Derleme
BibTex RIS Kaynak Göster

Bitki Hastalıklarının Entegre Yönetiminde Bitki İmmunitesi Uyarıcılarının Potansiyel Kullanımı

Yıl 2020, Cilt: 57 Sayı: 1, 145 - 156, 31.03.2020
https://doi.org/10.20289/zfdergi.681913

Öz

Kimyasal pestisitlerin aşırı ve uygun olmayan kullanımlarından kaynaklanan çevre kirliliği ve gıda güvenliği sorunları nedeniyle, kimyasal pestisitlerin kullanımını azaltmak arayışı gündemde ilk sıraya oturmuştur. Bitki immunitesini arttıran yöntemler, son yıllarda bitki korumada yeni ve hızlı gelişen araştırma alanıdır. Bitki immunitesini uyarıcı bileşikler biyolojik olan ve olmayan aktif moleküller olmak üzere iki grupta toplanabilir. Biyolojik aktif moleküller patojen ile konukçusu arasındaki etkileşim sırasında üretilen aktif küçük moleküllerdir. Bunlar metabolitler, oligosakkaritler, glikoproteinler, glikopeptidler, proteinler, polipeptidler, lipitler ve diğer hücresel bileşenlerdir. Biyolojik olmayan aktif moleküller, sentetik bitki immunitesi uyarıcı kimyasallardır. Başlıcaları; SA türevleri, İsonikotinik asit türevleri (INA), Thiadiazole ve İsothiazole türevleri, JA analoğu ve β-aminobutirik asit (BABA)’tir. Bu derlemede “biyolojik kaynaklı bitki immunitesi uyarıcıları” olan proteinler, oligosakkaritler ve mikrobiyal uyarıcılar ile “sentetik bitki immunitesi uyarıcı kimyasallar” olan SA türevleri, isonikotinik asit türevleri (INA), thiadiazole ve isothiazole türevleri, JA analoğu, β-aminobutirik asit (BABA) konusunda yapılmış son çalışmalara yer verilmiştir.

Kaynakça

  • Adam, L.A., Nagy, Z.A., Katay, G. and Mergenthaler, E. 2018. Signals of systemic immunity in Plants: Progree and open questions. International Journal of Molecular Sciences 19(4):1146. Doi:103390/ijms 19041146. Agrios, G.N., 2005. Plant Pathology. Fifth Ed. Elseiver Academic Press. 922 p.
  • Arioli, T., Mattner, S. W., and Winberg, P. C. 2015. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 27:2007-2015.
  • Anonim, 2017. Resmi Gazete 09.11.2017, Sayı: 30235.
  • Anonim, 2020. (https://bku.tarim.gov.tr/BKURuhsat/Index) Erişim tarihi:24.01.2020
  • Baker, C. J., Orlandi, E. W., and Mock, N. M. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Plant Physiol. 102:1341-1344.
  • Baş, B. 2018. Bitki-Patojen İnteraksiyonlarının Yeni Paradigması: Bitki İmmünolojisi; Temel Kavramlar. Turk J Life Sci. 3/1:231-243. e-ISSN: 2536-4472
  • Burketova, L., Trda, L., Ott, P. G., and Valentova, O. 2015. Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol. Adv. 33, 994–1004. doi: 10.1016/j.biotechadv.2015.01.004
  • Chen, J., Dou, K., Gao, Y. D., and Li, Y. Q. 2014a. Mechanism and application of Trichoderma spp.in biological control of corn diseases. Mycosystema 33:1154-1167.
  • Chen, M., Zeng, H., Qiu, D., Guo, L., Yang, X., Shi, H., Zhou, T., and Zhao, J. 2012. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. PLoS One 7:e 37654.
  • Chen, M., Zhang, C., Zi, Q., Qiu, D., Liu, W., and Zeng, H. 2014b. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Plant Cell Rep. 33:1865-1879.
  • Cohen, Y., Vaknin, M., and Mauch-Mani, B. (2016). BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica 44, 513–538. doi: 10.1007/ s12600-016-0546-x
  • Conrath, U., Beckers, G. J. M., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F. 2006. Priming: getting ready for battle. Mol. Plant Microbe Interact. 19, 1062–1071. doi: 10.1094/MPMI-19-1062.
  • Conrath, U., Chen, Z., Ricigliano, J. R., and Klessig, D. F. 1995. Two inducers of plant defense responses, 2,6-dichloroisonicotinec acid and salicylic acid, inhibit catalase activity in tobacco. Proc. Natl. Acad. Sci. U.S.A. 92, 7143–7147. doi: 10.1073/pnas.92.16.7143.
  • Cui, Z. N., Ito, J., Dohi, H., Amemiya, Y., and Nishida, Y. 2014. Molecular design and synthesis of novel salicyl glycoconjugates as elicitors against plant diseases. PLoS One 9:e108338. doi: 10.1371/journal.pone.0108338.
  • Dai, W. B. 2013. Research on prevention and control of chinese agricultural ecological environment pollution to ensure food safety. Adv. Mater. Res.-Switz. 616-618:2247-2250.
  • Delaney, T. P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D. 1994. A central role of salicylic acid in plant disease resistance. Science 266, 1247–1250. doi: 10.1126/science.266.5188.1247
  • Dewen, Q., Yijie, D., Yi, Z., Shupeng, L., and Fachao, S. 2017. Plant immunity inducer development and application. MPMI, 30 (5): 355-360. http://dx.doi.org/10.1094/MPMI-11-16-0231-CR.
  • Djonovic, S., Vargas, W. A., Kolomiets, M. V., Horndeski, M., Wiest, A., and Kenerley, C. M. 2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol. 145:875-889.
  • Fliegmann, J., Schuler, G., Boland, W., Ebel, J., and Mithofer, A. 2003. The role of octadecanoids and functional mimics in soybean defense responses. Biol. Chem.384, 437–446. doi: 10.1515/BC.2003.049
  • Fonseca, S., Chini, A., Hamberg, M., Adie, B., Porzel, A., Kramell, R. 2009. (C)-7-iso-Jasmonoyl-L-isoleucine is the endogenous bioactive jasmonate. Nat. Chem. Biol. 5, 344–350. doi: 10.1038/nchembio.161
  • Fu, Z. Q., Yan, S., Saleh, A., Wang, W., Ruble, J., Oka, N., et al. 2012. NPR3 and NPR4 are receptors for the immune signal salicylic acid in plants. Nature 486, 228–232. doi: 10.1038/nature11162.
  • Goellner, K., and Conrath, U. 2008. Priming: it’s all the world to induced disease resistance. Eur. J. Plant Pathol. 121, 233–242. doi: 10.1007/s10658-007-9251-4
  • Graham, J. H., and Myers, M. E. 2011. Soil application of sar inducers imidacloprid, thiamethoxam, and acibenzolar-S-Methyl for citrus canker control in young grapefruit trees. Plant Dis. 95, 725–728. doi: 0.1094/PDIS-09-10-0653.
  • Harman, G. E., Petzoldt, R., Comis, A., and Chen, J. 2004. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94:147-153.
  • Heese, A., Hann, D. R., Gimenez-Ibanez, S., Jones, A. M. E., He, K., Li, J., Schroeder, J. I., Peck, S. C., and Rathjen, J. P. 2007. The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. U.S.A. 104:12217-12222.
  • Hoffland, E., Pieterse, C., Bik, L., and Van Den Pelt, J. 1995. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiol. Mol. Plant Pathol. 46, 309–320. doi: 10.1006/pmpp.1995.1024.
  • Jones, A. M. E., Monaghan, J., and Ntoukakis, V. 2013. Editorial: Mechanisms regulating immunity in plants. Front. Plant Sci. 4:64.
  • Krämer, W., Schirmer, U., Jeschke, P., and Witschel, M. 2012. Modern Crop Protection Compounds, 2nd Edn. Hoboken, NJ: Wiley.
  • Krumm, T., Bandemer, K., and Boland, W. 1995. Induction of volatile biosynthesis in the Lima bean (Phaseolus lunatus) by leucine- and isoleucine conjugates of 1-oxo- and 1-hydroxyindan-4-carboxylic acid: evidence for amino acid conjugates of jasmonic acid as intermediates in the octadecanoid signalling pathway. FEBS Lett. 377, 523–529. doi: 10.1016/0014-5793(95) 01398-9.
  • Kuc, J. 1982. Induced immunity to plant-disease. Bioscience 32, 854–860. doi: 10.2307/1309008.
  • Kulye, M., Liu, H., Zhang, Y., Zeng, H., Yang, X., and Qiu, D. 2012. Hrip1, a novel protein elicitor from necrotrophic fungus, Alternaria tenuissima, elicits cell death, expression of defence-related genes and systemic acquired resistance in tobacco. Plant Cell Environ. 35:2104-2120.
  • Latunde-Dada, A. O., and Lucas, J. A. 2001. The plant defence activator acibenzolar-S-methyl primes cowpea [Vigna unguiculata(L.) Walp.] seedlings for rapid induction of resistance. Physiol. Mol. Plant Pathol. 58, 199–208. doi: 10.1006/pmpp.2001.0327.
  • Lee, H.J., Park, Y.J., Seo, P.J., Kim, J.-H., Sim, H.-J., Kim, S.-G., Park, C.-M. 2015. Systemic immunity requires SnRK2.8-mediated nuclear import of NPR1 in Arabidopsis. Plant Cell 27: 3425–3438.
  • Leonard, S. G., Sweeney, T., Bahar, B., and O’Doherty, J. V. 2012. Effect of maternal seaweed extract supplementation on suckling piglet growth, humoral immunity, selected microflora, and immune response after an ex vivo lipopolysaccharide challenge. J. Anim. Sci. 90:505-514.
  • Maienfisch, P., and Edmunds, A. J. F. 2017. “Thiazole and isothiazole ring-containing compounds in crop protection,” in Heterocyclic Chemistry in the 21st Century: A Tribute to Alan Katritzky, eds E. F. V. Scriven and C. A. Ramsden (San Diego: Elsevier Academic Press Inc), 35–88.
  • Metraux, J. P., Ahlgoy, P., Staub, T., Speich, J., Steinemann, A., Ryals, J. 1991. Induced Systemic Resistance in Cucumber in Response to 2,6-Dichloro-Isonicotinic Acid and Pathogens. Dordrecht: Springer Netherlands. doi: 10.1007/ 978-94-015-7934-6-66
  • Molina, A., Hunt, M. D., and Ryals, J. A. 1998. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10, 1903–1914. doi: 10.1105/tpc.10.11.1903
  • Nakashita, H. 2002. Chloroisonicotinamide derivative induces a broad range of disease resistance in rice [Oryza sativa] and tobacco [Nicotiana tabacum]. Plant Cell Physiol. 43, 823–831. doi: 10.1093/pcp/pcf097
  • Ogawa, M., Kadowaki, A., and Yamada, T. 2011. Applied development of a novel fungicide isotianil (STOUT). Sumitomo Kagaku 2011, 1–15.
  • Oostendorp, M., Kunz, W., Dietrich, B., and Staub, T. 2001. Induced disease resistance in plants by chemicals. Eur. J. Plant Pathol. 107, 19–28. doi: 10.1023/ A:1008760518772
  • O’Sullivan, G. F. 1947. Industrial utilization of agricultural products and seaweed. Nature 160:373.
  • Papavizas, G. C., and Davey, C. B. 1963. Effect of amino compounds and related substances lacking sulfur on aphanomyces root rot of peas. Phytopathology 53, 116–122.
  • Perazzolli, M., Roatti, B., Bozza, E., and Pertot, I. 2011. Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol. Control 58:74-82.
  • Pichyangkura, R., and Chadchawan, S. 2015. Biostimulant activity of chitosan in horticulture. Sci. Hortic. (Amsterdam) 196:49-65.
  • Pieterse, C. M., Van Der Does, D., Zamioudis, C., Leon-Reyes, A., and Van Wees, S. C. 2012. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 28, 489–521. doi: 10.1146/annurev-cellbio-092910-154055
  • Pieterse, C. M. J., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M., and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52, 347–375. doi: 10.1146/ annurev-phyto-082712-102340
  • Pluskota, W. E., Qu, N., Maitrejean, M., Boland, W., and Baldwin, I. T. 2007. Jasmonates and its mimics differentially elicit systemic defence responses in Nicotiana attenuata. J. Exp. Bot. 58, 4071–4082. doi: 10.1093/jxb/erm263
  • Potlakayala, S. D., Reed, D. W., Covello, P. S., and Fobert, P. R. 2007. Systemic acquired resistance in canola is linked with pathogenesis-related gene expression and requires salicylic Acid. Phytopathology 97, 794–802. doi: 10. 1094/PHYTO-97-7-0794.
  • Raho, N., Ramirez, L., Lanteri, M. L., Gonorazky, G., Lamattina, L., ten Have, A., and Laxalt, A. M. 2011. Phosphatidic acid production in chitosan- elicited tomato cells, via both phospholipase D and phospholipase C/diacylglycerol kinase, requires nitric oxide. J. Plant Physiol. 168:534-539.
  • Seidl, V., Marchetti, M., Schandl, R., Allmaier, G., and Kubicek, C. P. 2006. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J. 273:4346-4359.
  • Santino, A., Taurino, M., De Domenico, S., Bonsegna, S., Poltronieri, P., Pastor, V. 2013. Jasmonate signaling in plant development and defense response to multiple (a)biotic stresses. Plant Cell Rep. 32, 1085–1098. doi: 10.1007/s00299-013-1441-2
  • Schuler, G., Gorls, H., and Boland, W. 2001. 6-Substituted indanoyl isoleucine conjugates mimic the biological activity of coronatine. Eur. J. Organ. Chem. 2001, 1663–1668. doi: 10.1002/1099-0690 (200105)2001:9<1663::AID-EJOC1663>3.0.CO;2-I.
  • Senthilkumar, R., Vijayaraghavan, K., Thilakavathi, M., Iyer, P. V. R., and Velan, M. 2007. Application of seaweeds for the removal of lead from aqueous solution. Biochem. Eng. J. 33:211-216.
  • Silverman, F. P., Petracek, P. D., Heiman, D. F., Fledderman, C. M., and Warrior, P. 2005. Salicylate activity. 3. Structure relationship to systemic acquired resistance. J. Agric. Food Chem. 53, 9775–9780. doi: 10.1021/jf05 1383t
  • Slaughter, A., Daniel, X., Flors, V., Luna, E., Hohn, B., and Mauch-Mani, B. 2012. Descendants of primed Arabidopsis plants exhibit resistance to biotic stress. Plant Physiol. 158, 835–843. doi: 10.1104/pp.111.191593.
  • Soliman, S. S., Trobacher, C. P., Tsao, R., Greenwood, J. S., and Raizada,M. N. 2013. A fungal endophyte induces transcription of genes encoding a redundant fungicide pathway in its host plant. BMC Plant Biol. 13:93.
  • Soylu, S., Baysal, Ö, and Soylu, E. M. 2003. Induction of disease resistance by the plant activator, acibenzolar-S-methyl (ASM), against bacterial canker (Clavibacter michiganensis subsp. michiganensis) in tomato seedlings. Plant Sci. 165, 1069–1075. doi: 10.1016/S0168-9452(03)00302-9
  • Svoboda, J., and Boland, W. 2010. Plant defense elicitors: analogues of jasmonoyl-isoleucine conjugate. Phytochemistry 71, 1445–1449. doi: 10.1016/j.phytochem. 2010.04.027
  • Thevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R. 2017. The priming molecule b-aminobutyric acid is naturally present in plants and is induced by stress. New Phytol. 213, 552–559. doi: 10.1111/nph.14298
  • Ton, J., Jakab, G., Toquin, V., Flors, V., Iavicoli, A., Maeder, M. N. 2005. Dissecting the beta-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17, 987–999. doi: 10.1105/tpc.104.029728
  • Ton, J., Van Pelt, J. A., Van Loon, L. C., and Pieterse, C. M. J. 2002. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15, 27–34. doi: 10.1094/MPMI.2002.15.1.27
  • Tosun, N. ve Yiğit, S. 2012. Bitkiler kendilerini nasıl savunur? Hasad Bitkisel üretim, 323,74-78. Hasad Yayıncılık, İstanbul.
  • Tripathi, D., Jiang, Y. L., and Kumar, D. 2010. SABP2, a methyl salicylate esterase is required for the systemic acquired resistance induced by acibenzolar-S-methyl in plants. FEBS Lett. 584, 3458–3463. doi: 10.1016/j.febslet.2010. 06.046.
  • Tsutsui, T., Nakano, A., and Ueda, T. 2015. The plant-specific RAB5 GTPase ARA6 is required for starch and sugar homeostasis in Arabidopsis thaliana. Plant Cell Physiol. 56:1073-1083.
  • Uknes, S., Mauch-Mani, B., Moyer, M., Potter, S., Williams, S., Dincher, S. 1992. Acquired resistance in Arabidopsis. Plant Cell 4, 645–656. doi: 10.1105/ tpc.4.6.645.
  • van Loon, L. C., Rep, M., and Pieterse, C. M. J. 2006. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.
  • Vidhyasekaran, P. 2003. Concise Encyclopedia of Plant Pathology. Food Products Press, The Haworth Press, Inc. NewYork.P.619.
  • Vernooij, B. 1995. 2,6-Dichloroisonicotinic acidinduced resistance to pathogen without the accumulation of salicylic acid. Mol. Plant Microbe Interact. 8, 228–234. doi: 10.1094/MPMI-8-0228.
  • Wang, N., Liu, M., Guo, L., Yang, X., and Qiu, D. 2016. A novel protein elicitor (PeBA1) from Bacillus amyloliquefaciens NC6 induces systemic resistance in tobacco. Int. J. Biol. Sci. 12:757-767.
  • Ward, E. R., Uknes, S. J., Williams, S. C., Dincher, S. S., Wiederhold, D. L., Alexander, D. C. 1991. Coordinate gene activity in response to agents that induce systemic acquired-resistance. Plant Cell 3, 1085–1094. doi: 10.1105/ tpc.3.10.1085.
  • Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A., and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.
  • White, R. F. 1979. Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology 99, 410–412. doi: 10.1016/0042-6822(79) 90019-9.
  • Xu, Y. 2008. The application of biological pesticides and industrial development measures. Chin. Agric. Sci. Bull. 24:402-404.
  • Yasuda, M. 2007. Regulation mechanisms of systemic acquired resistance induced by plant activators (Society Awards 2007 (on high prospectiveness)). J. Pestic. Sci. 32, 281–282. doi: 10.1584/jpestics.32.281
  • Yasuda, M., Nakashita, H., Hasegawa, S., Nishioka, M., Arai, Y., Uramoto, M., et al. 2003. N-Cyanomethyl-2-chloroisonicotinamide induces systemic acquired resistance in Arabidopsis without salicylic acid accumulation. J. Agric. Chem.Soc. Japan 67, 322–328.
  • Yin, H., Du, Y., and Dong, Z. 2016. Chitin oligosaccharide and chitosan oligosaccharide: Two similar but different plant elicitors. Front. Plant Sci. 7:522.
  • Yoshida, H., Konishi, K., Koike, K., Nakagawa, T., Sekido, S., and Yamaguchi, I. 1990a. Effect of N-cyanomethyl-2-chloroisonicotinamide for control of rice blast. J. Pestic. Sci. 15, 413–417. doi: 10.1584/jpestics.15.413
  • Yoshida, H., Konishi, K., Nakagawa, T., Sekido, S., and Yamaguchi, I. 1990b. Characteristics of N-phenylsulfonyl-2-chloroisonicotinamide as an anti-rice blast agent. J. Pestic. Sci. 15, 199–203. doi: 10.1584/jpestics.15.199.
  • Zhang, H., Zhao, X., Yang, J., Yin, H., Wang, W., Lu, H., and Du, Y. 2011a. Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant Cell Rep. 30:1153-1162.
  • Zhang, J., and Zhou, J. M. 2010. Plant immunity triggered by microbial molecular signatures. Mol. Plant 3:783-793.
  • Zhang, W., Yang, X., Qiu, D., Guo, L., Zeng, H., Mao, J., and Gao, Q. 2011b. PeaT1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol. Biol. Rep. 38:2549-2556.
  • Zhang, Y., Zhang, Y., Qiu, D., Zeng, H., Guo, L., and Yang, X. 2015. BcGs1, a glycoprotein from Botrytis cinerea, elicits defence response and improves disease resistance in host plants. Biochem. Biophys. Res. Commun. 457:627-634.
  • Zhou, M., and Wang, W. 2018. Recent advances in synthetic chemical inducers of plant immunity. Front. Plant. Sci. 9: 1613. Doi: 10.3389/fpls.2018.01613.
  • Zimmerli, L., Jakab, G., Metraux, J. P., and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proc. Natl. Acad. Sci. U.S.A. 97, 12920–12925. doi: 10.1073/pnas. 230416897
Toplam 84 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Necip Tosun 0000-0001-5804-5760

Emin Onan 0000-0001-6888-2132

Yayımlanma Tarihi 31 Mart 2020
Gönderilme Tarihi 29 Ocak 2020
Kabul Tarihi 12 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 57 Sayı: 1

Kaynak Göster

APA Tosun, N., & Onan, E. (2020). Bitki Hastalıklarının Entegre Yönetiminde Bitki İmmunitesi Uyarıcılarının Potansiyel Kullanımı. Journal of Agriculture Faculty of Ege University, 57(1), 145-156. https://doi.org/10.20289/zfdergi.681913

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.