotipine ait fidelere yapılan dışsal prolin uygulamalarının etkileri üzerinde araştırmalar. 9. Ulusal Sebze Tarımı Sempozyumu, 12-14.
  • Beauchamp, C. And I. Fridovich, 1971. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem, 44(1): 276-287.
  • Bergmeyer, H. U., 1970. Methoden der enzymatischen analyse. Akademie Verlag, 1: 636-647.
  • Chance, B. and A.C. Maehly, 1955. Assay of catalase and peroxidases. Methods Enzymologia, 2: 764-775.
  • Chartzoulakis, K. And G. Klapaki, 2000. Response of two greenhouse pepper hybrids to NaCl salinity during different growth stages. Scientia Horticulturae, 86: 247- 260.
  • Chinnusamy, V., A. Jagendorf and J.K. Zhu. 2005. Understanding and improving salt tolerance in plants. Crop Sci., 45: 437-448.
  • Colla, G., Y. Rouphael, M. Cardarelli, M. Tullio, C: M. Rivera and E. Rea, 2008. Alleviation of salt stress by arbuscular mycorrhizal in zucchini plants grown at low and high phosphorus concentration. Biology and Fertility of Soils, 44(3), 501-509.
  • Çekiç, F. Ö., S. Ünyayar ve İ. Ortaş, 2012. Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish Journal of Botany, 36(1), 63-72.
  • Deveci, M. ve B. Tuğrul,2017. Ispanakta tuz stresinin yaprak fizyolojik özelliklerine etkisi. Akademik Ziraat Dergisi, 6, 89-98.
  • Doğan, M., 2012. Azot uygulamasının tuz stresi ve antioksidan enzim aktivitesine etkisi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(3):297-306.
  • Estañ, M. T., M. M. Martinez-Rodriguez, F. Perez-Alfocea, T. J. Flowers and M. C. Bolarin, 2004. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. Journal of experimental botany, 56(412), 703-712.
  • Evelin, H., R. Kapoor and B. Giri, 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Annals of botany, 104(7), 1263-1280.
  • Flowers, T.J. and A. R. Yeo, 1995. Breeding for salinity resistance in crop plants where next. Australian J. Plant Physiol. 22: 875–884.
  • Gerdemann, J.W. and T. H. Nicolson, 1963. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Transactions of the British Mycological Society, 46, 235/244.
  • Geren, H., H. Okkaoğlu and R. Avcıoğlu, 2011. Mikorizanın Farklı Tuz (NaCl) Konsantrasyonlarında Kıbrıs Mürdümüğü (Lathyrus ochrus)'nün Verim ve Bazı Fizyolojik Özellikleri Üzerine Etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 48(1):88-95.
  • Hajiboland, R., N. Aliasgharzadeh, S. F. Laiegh and C. Poschenrieder, 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant and Soil, 331(1-2), 313-327.
  • Hasanuzzaman, M., K. Nahar and M. Fujita, 2013. Plant response to salt stress and role of exogenous protectants to mitigate saltinduced damages. P.Ahmad, M.M. Azooz, M.M.VProsod (Eds.), in: Ecophysiology and responses of plants under salt stress, pp: 25-87
  • Hasegawa, P.M., R. A. Bressan, J. K. Zhu and H. J. Bohnert, 2000. Plant cellular and molecular responses to high salinity. Ann. Rev. Plant. Physiol. 51, 463–499.
  • He, Z., C. He,Z. Zhang, Z. Zou and H. Wang, 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces, 59(2), 128-133.
  • Jan, A. U. and F. Hadi, 2015. Potassium, zinc and gibberellic acid foliar application enhanced salinity stress tolerance, proline and total phenolic in sunflower (Helianthus annuus L.). AmericanEurasian Journal of Agricultural and Environmental Sciences, 15(9): 1835-1844.
  • Jeffries, P., S. Gianinazzi, S. Perotto, K. Turnau andJ. M. Barea, 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biology and fertility of soils, 37(1), 1-16.
  • Kalefetoğlu, T. and Y. Ekmekci, 2005. The effects of drought on plants and tolerance mechanisms. Gazi University Journal of Science, 18(4), 723-740.
  • Kaya C, M. Ashraf, O. Sonmez, S. Aydemir, A. L. Tuna and M. A. Cullu,2009. The influence of Arbuscular mycorrhizal colonization on key growth parameters and fruit yield of pepper plants grown at high salinity. Sci Hortic 121:1–6
  • Kaya, C. and A: L. Tuna, 2005. The role and importance of potassium in the plant grown under salt stress. Int. Potash Institute. Optimizing Crop Nutrition, Potassium in Soil, Plant and Agro Ecosystem. http://www.ipipotash.org/en/speech/index.php?o=270.
  • Kaya, C., D. Higgs and H. Kirnak, 2001. The effects of high salinity and supplementary phosphorus and potassium on physiology and nutrition development of spinach. Bulgarian Journal of Plant Physiology, 27(3-4): 47-59.
  • Koc, A., G. Balci, Y. Erturk, H. Keles, N. Bakoglu and S. Ercisli, 2016. Influence of arbuscular mycorrhizae and plant growth promoting rhizobacteria on proline, membrane permeability and growth of strawberry (Fragaria x ananassa) under salt stress. Journal of Applied Botany and Food Quality, 89.
  • Kuşvuran, Ş., 2010. Kavunlarda kuraklık ve tuzluluğa toleransın fizyolojik mekanizmaları arasındaki bağlantılar, Çukurova Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı, Adana.
  • Lutts, S., J. M. Kinet and J. Bouharmont, 1996. NaClinduced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of Botany, 78(3): 389-398.
  • Madhava, R. K. V. and T. V. S. Sresty, 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. - Plant Sci. 157: 113-128.
  • McGonigle, T.P., M. H. Miller, D. G. Evans, D. L. Fairchild and G. A. Swan, 1990. A new method which gives an objective measure of colonisation of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol, 115: 495-501.
  • Mittova, V., M. Tal, M. Volokitta and M. Guy, 2002. Salt Stres Induces Up-regulation of an Efficient Chloroplast Antioxidant System in the SAlt-tolerant wild Tomato Species Lycopersicon pennellii but not in the Cultivated Species. Physiologia Pantarum, 115, 393-400.
  • Mohammad, A. And B. Mittra, 2013. Effects of inoculation with stress-adapted arbuscular mycorrhizal fungus Glomus deserticola on growth of Solanum melogena L. and Sorghum sudanese Staph. seedlings under salinity and heavy metal stress conditions. Archives of Agronomy and Soil Science, 59(2), 173-183.
  • Ruiz-Lozano J.M.,2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13:307–317.
  • Ruiz-Lozano, J. M., R. Azcón and M. Gòmez 1996. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants. Physiol. Plant., 98:767–772.
  • Sannazzaro, A. I., A. O. Ruiz, E. O. Albertó and A. B. Menéndez, 2006. Alleviation of salt stress in Lotus glaber by Glomus intraradices. Plant and soil, 285(1-2), 279-287.
  • Shabala, S. And T. A. Cuin, 2008. Potassium transport and plant salt tolerance. Physiologia Plantarum, 133(4), 651-669.
  • Sharma, N., A. Aggarwal and K. Yadav, 2017. Arbuscular mycorrhizal fungi enhance growth, physiological parameters and yield of salt stressed Phaseolus mungo (L.) Hepper. European Journal of Environmental Sciences, 7(1).
  • Sheng, M., M. Tang, H. Chen, B. Yang, F. Zhang and Y. Huang, 2008. Influence of arbuscular mycorrhizae on photosynthesis and water status of maize plants under salt stress. Mycorrhiza, 18(6-7), 287-296.
  • Smart, R. E. And G. E. Bingham, 1974. Rapid estimates of relative water content. Plant physiology, 53(2), 258-260.
  • Smith S.E. and D. J. Read, 1997. Mycorrhizal symbiosis 1997 San Diego, CA Academic press
  • Strain, H.H. and W. A. Svec, 1966. Extraction, Separation, Estimation and Isolation of Chlorophylls. In The Chlorophylls, Vernon, L.P. ; Seely, G.R. Acad. Press, N.Y. 21-66.
  • Tambussi, E.A., C. G. Bartoli, J. Beltrano, J. J. Guiamet . and J. L. Araus, 200. “Oxidative damage to thylakoid proteins in water-stressed leaves of wheat (Triticum aestivum)”, Physiol. Plant., 108: 398-404 (2000).
  • Tuna, A. L. ve B. Eroğlu, 2017. Tuz stresi altindaki biber (Capsicum Annuum L.) bitkisinde bazi organik ve inorganik bileşiklerin antioksidatif sisteme etkileri.
  • Tuna, A. L., C. Kaya, M. Ashraf, H. Altunlu, I. Yokas and B. Yagmur, 2007. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environmental and Experimental Botany, 59(2), 173-178.
  • Turhan, A, H. Kuşçu, N. Özmen, and A. O. Demir, 2014. Kırmızı biberde (capsicum annum cv. kapija) verim ve kalite parametreleri ile sulama suyu tuzluluk düzeyleri arasındaki ilişkiler. Anadolu Tarım Bilim. Derg., 2014,29(3):186-193.
  • Türkmen, Ö., S. Şensoy, İ. Erdal ve T. Kabay, 2002. Kalsiyum uygulamalarının tuzlu fide yetiştirme ortamlarında domateste çıkış ve fide gelişimi üzerine etkileri. Yüzüncü Yıl Üniversitesi Tarım Bilimleri Dergisi, 12(2), 53-57.
  • Yıldız, M., H. Terzi, S. Cenkçi, E. S. A. Terzi ve B. Uruşak, 2010. Bitkilerde tuzluluğa toleransın fizyolojik ve biyokimyasal markörleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi - C Yaşam Bilimleri ve Biyoteknoloji, 1(1): 1-33.
  • Yılmaz, E., A. L. Tuna and B. Bürün, 2011. Bitkilerin tuz stresi etkilerine karşı geliştirdikleri tolerans stratejileri. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 7(1), 47-66.
  • ZhongQun H., H. Chao Xing, Z. Zhi Bin, Z. Zhi Rong and W. Huai Song, 2007. Changes of antioxidative enzymes and cell membrane osmosis in tomato colonized by arbuscular mycorrhizae under NaCl stress. Colloids and Surfaces B: Biointerfaces 59: 128-133.
  • Zhu, Z., G. Wei, J. Li, Q. Qian and J. Yu, 2004. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science, 167(3), 527-533.
  • Zuccarini P. and P. Okurowska, 2008. Effects of mycorrhizal colonization and fertilization on growth and photosynthesis of sweet basil under salt stress. J Plant Nutr 31:497–513
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Hakan Altunlu 0000-0001-6219-577X

Yayımlanma Tarihi 27 Haziran 2019
Gönderilme Tarihi 23 Mayıs 2018
Kabul Tarihi 7 Kasım 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 56 Sayı: 2

Kaynak Göster

APA Altunlu, H. (2019). Tuzlu Koşullarda Mikoriza Uygulamasının Kapya Biberde (Capsicum Annuum L.) Fide Gelişimi ve Antioksidant Enzimler Üzerine Etkisi. Journal of Agriculture Faculty of Ege University, 56(2), 139-146. https://doi.org/10.20289/zfdergi.426553

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.