Derleme
BibTex RIS Kaynak Göster

Kanatlı hayvanların beslenmesinde sürdürülebilirlik stratejileri

Yıl 2022, Cilt: 59 Sayı: 4, 731 - 742, 31.12.2022
https://doi.org/10.20289/zfdergi.1096687

Öz

Hayvansal üretimde sürdürülebilirlik; gelecek nesillerin gıda ihtiyaçlarını karşılama yeteneğinden ödün vermeden toplumun mevcut gıda ihtiyaçlarının karşılanması şeklinde tanımlanır. Kanatlı üretimi, hayvansal üretimin diğer alanlarına kıyasla daha çevre dostu olmasına rağmen sera gazları, ötrofikasyon ve asidifikasyon gibi çevresel etkileri göz ardı edilmemelidir. Kanatlı üretim zincirinde, yem üretimi ve nakliye küresel ısınma potansiyalinin %70’ini oluştururken, gübre yönetimi ise ötrofikasyon ve asidifikasyon potansiyalinin %40-60’ını oluşturmaktadır. Sürdürülebilir kanatlı üretiminde, yem üretimi ile besin madde atılımının etkisini azaltmak amacıyla bazı besleme stratejileri geliştirilmektedir. Yem üretimi etkisinin azaltılması amacıyla karma yemlerin "Yaşam Döngüsü Değerlendirmesi" kullanılarak oluşturulması, alternatif protein kaynaklarının kullanılması ve hidroponik tarım modellerinin uygulanması çevre dostu ve sürdürülebilir üretim yapmaya olanak sağlamaktadır. Gübre yönetiminin çevresel etkisi ise karma yemlerin ham protein düzeyi azaltılarak, ham selüloz ilavesi, sindirim sisteminin düzenlenmesi ve besin madde sindirilebilirliği artırılarak iyileştirilebilir. Bu derlemede, kanatlı beslemede sürdürülebilirlik stratejileri; yem üretiminin etkileri, besin madde atılımının azaltılması ve iyileştirilmiş sindirim sistemi ile ilişkisi irdelenecektir.

Kaynakça

  • Abouelezz, K.F.M., M.A.M. Sayed & M.A. Abdelnabi, 2019. Evaluation of hydroponic barley sprouts as a feed supplement for laying Japanese quail: Effects on egg production, egg quality, fertility, blood constituents, and internal organs. Animal Feed Science and Technology, 252 (6): 126-135. https://doi.org/10.1016/j.anifeedsci.2019.04.011
  • Ajila, C.M., S.K. Brar, M. Verma, R.D. Tyagi, S. Godbout & J.R. Valéro, 2012. Bio-processing of agro-byproducts to animal feed. Critical reviews in biotechnology, 32 (4): 382-400. https://doi.org/10.3109/07388551.2012.659172
  • Aljubori, A., Z. Idrus, A.F. Soleimani, N. Abdullah & L. Juan Boo, 2017. Response of broiler chickens to dietary inclusion of fermented canola meal under heat stress condition. Italian Journal of Animal Science, 16 (4): 546-551. https://doi.org/10.1080/1828051X.2017.1292830
  • Ansari, F.A., M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat I & F. Bux, 2020. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Science of the Total Environment, 704 (7): 135259. https://doi.org/10.1016/j.scitotenv.2019.135259
  • Apajalahti, J., A. Kettunen & H. Graham, 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 60 (2): 223-232. https://doi.org/10.1079/wps200415
  • Borrero, J.D., 2021. Expanding the Level of Technological Readiness for a Low-Cost Vertical Hydroponic System. Inventions, 6 (4): 68. https://doi.org/10.3390/inventions6040068
  • Celi, P., A.J. Cowieson, F. Fru-Nji, R.E. Steinert, A.M. Kluenter & V. Verlhac, 2017. Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Animal Feed Science and Technology, 234 (1): 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
  • Cerisuelo, A. & S. Calvet, 2020. Feeding in monogastric animals: A key element to reduce its environmental impact. ITEA Informacion Tecnica Economica Agraria, 116 (5): 483-506. https://doi.org/10.12706/itea.2020.039
  • Choct, M., 2015. Fibre-chemistry and functions in poultry nutrition. Avicultura, 28 (30): 113-119.
  • Chowdhury, S., G.P. Mandal & A.K. Patra, 2018. Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat. Animal Feed Science and Technology, 236: 86-97. https://doi.org/10.1016/j.anifeedsci.2017.12.002
  • Chrystal, P.V., A.F. Moss, A. Khoddami, V.D. Naranjo, P.H. Selle & S.Y. Liu, 2020b. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poultry Science, 99 (1): 505-516. https://doi.org/10.3382/ps/pez573
  • Chrystal, P.V., A.F. Moss, D. Yin, A. Khoddami, V.D. Naranjo, P.H. Selle et al., 2020a. Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition, starch-protein digestive dynamics and amino acid metabolism in broiler chickens. Animal Feed Science and Technology, 261 (114387): 1-14. https://doi.org/10.1016/j.anifeedsci.2019.114387
  • Cowieson, A.J. & F.F. Roos, 2016. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Animal Feed Science and Technology, 221 (1): 331-340. https://doi.org/10.1016/j.anifeedsci.2016.04.015
  • EPA, 2017. Air Quality Compliance Agreement for Animal Feeding Operations. (Erişim adresi: https://www.epa.gov/sites/production/files/2017-01/documents/web_placeholder.pdf) (Erişim tarihi: Eylül 2019).
  • FAO, 2014. Towards a concept of sustainable ani- mal diets: report based on the collated results of a survey of stakeholder views. FAO Animal Production and Health reports 7, Rome, Italia. 81 pp. (Erişim adresi: http://www.fao.org/3/a- i4146e.pdf) (Erişim tarihi: 15 nisan 2020).
  • FAO, 2018. Food and Agriculture Organization of the United Nations. (Erişim adresi: www.fao.org) (Erişim Tarihi:31 Kasım 2018).
  • FEFAC, 2016. Vision on animal feed industry: A knowledge driven, reliable partner of a com- petitive livestock sector. (Erişim adresi: http:// www.fefac.eu/files/67547.pdf) (Erişim tarihi: 30 Mart 2020).
  • Ferguson, N.S., R.S. Gates, J.L. Taraba, A.H. Cantor, A.J. Pescatore, M.J. Ford et al., 1998. The effect of dietary crude protein on growth, ammonia concentration, and litter composition in broilers. Poultry Science, 77 (10): 1481-1487. https://doi.org/10.1093/ps/77.10.1481
  • Ferrer, P., S. Calvet, M. Roca, M. Cambra-López & A. Ceri- suelo, 2019. Efecto de la inclusión de pulpa de naranja sobre los rendimientos productivos, los metabolitos fecales y el microbioma intes- tinal en cerdos de engorde. XVIII Jornadas so- bre Producción Animal, 7-8 de mayo, Zaragoza, España, pp. 242-244.
  • Frenette, E., O. Bahn & K. Vaillancourt, 2017. Meat, dairy and climate change: assessing the long-term mitigation potential of alternative agri-food consumption patterns in Canada. Environmental Modeling & Assessment, 22 (1): 1-16. htpps:/doi.org/10.1007/s10666-016-9522-6
  • Garcia-Launay, F., L. Dusart, S. Espagnol, S. Laisse-Redoux, D., Gaudré, B. Méda et al., 2018. Multiobjective formulation is an effective method to reduce environmental impacts of livestock feeds. British Journal of Nutrition, 120 (11): 1298-1309. htpps:/doi.org/10.1017/S0007114518002672
  • Gerber, P.J., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman et al., 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), İtalya- Roma, 139 pp.
  • Guo, C., J. Yang, J. Wei, Y. Li, J. Xu & Y. Jiang, 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23 (12): 1719-1726. https://doi.org/10.1016/j.nutres.2003.08.005
  • He, X., Q. Hu, J. Chen, W.Q. Leong, Y. Dai & C.H. Wang, 2022. Energy and environmental risk assessments of poultry manure sustainable solution: An industrial case study in Singapore. Journal of Cleaner Production, 130787. https://doi.org/10.1016/j.jclepro.2022.130787
  • Herrero, M., P.K. Thornton, A.M. Notenbaert, S. Wood, S. Msangi, H.A. Freeman et al., 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science, 327 (5967): 822-825.
  • Huhtanen, P. & A. Huuskonen, 2020. Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livestock Science, 232: (103896). https://doi.org/10.1016/j.livsci.2019.103896
  • Ibekwe, A.M., S.E. Murinda, M.A. Murry, G. Schwartz & T. Lundquist, 2017. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production. Science of The Total Environment, 580 (1): 1185-1196. https://doi.org/10.1016/j.scitotenv.2016.12.076
  • IFIF, 2019. What is the global feed industry. International Feed Industry Federation Factsheet; International Feed Industry Federation (IFIF): Wiehl, Germany. (Erişim adresi: https://ifif.org/wp-content/uploads/2019/06/IFIF-Fact-Sheet-October-11th-2019.pdf) (Erişim tarihi: 11 Ekim 2019).
  • Işık, Ö. & F. Kırkpınar, 2020. The Effect of Feeding on Environmental Pollutant Emissions in Broiler Production. Turkish Journal of Agriculture-Food Science and Technology, 8 (1): 234-238. htpps://doi.org/10.24925/turjaf.v8i1.234-238.3105
  • Jabbar, A., M. Tahir, R.U. Khan & N. Ahmad, 2021. Interactive effect of exogenous protease enzyme and dietary crude protein levels on growth and digestibility indices in broiler chickens during the starter phase. Tropical Animal Health and Production, 53 (1): 1-5. htpps://doi.org/10.1007/s11250-020-02466-5
  • Jacob, J.P. & A.J. Pescatore, 2012. Using barley in poultry diets-A review. Journal of Applied Poultry Research, 21 (4): 915-940. https://doi.org/10.3382/japr.2012-00557
  • Khan, S., S. Naz, A. Sultan, I.A. Alhidary, M.M. Abdelrahman, R.U. Khan, et al., 2016. Worm meal: a potential source of alternative protein in poultry feed. World's Poultry Science Journal, 72 (1): 93-102. https://doi.org/10.1017/S0043933915002627
  • Kırkpınar, F., K. Tan & S. Mert, 2013. Kanatlı Kümes Hayvanlarının Beslenmesinde Kaba Yem Kaynaklarının Kullanılması. 8. Ulusal Zootekni Bilim Kongresi, 5-7 Eylül, Çanakkale. Kongre Kitabı, 375-379.
  • Kiarie, E.G. & A. Mills, 2019. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Frontiers in Veterinary Science, 6 (2): 19. https://doi.org/10.3389/fvets.2019.00019
  • Kop-Bozbay, C., A. Akdag, H. Atan & N. Ocak, 2021. Response of broilers to supplementation of branched-chain amino acids blends with different valine contents in the starter period under summer conditions. Animal Bioscience, 34 (2): 295-305. https://doi.org/10.5713/ajas.19.0828
  • Kop‐Bozbay, C. & N. Ocak, 2020. Posthatch development in response to branched-chain amino acids blend supplementation in the diet for turkey poults subjected to early or delayed feeding. Journal of Animal and Plant Sciences-JAPS, 30: 1098-1105. https://doi.org/10.36899/JAPS.2020.5.0125
  • Kuhi, H. D., E. Kebreab & J. France, 2012. Application of the law of diminishing returns to partitioning metabolizable energy and crude protein intake between maintenance and growth in egg-type pullets. Journal of Applied Poultry Research, 21 (3): 540-547. https://doi.org/10.3382/japr.2011-00434
  • Lassaletta, L., F. Estellés, A.H. Beusen, L. Bouwman, S. Calvet, H.J. Van Grinsven et al., 2019. Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 665 (1): 739-751. https://doi.org/10.1016/j.scitotenv.2019.02.079
  • Leinonen, I. & I., Kyriazakis, 2016. How can we improve the environmental sustainability of poultry production?. Proceedings of the Nutrition Society, 75 (3): 265-273. Htpps://doi.org/10.1017/S002966511000094
  • Liu, S., J.Q. Ni, A.J. Heber & W.Z. Liang, 2019. Modeling of dynamic ammonia concentrations in two commercial layer hen houses. Journal of Environmental Informatics, 33 (1): 56-67. Htpps://doi.org/10.3808/jei.201700360
  • Lusk, J. L., 2013. Role of technology in the global economic importance and viability of animal protein production. Animal Frontiers, 3 (3): 20-27. https://doi.org/10.2527/af.2013-0020
  • Mackenzie, S.G., I. Leinonen, N. Ferguson & I. Kyriazakis, 2016. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation. British Journal of Nutrition, 115 (10): 1860-1874. https://doi.org/10.1017/S0007114560000763
  • Malomo, G.A., A.S. Madugu & S.A. Bolu, 2018. “Sustainable animal manure management strategies and practices. Agricultural Waste and Residues, 119- 137”. Chapters, In: Agricultural Waste and Residues (Ed. A. Aladjadjiyan). IntechOpen. https://dx.doi.org/10.5772/intechopen.78645
  • Malomo, G.A., S.A. Bolu, S.G. Olutade & Z.G. Suleiman, 2013. Effects of feeding low protein diets with methionine and lysine supplementation on the performance and nitrogen economy of broilers. Research Opinions in Animal and Veterinary Sciences, 3 (9): 330-334.
  • Mateos, G.G., E. Jiménez-Moreno, M.P. Serrano & R.P. Lázaro, 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. Journal of Applied Poultry Research, 21 (1): 156-174. https://doi.org/10.3382/japr.2011-00477
  • Mead, G.C., 2002. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. World's Poultry Science Journal, 58 (2): 169-178. Htpps://doi.org/10.1079/wps20020016
  • Méda, B., P. Belloir, A. Narcy & A. Wilfart, 2019. Improving environmental sustainability of poultry production using innovative feeding strategies. Proceedings of the 22nd European symposium on poultry nutrition, 10–13 June 2019, Gdańsk, Poland (2019), 82-92 pp.
  • MITECO, 2019. Sistema Español de Inventario de Emisiones. Inventario 1990-2017. (Erişim adresi: https://www.miteco.gob.es/es/calidad-y-eva-luacion-ambiental/temas/sistema-espanol-de-inventario-sei-/) (Erişim tarihi: 20 Mayıs 2019).
  • Mohammed, A.B., S.A. Mohammed, A.F. Ayanlere & O.K. Afolabi, 2013. Evaluation of Poultry Egg Marketing in Kuje Area Council Municipality of FCT Abuja, Nigeria. Greener Journal of Agricultural Sciences, 3 (1): 068-072. https://doi.org/10.15580/GJAS.2013.1.101112111
  • Mohebodini, H., V. Jazi, R. Bakhshalinejad, A. Shabani & A. Ashayerizadeh, 2018. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livestock Science, 229: 3-21 https://doi.org/10.1016/j.livsci.2019.09.008
  • Munasinghe, M. & W. Shearer, 1995. Defining and measuring sustainability: the biogeophysical foundations (No. PB-95-258885/XAB). International Bank for Reconstruction and Development, Washington, DC (United States).
  • Munyaka, P.M., N.K. Nandha, E. Kiarie, C.M. Nyachoti & E. Khafipour, 2016. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95 (3): 528-540. https://doi.org/10.3382/ps/pev333
  • Naik, P.K., B.K. Swain & N.P. Singh, 2015. Production and utilisation of hydroponics fodder. Indian Journal of Animal Nutrition, 32 (1): 1-9.
  • National Research Council, (NRC), 2003. Air emissions from animal feeding operations: Current knowledge, future needs. http//www.nap.edu/catalog/10586.html
  • Niderkorn, V. & A. Jayanegara, 2021.Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A Review. Agronomy, 11 (1): 86. https://doi.org/10.3390/agronomy11010086
  • Ocak, N. & Sungu, M., 2009. Growth and egg production of layer pullets can be affected by the method of supplying energy and protein sources. Journal of the Science of Food and Agriculture, 89 (11): 1963-1968. https://doi.org/10.1002/jsfa.3684
  • Olukomaiya, O., C. Fernando, R. Mereddy, X. Li & Y. Sultanbawa, 2019. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Animal Nutrition, 5 (4): 319-330. https://doi.org/10.1016/j.aninu.2019.05.005
  • Ospina-Rojas I.C., A.E. Murakami, C.R.A. Duarte, G.R. Nascimento, E.R.M. Garcia, M.I. Sakamoto et al., 2017. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poultry Science, 96: 914-22. https://doi.org/10.3382/ps/pew319
  • Ospina-Rojas I.C., A.E. Murakami, C.R.A. Duarte, P.C. Pozza, R.M. Rossi & E. Gasparino, 2019. Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. Canadian Journal of Animal Science, 99: 168-78. https:// doi.org/10.1139/cjas-2018-0020
  • Ospina-Rojas, I.C., A.E. Murakami, C. Eyng, R.V. Nunes, C.R.A. Duarte & M.D. Vargas, 2012. Commercially available amino acid supplementation of low-protein diets for broiler chickens with different ratios of digestible glycine+ serine: lysine. Poultry Science, 91 (12): 3148-3155. https://doi.org/10.3382/ps.2012-02470
  • Owusu-Asiedu, A.J.F.J., J.F. Patience, B. Laarveld, A.G. Van Kessel, P.H. Simmins & R.T. Zijlstra, 2006. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. Journal of animal science, 84 (4): 843-852. https://doi.org/10.2527/2006.844843x
  • Pal, P.U.C., 1999. Probiotics benefits. Poultry International, 38 (12): 40-42.
  • Pomar, C. & A. Remus, 2019. Precision pig feeding: a breakthrough toward sustainability. Animal Frontiers, 9 (2): 52-59. https://doi.org/10.1093/af/vfz006
  • Roberts, S. A., H. Xin, B.J. Kerr, J.R. Russell & K. Bregendahl, 2007. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poultry Science, 86 (8): 1625-1632. https://doi.org/10.1093/ps/86.8.1625
  • Rojas, O. J. & H.H. Stein, 2017. Processing of ingredients and diets and effects on nutritional value for pigs. Journal of animal science and biotechnology, 8 (1): 1-13. https:/doi.org/10.1186/s40104-017-0177-1
  • Sadeghi, A., M. Toghyani & A. Gheisari, 2015. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poultry Science, 94 (11): 2734-2743. https://doi.org/10.3382/ps/pev292
  • Sajeev, E.P.M., B. Amon, C. Ammon, W. Zollitsch & W. Winiwarter, 2018. Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis. Nutrient cycling in agroecosystems, 110 (1): 161-175. https://doi.org/10.1007/s10705-017-9893-3
  • Sans, P. & P. Combris, 2015. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat science, 109: 106-111. https://doi.org/10.1016/j.meatsci.2015.05.012
  • Selle, P.H., P.V. Chrystal & S.Y. Liu, 2020. The cost of deamination in reduced-crude protein broiler diets. In Process Australia Poultry Science Symptom 31: 63-66.
  • Shi, H., E. Yang, Y. Li, X. Chen & J. Zhang, 2021. Effect of Solid-State Fermentation on Nutritional Quality of Leaf Flour of the Drumstick Tree (Moringa oleifera Lam.). Frontiers in Bioengineering and Biotechnology, 9 (2021): 267. https://doi.org/10.3389/fbioe.2021.626628
  • Tallentire, C.W., S.G. Mackenzie & I. Kyriazakis, 2017. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agricultural Systems, 154 (5): 145-156. https://doi.org/10.1016/j.agsy.2017.03.018
  • Teenstra, E.D., F.E. de Buisonjé, A. Ndambi & D. Pelster, 2015. Manure Management in the (Sub-) Tropics: training manual for extension workers (No. 919). Wageningen UR Livestock Research.
  • Tejeda, O. & W. Kim, 2021. Role of dietary fiber in poultry nutrition. Animals, 11 (2): 461. https://doi.org/10.3390/ani11020461
  • Thornton, P.K., 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1554): 2853-2867. https://doi.org/10.1098/rstb.2010.0134
  • UN (United Nations), 2019. Global Sustainable Development Report: The Future is Now: Science for Achieving Sustainable Development. New York: United Nations.
  • UNESCO, 2017. Division for Inclusion, Peace and Sustainable Development, Education Sector. Education for sustainable developmen goals; Learning objectives. (Erişim adresi: https://unesdoc.unesco.org/ark:/48223/pf0000247444)
  • Vukmirović, D., A. Fišteš, J. Lević, R. Čolović, D. Rakić, T. Brlek et al., 2017. Possibilities for preservation of coarse particles in pelleting process to improve feed quality characteristics. Journal of animal physiology and animal nutrition, 101 (5): 857-867. https://doi.org/10.1111/jpn.12489
  • WCED, 1987. World commission on environment and development. Our common future, 17 (1): 1-91.
  • Wu-Haan, W., W. Powers, R. Angel & T.J. Applegate, 2010. The use of distillers dried grains plus solubles as a feed ingredient on air emissions and performance from laying hens. Poultry science, 89 (7): 1355-1359. https://doi.org/10.3382/ps.2009-00471
  • Xu, Y., 2014. Interaction of dietary coarse corn with litter conditions on broiler live performance and gastrointestinal tract function. North Carolina State University.
  • Yadav, S., & R. Jha, 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of animal science and biotechnology, 10 (1):1-11. https://doi.org/10.1186/s40104-018-0310-9
  • Ziegler, F., K. Nilsson, N. Levermann, M. Dorph, B. Lyberth, A.A. Jessen et al., 2021. Local Seal or Imported Meat? Sustainability Evaluation of Food Choices in Greenland, Based on Life Cycle Assessment. Foods, 10(6), 1194.

Sustainability strategies in poultry nutrition

Yıl 2022, Cilt: 59 Sayı: 4, 731 - 742, 31.12.2022
https://doi.org/10.20289/zfdergi.1096687

Öz

Sustainability in animal production is defined as meeting society’s current food needs without compromising the ability of future generations to meet their food needs. Poultry production is more environmentally friendly in comparison with other fields in animal production, however; its impacts on the environment such as greenhouse gases, eutrophication, and acidification should not be overlooked. In poultry production chain, feed production and transportation constitute 70% of global warming potential, whereas manure management constitutes 40-60% of eutrophication and acidification potential. Some feeding strategies are developed in sustainable poultry production to reduce the effects of feed production and nutrient excretion. Making compound feed by means of “Life Cycle Assessment” using alternative protein sources and using hydroponic farming models to reduce the impact of feed production enable environmentally friendly and sustainable production. The environmental impact of manure management can be improved by reducing the crude protein level of diets, adding crude fiber, regulating the digestive system and increasing nutrient digestibility. In this review, sustainability strategies in poultry nutrition; the relationship with effects of feed production, reduction of nutrient excretion and improved system will be discussed.

Kaynakça

  • Abouelezz, K.F.M., M.A.M. Sayed & M.A. Abdelnabi, 2019. Evaluation of hydroponic barley sprouts as a feed supplement for laying Japanese quail: Effects on egg production, egg quality, fertility, blood constituents, and internal organs. Animal Feed Science and Technology, 252 (6): 126-135. https://doi.org/10.1016/j.anifeedsci.2019.04.011
  • Ajila, C.M., S.K. Brar, M. Verma, R.D. Tyagi, S. Godbout & J.R. Valéro, 2012. Bio-processing of agro-byproducts to animal feed. Critical reviews in biotechnology, 32 (4): 382-400. https://doi.org/10.3109/07388551.2012.659172
  • Aljubori, A., Z. Idrus, A.F. Soleimani, N. Abdullah & L. Juan Boo, 2017. Response of broiler chickens to dietary inclusion of fermented canola meal under heat stress condition. Italian Journal of Animal Science, 16 (4): 546-551. https://doi.org/10.1080/1828051X.2017.1292830
  • Ansari, F.A., M. Nasr, A. Guldhe, S.K. Gupta, I. Rawat I & F. Bux, 2020. Techno-economic feasibility of algal aquaculture via fish and biodiesel production pathways: A commercial-scale application. Science of the Total Environment, 704 (7): 135259. https://doi.org/10.1016/j.scitotenv.2019.135259
  • Apajalahti, J., A. Kettunen & H. Graham, 2004. Characteristics of the gastrointestinal microbial communities, with special reference to the chicken. World's Poultry Science Journal, 60 (2): 223-232. https://doi.org/10.1079/wps200415
  • Borrero, J.D., 2021. Expanding the Level of Technological Readiness for a Low-Cost Vertical Hydroponic System. Inventions, 6 (4): 68. https://doi.org/10.3390/inventions6040068
  • Celi, P., A.J. Cowieson, F. Fru-Nji, R.E. Steinert, A.M. Kluenter & V. Verlhac, 2017. Gastrointestinal functionality in animal nutrition and health: new opportunities for sustainable animal production. Animal Feed Science and Technology, 234 (1): 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012
  • Cerisuelo, A. & S. Calvet, 2020. Feeding in monogastric animals: A key element to reduce its environmental impact. ITEA Informacion Tecnica Economica Agraria, 116 (5): 483-506. https://doi.org/10.12706/itea.2020.039
  • Choct, M., 2015. Fibre-chemistry and functions in poultry nutrition. Avicultura, 28 (30): 113-119.
  • Chowdhury, S., G.P. Mandal & A.K. Patra, 2018. Different essential oils in diets of chickens: 1. Growth performance, nutrient utilisation, nitrogen excretion, carcass traits and chemical composition of meat. Animal Feed Science and Technology, 236: 86-97. https://doi.org/10.1016/j.anifeedsci.2017.12.002
  • Chrystal, P.V., A.F. Moss, A. Khoddami, V.D. Naranjo, P.H. Selle & S.Y. Liu, 2020b. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poultry Science, 99 (1): 505-516. https://doi.org/10.3382/ps/pez573
  • Chrystal, P.V., A.F. Moss, D. Yin, A. Khoddami, V.D. Naranjo, P.H. Selle et al., 2020a. Glycine equivalent and threonine inclusions in reduced-crude protein, maize-based diets impact on growth performance, fat deposition, starch-protein digestive dynamics and amino acid metabolism in broiler chickens. Animal Feed Science and Technology, 261 (114387): 1-14. https://doi.org/10.1016/j.anifeedsci.2019.114387
  • Cowieson, A.J. & F.F. Roos, 2016. Toward optimal value creation through the application of exogenous mono-component protease in the diets of non-ruminants. Animal Feed Science and Technology, 221 (1): 331-340. https://doi.org/10.1016/j.anifeedsci.2016.04.015
  • EPA, 2017. Air Quality Compliance Agreement for Animal Feeding Operations. (Erişim adresi: https://www.epa.gov/sites/production/files/2017-01/documents/web_placeholder.pdf) (Erişim tarihi: Eylül 2019).
  • FAO, 2014. Towards a concept of sustainable ani- mal diets: report based on the collated results of a survey of stakeholder views. FAO Animal Production and Health reports 7, Rome, Italia. 81 pp. (Erişim adresi: http://www.fao.org/3/a- i4146e.pdf) (Erişim tarihi: 15 nisan 2020).
  • FAO, 2018. Food and Agriculture Organization of the United Nations. (Erişim adresi: www.fao.org) (Erişim Tarihi:31 Kasım 2018).
  • FEFAC, 2016. Vision on animal feed industry: A knowledge driven, reliable partner of a com- petitive livestock sector. (Erişim adresi: http:// www.fefac.eu/files/67547.pdf) (Erişim tarihi: 30 Mart 2020).
  • Ferguson, N.S., R.S. Gates, J.L. Taraba, A.H. Cantor, A.J. Pescatore, M.J. Ford et al., 1998. The effect of dietary crude protein on growth, ammonia concentration, and litter composition in broilers. Poultry Science, 77 (10): 1481-1487. https://doi.org/10.1093/ps/77.10.1481
  • Ferrer, P., S. Calvet, M. Roca, M. Cambra-López & A. Ceri- suelo, 2019. Efecto de la inclusión de pulpa de naranja sobre los rendimientos productivos, los metabolitos fecales y el microbioma intes- tinal en cerdos de engorde. XVIII Jornadas so- bre Producción Animal, 7-8 de mayo, Zaragoza, España, pp. 242-244.
  • Frenette, E., O. Bahn & K. Vaillancourt, 2017. Meat, dairy and climate change: assessing the long-term mitigation potential of alternative agri-food consumption patterns in Canada. Environmental Modeling & Assessment, 22 (1): 1-16. htpps:/doi.org/10.1007/s10666-016-9522-6
  • Garcia-Launay, F., L. Dusart, S. Espagnol, S. Laisse-Redoux, D., Gaudré, B. Méda et al., 2018. Multiobjective formulation is an effective method to reduce environmental impacts of livestock feeds. British Journal of Nutrition, 120 (11): 1298-1309. htpps:/doi.org/10.1017/S0007114518002672
  • Gerber, P.J., H. Steinfeld, B. Henderson, A. Mottet, C. Opio, J. Dijkman et al., 2013. Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), İtalya- Roma, 139 pp.
  • Guo, C., J. Yang, J. Wei, Y. Li, J. Xu & Y. Jiang, 2003. Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research, 23 (12): 1719-1726. https://doi.org/10.1016/j.nutres.2003.08.005
  • He, X., Q. Hu, J. Chen, W.Q. Leong, Y. Dai & C.H. Wang, 2022. Energy and environmental risk assessments of poultry manure sustainable solution: An industrial case study in Singapore. Journal of Cleaner Production, 130787. https://doi.org/10.1016/j.jclepro.2022.130787
  • Herrero, M., P.K. Thornton, A.M. Notenbaert, S. Wood, S. Msangi, H.A. Freeman et al., 2010. Smart investments in sustainable food production: revisiting mixed crop-livestock systems. Science, 327 (5967): 822-825.
  • Huhtanen, P. & A. Huuskonen, 2020. Modelling effects of carcass weight, dietary concentrate and protein levels on the CH4 emission, N and P excretion of dairy bulls. Livestock Science, 232: (103896). https://doi.org/10.1016/j.livsci.2019.103896
  • Ibekwe, A.M., S.E. Murinda, M.A. Murry, G. Schwartz & T. Lundquist, 2017. Microbial community structures in high rate algae ponds for bioconversion of agricultural wastes from livestock industry for feed production. Science of The Total Environment, 580 (1): 1185-1196. https://doi.org/10.1016/j.scitotenv.2016.12.076
  • IFIF, 2019. What is the global feed industry. International Feed Industry Federation Factsheet; International Feed Industry Federation (IFIF): Wiehl, Germany. (Erişim adresi: https://ifif.org/wp-content/uploads/2019/06/IFIF-Fact-Sheet-October-11th-2019.pdf) (Erişim tarihi: 11 Ekim 2019).
  • Işık, Ö. & F. Kırkpınar, 2020. The Effect of Feeding on Environmental Pollutant Emissions in Broiler Production. Turkish Journal of Agriculture-Food Science and Technology, 8 (1): 234-238. htpps://doi.org/10.24925/turjaf.v8i1.234-238.3105
  • Jabbar, A., M. Tahir, R.U. Khan & N. Ahmad, 2021. Interactive effect of exogenous protease enzyme and dietary crude protein levels on growth and digestibility indices in broiler chickens during the starter phase. Tropical Animal Health and Production, 53 (1): 1-5. htpps://doi.org/10.1007/s11250-020-02466-5
  • Jacob, J.P. & A.J. Pescatore, 2012. Using barley in poultry diets-A review. Journal of Applied Poultry Research, 21 (4): 915-940. https://doi.org/10.3382/japr.2012-00557
  • Khan, S., S. Naz, A. Sultan, I.A. Alhidary, M.M. Abdelrahman, R.U. Khan, et al., 2016. Worm meal: a potential source of alternative protein in poultry feed. World's Poultry Science Journal, 72 (1): 93-102. https://doi.org/10.1017/S0043933915002627
  • Kırkpınar, F., K. Tan & S. Mert, 2013. Kanatlı Kümes Hayvanlarının Beslenmesinde Kaba Yem Kaynaklarının Kullanılması. 8. Ulusal Zootekni Bilim Kongresi, 5-7 Eylül, Çanakkale. Kongre Kitabı, 375-379.
  • Kiarie, E.G. & A. Mills, 2019. Role of feed processing on gut health and function in pigs and poultry: conundrum of optimal particle size and hydrothermal regimens. Frontiers in Veterinary Science, 6 (2): 19. https://doi.org/10.3389/fvets.2019.00019
  • Kop-Bozbay, C., A. Akdag, H. Atan & N. Ocak, 2021. Response of broilers to supplementation of branched-chain amino acids blends with different valine contents in the starter period under summer conditions. Animal Bioscience, 34 (2): 295-305. https://doi.org/10.5713/ajas.19.0828
  • Kop‐Bozbay, C. & N. Ocak, 2020. Posthatch development in response to branched-chain amino acids blend supplementation in the diet for turkey poults subjected to early or delayed feeding. Journal of Animal and Plant Sciences-JAPS, 30: 1098-1105. https://doi.org/10.36899/JAPS.2020.5.0125
  • Kuhi, H. D., E. Kebreab & J. France, 2012. Application of the law of diminishing returns to partitioning metabolizable energy and crude protein intake between maintenance and growth in egg-type pullets. Journal of Applied Poultry Research, 21 (3): 540-547. https://doi.org/10.3382/japr.2011-00434
  • Lassaletta, L., F. Estellés, A.H. Beusen, L. Bouwman, S. Calvet, H.J. Van Grinsven et al., 2019. Future global pig production systems according to the Shared Socioeconomic Pathways. Science of the Total Environment, 665 (1): 739-751. https://doi.org/10.1016/j.scitotenv.2019.02.079
  • Leinonen, I. & I., Kyriazakis, 2016. How can we improve the environmental sustainability of poultry production?. Proceedings of the Nutrition Society, 75 (3): 265-273. Htpps://doi.org/10.1017/S002966511000094
  • Liu, S., J.Q. Ni, A.J. Heber & W.Z. Liang, 2019. Modeling of dynamic ammonia concentrations in two commercial layer hen houses. Journal of Environmental Informatics, 33 (1): 56-67. Htpps://doi.org/10.3808/jei.201700360
  • Lusk, J. L., 2013. Role of technology in the global economic importance and viability of animal protein production. Animal Frontiers, 3 (3): 20-27. https://doi.org/10.2527/af.2013-0020
  • Mackenzie, S.G., I. Leinonen, N. Ferguson & I. Kyriazakis, 2016. Towards a methodology to formulate sustainable diets for livestock: accounting for environmental impact in diet formulation. British Journal of Nutrition, 115 (10): 1860-1874. https://doi.org/10.1017/S0007114560000763
  • Malomo, G.A., A.S. Madugu & S.A. Bolu, 2018. “Sustainable animal manure management strategies and practices. Agricultural Waste and Residues, 119- 137”. Chapters, In: Agricultural Waste and Residues (Ed. A. Aladjadjiyan). IntechOpen. https://dx.doi.org/10.5772/intechopen.78645
  • Malomo, G.A., S.A. Bolu, S.G. Olutade & Z.G. Suleiman, 2013. Effects of feeding low protein diets with methionine and lysine supplementation on the performance and nitrogen economy of broilers. Research Opinions in Animal and Veterinary Sciences, 3 (9): 330-334.
  • Mateos, G.G., E. Jiménez-Moreno, M.P. Serrano & R.P. Lázaro, 2012. Poultry response to high levels of dietary fiber sources varying in physical and chemical characteristics. Journal of Applied Poultry Research, 21 (1): 156-174. https://doi.org/10.3382/japr.2011-00477
  • Mead, G.C., 2002. Factors affecting intestinal colonisation of poultry by Campylobacter and role of microflora in control. World's Poultry Science Journal, 58 (2): 169-178. Htpps://doi.org/10.1079/wps20020016
  • Méda, B., P. Belloir, A. Narcy & A. Wilfart, 2019. Improving environmental sustainability of poultry production using innovative feeding strategies. Proceedings of the 22nd European symposium on poultry nutrition, 10–13 June 2019, Gdańsk, Poland (2019), 82-92 pp.
  • MITECO, 2019. Sistema Español de Inventario de Emisiones. Inventario 1990-2017. (Erişim adresi: https://www.miteco.gob.es/es/calidad-y-eva-luacion-ambiental/temas/sistema-espanol-de-inventario-sei-/) (Erişim tarihi: 20 Mayıs 2019).
  • Mohammed, A.B., S.A. Mohammed, A.F. Ayanlere & O.K. Afolabi, 2013. Evaluation of Poultry Egg Marketing in Kuje Area Council Municipality of FCT Abuja, Nigeria. Greener Journal of Agricultural Sciences, 3 (1): 068-072. https://doi.org/10.15580/GJAS.2013.1.101112111
  • Mohebodini, H., V. Jazi, R. Bakhshalinejad, A. Shabani & A. Ashayerizadeh, 2018. Effect of dietary resveratrol supplementation on growth performance, immune response, serum biochemical indices, cecal microflora, and intestinal morphology of broiler chickens challenged with Escherichia coli. Livestock Science, 229: 3-21 https://doi.org/10.1016/j.livsci.2019.09.008
  • Munasinghe, M. & W. Shearer, 1995. Defining and measuring sustainability: the biogeophysical foundations (No. PB-95-258885/XAB). International Bank for Reconstruction and Development, Washington, DC (United States).
  • Munyaka, P.M., N.K. Nandha, E. Kiarie, C.M. Nyachoti & E. Khafipour, 2016. Impact of combined β-glucanase and xylanase enzymes on growth performance, nutrients utilization and gut microbiota in broiler chickens fed corn or wheat-based diets. Poultry Science, 95 (3): 528-540. https://doi.org/10.3382/ps/pev333
  • Naik, P.K., B.K. Swain & N.P. Singh, 2015. Production and utilisation of hydroponics fodder. Indian Journal of Animal Nutrition, 32 (1): 1-9.
  • National Research Council, (NRC), 2003. Air emissions from animal feeding operations: Current knowledge, future needs. http//www.nap.edu/catalog/10586.html
  • Niderkorn, V. & A. Jayanegara, 2021.Opportunities offered by plant bioactive compounds to improve silage quality, animal health and product quality for sustainable ruminant production: A Review. Agronomy, 11 (1): 86. https://doi.org/10.3390/agronomy11010086
  • Ocak, N. & Sungu, M., 2009. Growth and egg production of layer pullets can be affected by the method of supplying energy and protein sources. Journal of the Science of Food and Agriculture, 89 (11): 1963-1968. https://doi.org/10.1002/jsfa.3684
  • Olukomaiya, O., C. Fernando, R. Mereddy, X. Li & Y. Sultanbawa, 2019. Solid-state fermented plant protein sources in the diets of broiler chickens: A review. Animal Nutrition, 5 (4): 319-330. https://doi.org/10.1016/j.aninu.2019.05.005
  • Ospina-Rojas I.C., A.E. Murakami, C.R.A. Duarte, G.R. Nascimento, E.R.M. Garcia, M.I. Sakamoto et al., 2017. Leucine and valine supplementation of low-protein diets for broiler chickens from 21 to 42 days of age. Poultry Science, 96: 914-22. https://doi.org/10.3382/ps/pew319
  • Ospina-Rojas I.C., A.E. Murakami, C.R.A. Duarte, P.C. Pozza, R.M. Rossi & E. Gasparino, 2019. Performance, diameter of muscle fibers, and gene expression of mechanistic target of rapamycin in pectoralis major muscle of broilers supplemented with leucine and valine. Canadian Journal of Animal Science, 99: 168-78. https:// doi.org/10.1139/cjas-2018-0020
  • Ospina-Rojas, I.C., A.E. Murakami, C. Eyng, R.V. Nunes, C.R.A. Duarte & M.D. Vargas, 2012. Commercially available amino acid supplementation of low-protein diets for broiler chickens with different ratios of digestible glycine+ serine: lysine. Poultry Science, 91 (12): 3148-3155. https://doi.org/10.3382/ps.2012-02470
  • Owusu-Asiedu, A.J.F.J., J.F. Patience, B. Laarveld, A.G. Van Kessel, P.H. Simmins & R.T. Zijlstra, 2006. Effects of guar gum and cellulose on digesta passage rate, ileal microbial populations, energy and protein digestibility, and performance of grower pigs. Journal of animal science, 84 (4): 843-852. https://doi.org/10.2527/2006.844843x
  • Pal, P.U.C., 1999. Probiotics benefits. Poultry International, 38 (12): 40-42.
  • Pomar, C. & A. Remus, 2019. Precision pig feeding: a breakthrough toward sustainability. Animal Frontiers, 9 (2): 52-59. https://doi.org/10.1093/af/vfz006
  • Roberts, S. A., H. Xin, B.J. Kerr, J.R. Russell & K. Bregendahl, 2007. Effects of dietary fiber and reduced crude protein on ammonia emission from laying-hen manure. Poultry Science, 86 (8): 1625-1632. https://doi.org/10.1093/ps/86.8.1625
  • Rojas, O. J. & H.H. Stein, 2017. Processing of ingredients and diets and effects on nutritional value for pigs. Journal of animal science and biotechnology, 8 (1): 1-13. https:/doi.org/10.1186/s40104-017-0177-1
  • Sadeghi, A., M. Toghyani & A. Gheisari, 2015. Effect of various fiber types and choice feeding of fiber on performance, gut development, humoral immunity, and fiber preference in broiler chicks. Poultry Science, 94 (11): 2734-2743. https://doi.org/10.3382/ps/pev292
  • Sajeev, E.P.M., B. Amon, C. Ammon, W. Zollitsch & W. Winiwarter, 2018. Evaluating the potential of dietary crude protein manipulation in reducing ammonia emissions from cattle and pig manure: A meta-analysis. Nutrient cycling in agroecosystems, 110 (1): 161-175. https://doi.org/10.1007/s10705-017-9893-3
  • Sans, P. & P. Combris, 2015. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat science, 109: 106-111. https://doi.org/10.1016/j.meatsci.2015.05.012
  • Selle, P.H., P.V. Chrystal & S.Y. Liu, 2020. The cost of deamination in reduced-crude protein broiler diets. In Process Australia Poultry Science Symptom 31: 63-66.
  • Shi, H., E. Yang, Y. Li, X. Chen & J. Zhang, 2021. Effect of Solid-State Fermentation on Nutritional Quality of Leaf Flour of the Drumstick Tree (Moringa oleifera Lam.). Frontiers in Bioengineering and Biotechnology, 9 (2021): 267. https://doi.org/10.3389/fbioe.2021.626628
  • Tallentire, C.W., S.G. Mackenzie & I. Kyriazakis, 2017. Environmental impact trade-offs in diet formulation for broiler production systems in the UK and USA. Agricultural Systems, 154 (5): 145-156. https://doi.org/10.1016/j.agsy.2017.03.018
  • Teenstra, E.D., F.E. de Buisonjé, A. Ndambi & D. Pelster, 2015. Manure Management in the (Sub-) Tropics: training manual for extension workers (No. 919). Wageningen UR Livestock Research.
  • Tejeda, O. & W. Kim, 2021. Role of dietary fiber in poultry nutrition. Animals, 11 (2): 461. https://doi.org/10.3390/ani11020461
  • Thornton, P.K., 2010. Livestock production: recent trends, future prospects. Philosophical Transactions of the Royal Society B: Biological Sciences, 365 (1554): 2853-2867. https://doi.org/10.1098/rstb.2010.0134
  • UN (United Nations), 2019. Global Sustainable Development Report: The Future is Now: Science for Achieving Sustainable Development. New York: United Nations.
  • UNESCO, 2017. Division for Inclusion, Peace and Sustainable Development, Education Sector. Education for sustainable developmen goals; Learning objectives. (Erişim adresi: https://unesdoc.unesco.org/ark:/48223/pf0000247444)
  • Vukmirović, D., A. Fišteš, J. Lević, R. Čolović, D. Rakić, T. Brlek et al., 2017. Possibilities for preservation of coarse particles in pelleting process to improve feed quality characteristics. Journal of animal physiology and animal nutrition, 101 (5): 857-867. https://doi.org/10.1111/jpn.12489
  • WCED, 1987. World commission on environment and development. Our common future, 17 (1): 1-91.
  • Wu-Haan, W., W. Powers, R. Angel & T.J. Applegate, 2010. The use of distillers dried grains plus solubles as a feed ingredient on air emissions and performance from laying hens. Poultry science, 89 (7): 1355-1359. https://doi.org/10.3382/ps.2009-00471
  • Xu, Y., 2014. Interaction of dietary coarse corn with litter conditions on broiler live performance and gastrointestinal tract function. North Carolina State University.
  • Yadav, S., & R. Jha, 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of animal science and biotechnology, 10 (1):1-11. https://doi.org/10.1186/s40104-018-0310-9
  • Ziegler, F., K. Nilsson, N. Levermann, M. Dorph, B. Lyberth, A.A. Jessen et al., 2021. Local Seal or Imported Meat? Sustainability Evaluation of Food Choices in Greenland, Based on Life Cycle Assessment. Foods, 10(6), 1194.
Toplam 82 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat, Veterinerlik ve Gıda Bilimleri
Bölüm Derleme
Yazarlar

Figen Kırkpınar 0000-0002-2018-755X

Helin Atan 0000-0003-3574-2891

Erken Görünüm Tarihi 29 Aralık 2022
Yayımlanma Tarihi 31 Aralık 2022
Gönderilme Tarihi 31 Mart 2022
Kabul Tarihi 13 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 59 Sayı: 4

Kaynak Göster

APA Kırkpınar, F., & Atan, H. (2022). Kanatlı hayvanların beslenmesinde sürdürülebilirlik stratejileri. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(4), 731-742. https://doi.org/10.20289/zfdergi.1096687

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.