Sıvı vermikompost ve mikrobiyal gübre uygulamalarının toprağın bazı kimyasal ve biyolojik özellikleri ile marul bitkisinin (Lactuca sativa L.) verimi üzerine etkileri
Yıl 2023,
Cilt: 60 Sayı: 2 - Ege Üniversitesi Ziraat Fakültesi Dergisi Cilt: 60 Sayı: 2, 331 - 342, 05.07.2023
Revna Ergün Uzunoğulları
,
Nur Okur
Öz
Amaç: Bitki gelişimini uyaran rizobakterileri (PGPR) içeren bir mikrobiyal gübre ile sıvı vermikompost ve kimyasal gübre uygulamalarının marul bitkisinin kök gelişimi, verimi ve bazı toprak özellikleri üzerine etkilerinin incelenmesi amaçlanmıştır.
Materyal ve Yöntem: Deneme konuları: 1) NPK%100, 2) Sıvı Vermikompost, 3) Mikrobiyal Gübre+ Sıvı Vermikompost 4) Mikrobiyal Gübre, 5) NPK (%50) + Sıvı Vermikompost, 6) NPK (%50) + Mikrobiyal Gübre, 7) NPK (%50) + Mikrobiyal Gübre+ Sıvı Vermikompost. Bitkilerin 10 hafta sonra hasatları yapılarak pazarlanabilir baş ağırlıkları ve kök gelişimleri belirlenmiş ve toprak örneklerinde bazı mikrobiyolojik ve kimyasal analizler yapılmıştır.
Araştırma Bulguları: Uygulamaların toprağın kimyasal (pH, toplam tuz, organik madde, toplam N, alınabilir P ve K) ve mikrobiyolojik özellikleri (toplam genel bakteri sayısı ve toprak solunumu) ile marul bitkisinin kök gelişimi, verimi ve azot alımı üzerine etkisi istatistiki anlamda önemli bulunmuştur.
Sonuç: Mikrobiyel gübre ve sıvı vermikompost ile kombine edilen kimyasal gübrelerde %50 azalmanın verimde bir kayba neden olmadığı ve bu uygulamaların kimyasal gübre uygulamasına oranla verimi yaklaşık %26 oranında artırdığı saptanmıştır.
Destekleyen Kurum
Ege Üniversitesi BAP Koordinatürlüğü
Proje Numarası
FYL-2019-20449
Teşekkür
FYL-2019-20449 no’lu proje sonuçlarının bir kısmını kapsayan bu çalışmanın yürütülmesinde verdiği destek için Ege Üniversitesi Bilimsel Araştırma Projeleri Koordinatürlüğü’ne teşekkür ederiz.
Kaynakça
- Belimov, A. A., V. Safronova, I. Sergeyeva, T.A. Egorova, T.N. Matveyeva, V. E. Tsyganov & V. V. Stepanok, 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47 (7): 642-652. https: //doi.org/10.1139/w01-062.
- Cattelan, A. J., P.G. Hartel & J.J. Fuhrmann, 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63 (6): 1670-1680. https: //doi.org/10.2136/sssaj1999.6361670x
- Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, J. Zhang, 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry. 39: 2971-2976. https: //doi.org/10.1016/j.soilbio.2007.05.031
- Citak, S. & S. Sonmez, 2011. Effects of chemical fertilizer and different organic manure application on soil pH, EC and organic matter content. Journal of Food, Agriculture and Environment, 9: 739-741.
- Çınar, V. M. & Ü.N.A.Y. Aydın, 2021. The effects of some biofertilizers on yield, chlorophyll index and sugar content in sugar beet (Beta vulgaris var. saccharifera L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 58 (2): 163-170. https: //doi.org/10.20289/zfdergi.714633
- Fallik, E., S. Sarig & Y. Okon. 1994. Morphology and physiology of plant roots associated with Azospirillum. In: Azospirillum/Plant Associations, (Ed. Y. Okon). CRC, Boca Raton, Fla. 275 pp.
- Fitriatin, B.N., R. Hindersah & P. Suryatmana, 2008. Aktivitas Enzim Fosfatase dan Ketersediaan Fosfat Tanah pada Sistem Tumpangsari Tanaman Pangan dan Jati (Tectona grandis L.f.) setelah Aplikasi Pupuk Hayati. Agrikultura, 19 (3): 161-166.
- Francioli, D., E. Schulz, G. Lentendu, T. Wubet, F. Buscot & T. Reitz, 2016. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 7: 1446. https: //doi.org/10.3389/fmicb.2016.01446
- Gutiérrez‐Mañero, F. J., B. Ramos‐Solano, A.N. Probanza, J. Mehouachi, R. Tadeo, & M. Talon, 2001. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111 (2): 206-211. https: //doi.org/10.1034/j.1399-3054.2001.1110211.x
- Hofman, J., L. Dusek, J. Klanova, J. Bezchlebova & I. Holoubek, 2004. Monitoring microbial biomass and respiration in different soils from Czech republic-a summary of results. Environment International, 30: 19-30. https: //doi.org/10.1016/S0160-4120 (03)00142-9
- Joergensen, R.G., P. Mäder & A. Fließbach, 2010. A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biology and Fertility of Soils, 46: 303-307. https: //doi.org/10.1007/s00374-009-0433-4
- Jones., J.R., B. Wolf & H.A. Mills, 1991. Plant Analysis Handbook. Micro Macro Publishing, IncKacar, B., 1972. Bitki ve Toprağın Kimyasal Analizleri. II. Bitki Analizleri, A.Ü. Ziraat Fak. Yayınları: 453, Ankara, 129 s.
- Kacar, B. & A. İnal, 2008. Bitki analizleri, Nobel Yayınevi, Yayın No: 1241, Ankara, 912 s.
- Kang, S. M., A. Adhikari, K.E. Lee, Y.G. Park, R. Shahzad & I.J. Lee, 2021. Gibberellin producing rhizobacteria Pseudomonas koreensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). Journal of Microbiology, Biotechnology and Food Sciences, 9 (2): 166-170. https: //doi.org/10.15414/jmbfs.2019.9.2.166-170
- Kohler, J., F. Caravaca, L. Carrasco & A. Roldan, 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use and Management, 22 (3): 298-304. https: //doi.org/10.1111/j.1475-2743.2006.00041.x
- Lazcano, C., M. Gómez-Brandón, P. Revilla & J. Domínguez, 2013. Shortterm effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fert. Soils, 49: 723-733. doi: 10.1007/s00374-012-0761-7
- Lee, S., C.S. Trịnh, W.J. Lee, C.Y. Jeong, H.A. Truong, N. Chung, C.S. Kang & H. Lee, 2020. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. Journal of Plant Research, 133 (2): 231-244. https: //doi.org/10.1007/s10265-019-01160-4
- Li, J., B. Zhao, X. Li, R. Jiang & S.H. Bing, 2008. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility. Agricultural Science in China, 7: 336-343. https: //doi.org/10.1016/S1671-2927 (08)60074-7
- Li, X. H., X.Z. Han, H.B. Li, C. Song, J. Yan & Y. Liang 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Canadian Journal of Soil Science, 92 (3): 419-428. https: //doi.org/10.4141/cjss2010-046
- MacCarthy, P. 2001. The principles of humic substances. Soil Science, 166 (11): 738-751.
- Mandic, L., D. Djuki´c, I. Beatovic, Z. Jovovic, M. Pesakovic & V. Stevovic, 2011. Effect of different fertilizers on the microbial activity and productivity of soil under potato cultivation. African Journal of Biotechnology. 10: 6954-6960. DOI: 10.5897/AJB11.947
- Mayak, S., T. Tirosh & B.R. Glick, 1999. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18 (2): 49-53. http: //dx.doi.org/10.1007/PL00007047
- Murugan, R. & S. Kumar, 2013. Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biology and Fertility of Soils, 49: 847-856. DOI 10.1007/s00374-013-0779-5
- Naeem, M., J. Iqbal & M. Bakhsh, 2006. Comparative study of inorganic fertilizers and organic manures on yield and yield components of mungbean (Vigna radiat L.). Journal of Agricultural and Social Sciences, 2: 227-229.
- Okon, Y. & Y. Kapulnik, 1986. Development and function of Azospirillum-inoculated roots. Plant Soil, 90: 3-16.
- Okon, Y., 1985. Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology, 3: 223-228. https: //doi.org/10.1016/0167-7799 (85)90012-5
- Özbay, N., A.R. Demirkıran & M. Ergun, 2015. Mikrobiyal gübre (Trichoderma harzianum, KUEN 1585) uygulamasının marulda çimlenme, gelişme ve verim üzerine etkisi. Doğu Karadeniz II. Organik Tarım Kongresi, 6-9 Ekim 2015, Rize.
- Rose, M. T., T. L., Phuong, D.K. Nhan, P.T. Cong, N.T. Hien & I.R. Kennedy, 2014. Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research. Agronomy for Sustainable Development, 34: 857-868. doi: 10.1007/ s13593-014-0210-0.
- Rostaminia, M., S.S. Habibi, B. Sani & A.R. Pazoki, 2020. Research Article Effect of three commercial bio-fertilizers prepared with Pseudomonas on yield and morphophysiological traits of lettuce (Lactuca sativa L.). Iran Agricultural Research, 39 (2): 99-107. https: //doi.org/10.22099/iar.2021.38685.1413
- Sarkar, D. & A. Rakshit, 2021. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains India. Scientia Horticulturae, 283: 110075. https: //doi.org/10.1016/j.scienta.2021.110075.
- Sayer, E. J., J.S. Powers & E.V.J. Tanner, 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoSOne, 2 (12): e1299. https: //doi.org/10.1371/journal.pone.0001299
- Shatilov, M. V., A.F. Razin & M.I. Ivanova, 2019. Analysis of the world lettuce market. In IOP Conference Series: Earth and Environmental Science 395 (1): 012053), IOP Publishing.
- Steenhoudt, O. & J. Vanderleyden. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. Microbiology Review, 24: 487-506. https: //doi.org/10.1111/j.1574-6976.2000.tb00552.x
- Sulzman, E. W., J.B. Brant, R.D. Bowden & K. Lajtha, 2005. Contribution of aboveground litter, belowground litter, and rhi-zosphere respiration to total soil CO₂ efflux in an old growth coniferous forest. Biogeochemistry, 73 (1): 231-256. DOI 10.1007/s10533-004-7314-6
- Tao, R. Y. Liang, S.A. Wakelin & G. Chu, 2015. Supplementing chemical fertilizer with an organic component increases soil biological function and quality. Applied Soil Ecology, 96: 42-51. https: //doi.org/10.1016/j.apsoil.2015.07.009
- Ullah, M. S., M.S. Islam, M.A. Islam & T. Haque, 2008. Effects of organic manures and chemical fertilizers on the yield of brinjal and soil properties. Journal of the Bangladesh Agricultural University, 6 (2): 271-276. DOI: 10.3329/jbau.v6i2.4821
- Widawati, S.R.I. & S. Suliasih, 2006. The population of phosphate solubilizing bacteria (PSB) from Cikaniki, Botol Mountain and Ciptarasa Area and the ability of PSB to solubilize insoluble P in solid Pikovskaya medium. Biodiversitas, Journal of Biological Diversity, 7 (2): 109-113. https: //doi.org/10.13057/biodiv/d070203
- Wu, Y., C. Zhao, J. Farmer & J. Sun, 2015. Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Scientia Horticulturae, 193: 114-120. doi: 10.1016/j.scienta.2015.06.039.
- Yadav, A.C., S.K. Sharma & B.R. Batra, 2002. Effect of sodic water, FYM and Gypsum on the soil, growth and yield of brinjal. Annals of Agriculture and Biological Research, 7 (1): 73-77.
- Ye, L., X. Zhao, E. Bao, J. Li, Z. Zou & K. Cao, 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10: 177. doi: 10.1038/s41598-019-56954-2.
- Zhang, Y. J., S.L. Guo, Q.F. Liu & J.S. Jiang, 2014. Influence of soil moisture on litter respiration in the semiarid loess plateau. PLoS One, 9 (12): e114558. doi: 10.1371/journal.pone. 0114558
- Zhao, J., J. Liu, H. Liang, J. Huang, Z. Chen, Y. Nie, Y., C. Wang & Y. Wang, 2018. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS One 13: e0192967. doi: 10.1371/journal.pone.0192967.
The effects of biofertilizer and liquid vermicompost on the chemical and biological properties of the soil and the yield of lettuce plant (Lactuca sativa L.)
Yıl 2023,
Cilt: 60 Sayı: 2 - Ege Üniversitesi Ziraat Fakültesi Dergisi Cilt: 60 Sayı: 2, 331 - 342, 05.07.2023
Revna Ergün Uzunoğulları
,
Nur Okur
Öz
Objective: It was aimed to examine the effects of a biofertilizer containing rhizobacteria promoting plant growth (PGPR), liquid vermicompost, and chemical fertilizer applications on root growth, yield of lettuce and some soil properties.
Material and Methods: The subjects: 1) NPK 100%, 2) Liquid Vermicompost, 3) Microbial Fertilizer+Liquid Vermicompost 4) Microbial Fertilizer, 5) NPK (50%)+ Liquid Vermicompost, 6) NPK (50%)+Microbial Fertilizer, 7) NPK (50%) Microbial Fertilizer+Liquid Vermicompost. After 10 weeks, the plants were harvested, marketable head weights and root growth were determined, and some microbiological and chemical properties of soils were determined.
Results: The chemical and microbiological properties of the soil and root growth, yield and N uptake of the lettuce plant significantly changed depending on the applications.
Conclusion: It was determined that 50% reduction in chemical fertilizers combined with microbial fertilizer and liquid vermicompost did not cause a loss in yield and that these applications increased the yield by approximately 26% compared to the application of chemical fertilizers.
Proje Numarası
FYL-2019-20449
Kaynakça
- Belimov, A. A., V. Safronova, I. Sergeyeva, T.A. Egorova, T.N. Matveyeva, V. E. Tsyganov & V. V. Stepanok, 2001. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Canadian Journal of Microbiology, 47 (7): 642-652. https: //doi.org/10.1139/w01-062.
- Cattelan, A. J., P.G. Hartel & J.J. Fuhrmann, 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Science Society of America Journal, 63 (6): 1670-1680. https: //doi.org/10.2136/sssaj1999.6361670x
- Chu, H., X. Lin, T. Fujii, S. Morimoto, K. Yagi, J. Hu, J. Zhang, 2007. Soil microbial biomass, dehydrogenase activity, bacterial community structure in response to long-term fertilizer management. Soil Biology & Biochemistry. 39: 2971-2976. https: //doi.org/10.1016/j.soilbio.2007.05.031
- Citak, S. & S. Sonmez, 2011. Effects of chemical fertilizer and different organic manure application on soil pH, EC and organic matter content. Journal of Food, Agriculture and Environment, 9: 739-741.
- Çınar, V. M. & Ü.N.A.Y. Aydın, 2021. The effects of some biofertilizers on yield, chlorophyll index and sugar content in sugar beet (Beta vulgaris var. saccharifera L.). Ege Üniversitesi Ziraat Fakültesi Dergisi, 58 (2): 163-170. https: //doi.org/10.20289/zfdergi.714633
- Fallik, E., S. Sarig & Y. Okon. 1994. Morphology and physiology of plant roots associated with Azospirillum. In: Azospirillum/Plant Associations, (Ed. Y. Okon). CRC, Boca Raton, Fla. 275 pp.
- Fitriatin, B.N., R. Hindersah & P. Suryatmana, 2008. Aktivitas Enzim Fosfatase dan Ketersediaan Fosfat Tanah pada Sistem Tumpangsari Tanaman Pangan dan Jati (Tectona grandis L.f.) setelah Aplikasi Pupuk Hayati. Agrikultura, 19 (3): 161-166.
- Francioli, D., E. Schulz, G. Lentendu, T. Wubet, F. Buscot & T. Reitz, 2016. Mineral vs. Organic Amendments: Microbial Community Structure, Activity and Abundance of Agriculturally Relevant Microbes Are Driven by Long-Term Fertilization Strategies. Frontiers in Microbiology, 7: 1446. https: //doi.org/10.3389/fmicb.2016.01446
- Gutiérrez‐Mañero, F. J., B. Ramos‐Solano, A.N. Probanza, J. Mehouachi, R. Tadeo, & M. Talon, 2001. The plant‐growth‐promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiologia Plantarum, 111 (2): 206-211. https: //doi.org/10.1034/j.1399-3054.2001.1110211.x
- Hofman, J., L. Dusek, J. Klanova, J. Bezchlebova & I. Holoubek, 2004. Monitoring microbial biomass and respiration in different soils from Czech republic-a summary of results. Environment International, 30: 19-30. https: //doi.org/10.1016/S0160-4120 (03)00142-9
- Joergensen, R.G., P. Mäder & A. Fließbach, 2010. A. Long-term effects of organic farming on fungal and bacterial residues in relation to microbial energy metabolism. Biology and Fertility of Soils, 46: 303-307. https: //doi.org/10.1007/s00374-009-0433-4
- Jones., J.R., B. Wolf & H.A. Mills, 1991. Plant Analysis Handbook. Micro Macro Publishing, IncKacar, B., 1972. Bitki ve Toprağın Kimyasal Analizleri. II. Bitki Analizleri, A.Ü. Ziraat Fak. Yayınları: 453, Ankara, 129 s.
- Kacar, B. & A. İnal, 2008. Bitki analizleri, Nobel Yayınevi, Yayın No: 1241, Ankara, 912 s.
- Kang, S. M., A. Adhikari, K.E. Lee, Y.G. Park, R. Shahzad & I.J. Lee, 2021. Gibberellin producing rhizobacteria Pseudomonas koreensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). Journal of Microbiology, Biotechnology and Food Sciences, 9 (2): 166-170. https: //doi.org/10.15414/jmbfs.2019.9.2.166-170
- Kohler, J., F. Caravaca, L. Carrasco & A. Roldan, 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use and Management, 22 (3): 298-304. https: //doi.org/10.1111/j.1475-2743.2006.00041.x
- Lazcano, C., M. Gómez-Brandón, P. Revilla & J. Domínguez, 2013. Shortterm effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fert. Soils, 49: 723-733. doi: 10.1007/s00374-012-0761-7
- Lee, S., C.S. Trịnh, W.J. Lee, C.Y. Jeong, H.A. Truong, N. Chung, C.S. Kang & H. Lee, 2020. Bacillus subtilis strain L1 promotes nitrate reductase activity in Arabidopsis and elicits enhanced growth performance in Arabidopsis, lettuce, and wheat. Journal of Plant Research, 133 (2): 231-244. https: //doi.org/10.1007/s10265-019-01160-4
- Li, J., B. Zhao, X. Li, R. Jiang & S.H. Bing, 2008. Effects of Long-Term Combined Application of Organic and Mineral Fertilizers on Microbial Biomass, Soil Enzyme Activities and Soil Fertility. Agricultural Science in China, 7: 336-343. https: //doi.org/10.1016/S1671-2927 (08)60074-7
- Li, X. H., X.Z. Han, H.B. Li, C. Song, J. Yan & Y. Liang 2012. Soil chemical and biological properties affected by 21-year application of composted manure with chemical fertilizers in a Chinese Mollisol. Canadian Journal of Soil Science, 92 (3): 419-428. https: //doi.org/10.4141/cjss2010-046
- MacCarthy, P. 2001. The principles of humic substances. Soil Science, 166 (11): 738-751.
- Mandic, L., D. Djuki´c, I. Beatovic, Z. Jovovic, M. Pesakovic & V. Stevovic, 2011. Effect of different fertilizers on the microbial activity and productivity of soil under potato cultivation. African Journal of Biotechnology. 10: 6954-6960. DOI: 10.5897/AJB11.947
- Mayak, S., T. Tirosh & B.R. Glick, 1999. Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. Journal of Plant Growth Regulation, 18 (2): 49-53. http: //dx.doi.org/10.1007/PL00007047
- Murugan, R. & S. Kumar, 2013. Influence of long-term fertilisation and crop rotation on changes in fungal and bacterial residues in a tropical rice-field soil. Biology and Fertility of Soils, 49: 847-856. DOI 10.1007/s00374-013-0779-5
- Naeem, M., J. Iqbal & M. Bakhsh, 2006. Comparative study of inorganic fertilizers and organic manures on yield and yield components of mungbean (Vigna radiat L.). Journal of Agricultural and Social Sciences, 2: 227-229.
- Okon, Y. & Y. Kapulnik, 1986. Development and function of Azospirillum-inoculated roots. Plant Soil, 90: 3-16.
- Okon, Y., 1985. Azospirillum as a potential inoculant for agriculture. Trends in Biotechnology, 3: 223-228. https: //doi.org/10.1016/0167-7799 (85)90012-5
- Özbay, N., A.R. Demirkıran & M. Ergun, 2015. Mikrobiyal gübre (Trichoderma harzianum, KUEN 1585) uygulamasının marulda çimlenme, gelişme ve verim üzerine etkisi. Doğu Karadeniz II. Organik Tarım Kongresi, 6-9 Ekim 2015, Rize.
- Rose, M. T., T. L., Phuong, D.K. Nhan, P.T. Cong, N.T. Hien & I.R. Kennedy, 2014. Up to 52% N fertilizer replaced by biofertilizer in lowland rice via farmer participatory research. Agronomy for Sustainable Development, 34: 857-868. doi: 10.1007/ s13593-014-0210-0.
- Rostaminia, M., S.S. Habibi, B. Sani & A.R. Pazoki, 2020. Research Article Effect of three commercial bio-fertilizers prepared with Pseudomonas on yield and morphophysiological traits of lettuce (Lactuca sativa L.). Iran Agricultural Research, 39 (2): 99-107. https: //doi.org/10.22099/iar.2021.38685.1413
- Sarkar, D. & A. Rakshit, 2021. Bio-priming in combination with mineral fertilizer improves nutritional quality and yield of red cabbage under Middle Gangetic Plains India. Scientia Horticulturae, 283: 110075. https: //doi.org/10.1016/j.scienta.2021.110075.
- Sayer, E. J., J.S. Powers & E.V.J. Tanner, 2007. Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere. PLoSOne, 2 (12): e1299. https: //doi.org/10.1371/journal.pone.0001299
- Shatilov, M. V., A.F. Razin & M.I. Ivanova, 2019. Analysis of the world lettuce market. In IOP Conference Series: Earth and Environmental Science 395 (1): 012053), IOP Publishing.
- Steenhoudt, O. & J. Vanderleyden. 2000. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. Microbiology Review, 24: 487-506. https: //doi.org/10.1111/j.1574-6976.2000.tb00552.x
- Sulzman, E. W., J.B. Brant, R.D. Bowden & K. Lajtha, 2005. Contribution of aboveground litter, belowground litter, and rhi-zosphere respiration to total soil CO₂ efflux in an old growth coniferous forest. Biogeochemistry, 73 (1): 231-256. DOI 10.1007/s10533-004-7314-6
- Tao, R. Y. Liang, S.A. Wakelin & G. Chu, 2015. Supplementing chemical fertilizer with an organic component increases soil biological function and quality. Applied Soil Ecology, 96: 42-51. https: //doi.org/10.1016/j.apsoil.2015.07.009
- Ullah, M. S., M.S. Islam, M.A. Islam & T. Haque, 2008. Effects of organic manures and chemical fertilizers on the yield of brinjal and soil properties. Journal of the Bangladesh Agricultural University, 6 (2): 271-276. DOI: 10.3329/jbau.v6i2.4821
- Widawati, S.R.I. & S. Suliasih, 2006. The population of phosphate solubilizing bacteria (PSB) from Cikaniki, Botol Mountain and Ciptarasa Area and the ability of PSB to solubilize insoluble P in solid Pikovskaya medium. Biodiversitas, Journal of Biological Diversity, 7 (2): 109-113. https: //doi.org/10.13057/biodiv/d070203
- Wu, Y., C. Zhao, J. Farmer & J. Sun, 2015. Effects of bio-organic fertilizer on pepper growth and Fusarium wilt biocontrol. Scientia Horticulturae, 193: 114-120. doi: 10.1016/j.scienta.2015.06.039.
- Yadav, A.C., S.K. Sharma & B.R. Batra, 2002. Effect of sodic water, FYM and Gypsum on the soil, growth and yield of brinjal. Annals of Agriculture and Biological Research, 7 (1): 73-77.
- Ye, L., X. Zhao, E. Bao, J. Li, Z. Zou & K. Cao, 2020. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Scientific Reports, 10: 177. doi: 10.1038/s41598-019-56954-2.
- Zhang, Y. J., S.L. Guo, Q.F. Liu & J.S. Jiang, 2014. Influence of soil moisture on litter respiration in the semiarid loess plateau. PLoS One, 9 (12): e114558. doi: 10.1371/journal.pone. 0114558
- Zhao, J., J. Liu, H. Liang, J. Huang, Z. Chen, Y. Nie, Y., C. Wang & Y. Wang, 2018. Manipulation of the rhizosphere microbial community through application of a new bio-organic fertilizer improves watermelon quality and health. PLoS One 13: e0192967. doi: 10.1371/journal.pone.0192967.