Derleme
BibTex RIS Kaynak Göster

Bahçe bitkilerinde önemli karakterlerle ilişkili moleküler belirteçlerin Küme Segregasyon Analizi (BSA) ile belirlenmesi

Yıl 2025, Cilt: 62 Sayı: 1, 133 - 149, 14.03.2025
https://doi.org/10.20289/zfdergi.1426043

Öz

Küme Segregasyon Analizi (BSA, Bulked Segregant Analysis), bir popülasyonda sadece belirli bir özelliğin birbirine zıt en üst ve en alt iki aşırı ucundaki bireylerin arasındaki farklılığı ortaya çıkaran güçlü bir yöntemdir. Hem üst hem de alt kümeyi oluşturmak için eşit sayıda birey kullanılır. Bir özellik için karşılaştırılan iki küme ve iki ebeveyn, onları birbirinden ayıran belirteçleri belirlemek için analiz edilir. En üst ve en alt uçtaki bireylerin her birinden DNA çıkartılır. Üst uçtaki bireylerin her birinden eşit miktarda DNA bir deney tüpünde ve alt uçtaki bireylerin her birinden eşit miktarda DNA başka bir deney tüpünde olmak üzere iki ayrı deney tüpünde karıştırılır. İki kümenin DNA örneği moleküler belirteçler yardımıyla karşılaştırılır. Her bir kümedeki bireyler, sadece ilgilenilen gen bakımından özdeştir. BSA yöntemi hem kalitatif (tek genli) hem de çok genli (kantitatif) kalıtım sergileyen özellikler konusunda başarılı sonuçlar vermektedir. Dominant (RAPD, ISSR, AFLP, SRAP) ve kodominant (RFLP, SSR, SCAR, CAPS, SNP, QTL-Seq) belirteç sistemleri kullanılabilmektedir. Bu derlemenin amacı, BSA yönteminin oluşturulma stratejisini tanıtmak ve bahçe bitkilerindeki önemli karakterler ile ilişkili moleküler belirteçlerin belirlenmesindeki kullanımını ortaya koymaktır.

Etik Beyan

Derginize sunulan derleme makale taslağı etik kurul belgesi gerektirmemektedir.

Kaynakça

  • Ağır, A.R. & Z. Dalkılıç, 2022. Identification of sex in Ficus carica with RAPD, SRAP and SCAR markers. In: Ficus carica: Production, Cultivation and Uses (Ed. Z. Dalkılıç). Nova Science Publishers, Inc., Hauppauge, NY, USA, 246 pp. https://doi.org/10.52305/TPCS5872.
  • Aydın, A. & H. Başak, 2023. Farklı melez kombinasyonları ile elde edilmiş su kabağı (Lagenaria siceraria) melezlerinin su kültürü koşullarında tuz stresine morfolojik ve fizyolojik olarak tolerans düzeylerinin belirlenmesi. Ege Üniv. Ziraat Fak. Derg., 60 (4): 665-678. https://doi.org/10.20289/zfdergi.1284786.
  • Best, N.B. & P. McSteen, 2022. Mapping maize mutants using bulked‐segregant analysis and next‐generation sequencing. Current Protocols, 2: e591. https://doi.org/10.1002/cpz1.591.
  • Best, N.B., C. Addo-Quaye, B.-S. Kim, C.F. Weil, B. Schulz, G. Johal & B.P. Dilkes, 2021. Mutation of the nuclear pore complex component, aladin1, disrupts asymmetric cell division in Zea mays (maize). G3 Genes, Genomes, Genetics, 11 (7): jkab106. https://doi.org/10.1093/g3journal/jkab106.
  • Branham, S.E. & M.W. Farnham, 2019. Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica, 215: 34. https://doi.org/10.1007/s10681-018-2334-9.
  • Cardeña, R., G.R. Ashburner & C. Oropeza, 2003. Identifcation of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci. Hortic., 98 (3): 257-263. https://doi.org/10.1016/S0304-4238(02)00162-0.
  • Cekic, C., N.H. Battey & M.J. Wilkinson, 2001. The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria vesca as a model. Theor. Appl. Genet., 103: 540-546. https://doi.org/10.1007/PL00002907.
  • Chagué, V., J.C. Mercier, M. Guénard, A. Courcel & F. Vedel. 1996. Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor. Appl. Genet., 92: 1045-1051. https://doi.org/10.1007/BF00224047.
  • Chungwongse, J., C. Chungwongse, L. Black & P. Hanson, 2002. Molecular mapping of Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology, 77 (3): 281-286. https://doi.org/10.1080/14620316.2002.11511493.
  • Cuenca, J, P. Aleza, A. Vicent, D. Brunel, P. Ollitrault & L. Navarro, 2013. Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria Brown Spot resistance in citrus reveal clusters of resistance genes. PLoS ONE, 8 (10): e76755. https//doi.org/10.1371/journal.pone.0076755.
  • Çekiç, Ç., 2015. Bulk segregant analysis technique to target seasonality and runnering loci in diploid strawberries. Journal of New Results in Science, 9: 92-98. http: //jnrs.gop.edu.tr.
  • da Silva, M.P., A.Z. Zaccaron, B.H. Bluhm, J.C. Rupe, L. Wood, L.A. Mozzoni, R.E. Mason, S. Yingling & A. Pereira, 2020. Bulked segregant analysis using next-generation sequencing for identification of genetic loci for charcoal rot resistance in soybean. Physiol. Mol. Plant Pathol., 109: 101440. https://doi.org/10.1016/j.pmpp.2019.101440.
  • Dakouri, A., X. Zhang, G. Peng, K.C. Falk, B.D. Gossen, S.E. Strelkov & F. Yu, 2018. Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Sci. Rep., 8: 17657. https://doi.org/10.1038/s41598-018-36187-5.
  • Dalkilic, Z. 1999. Identification and Mapping of genes for Alternaria and Phytophthora Disease Resistance in Citrus Hybrids. University of Florida (Unpublished) Ph. D. Dissertation, Gainesville FL, USA, 107 pp.
  • Dalkilic, Z., L.W. Timmer & F.G. Gmitter, Jr, 2005. Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J. Amer. Soc. Hort. Sci., 130 (2): 191-195. https://doi.org/10.21273/JASHS.130.2.191. de la Fuente Cantó, C. & Y. Vigouroux, 2022. Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches. BMC Genomics, 23: 490. https://doi.org/10.1186/s12864-022-08718-y.
  • Deol, J.K., S.P. Sharma, R. Rani, A. Kalia, P. Chhuneja & N.K. Sarao, 2022. Inheritance analysis and identification of SSR markers associated with fusarium wilt resistance in melon. The Journal of Horticultural Science and Biotechnology, 97 (1): 66-74. https://doi.org/10.1080/14620316.2021.1948360.
  • Dou, J., S. Zhao, X. Lu, N. He, L. Zhang, A. Ali, H. Kuang & W. Liu, 2018. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor. Appl. Genet., 131 (4): 947-958. https://doi.org/10.1007/s00122-018-3050-5.
  • Durham, R.E. & S.S. Korban, 1994. Evidence of gene introgression in apple using RAPD markers. Euphytica, 79: 109-114.
  • Ekbiç, E. K. Abak, S. Büyükalaca & M.A. Yılmaz, 1999. Biberlerde patates Y Virüsü’ne (PVY) dayanıklılık özelliği için RAPD Markır’larının araştırılması. Türkiye III. Ulusal Bahçe Bitkileri Kongresi, Ankara, pp.459-463.
  • Gebretsadik, K., W. Chen, Y. Duan, Y. Sun, Y. He, Q. Liao, C. Wang & K. Bo, 2024. Map-based cloning reveals Cpgp gene encoding an APRR2 protein to regulate the green fruit peel formation in Cucurbita pepo. Mol. Breed., 44: 53. https://doi.org/10.1007/s11032-024-01492-7.
  • Giovannoni, J.J., R.A. Wing, M.W. Ganal & S.D. Tanksley, 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 19 (23): 6553-6568.
  • Huo, H, I.M. Henry, E.R. Coppoolse, M. Verhoef-Post, J.W. Schut, H. de Rooij, A. Vogelaar, R.V.L. Joosen, L. Woudenberg, L. Comai & K.J. Bradford, 2016. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing. The Plant Journal, 88: 345-350. https://doi.org/10.1111/tpj.13267.
  • Ikten, H., O. Gulsen, N. Mutlu, I. Polat & U. Aksoy, 2023. Genetic diversity, population structure, and asssociation analysis of female and male fig genotypes (Ficus carica L.). Erwerbs-Obstbau, 65: 1603-1616. https://doi.org/10.1007/s10341-023-00844-5.
  • Illa-Berenguer, E., J. Van Houten, Z. Huang & E. van der Knaap, 2015. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor. Appl. Genet., 128: 1329-1342. https://doi.org/10.1007/s00122-015-2509-x.
  • Itoh, M., T. Segawa, M. Tamiru, A. Abe, S. Sakamoto, A. Uemura, K. Oikawa, H. Kutsuzawa, H. Koga, T. Imamura, R. Terauchi & H. Takagi, 2019. Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa. Theor. Appl. Genet., 132: 2913-2925. https://doi.org/10.1007/s00122-019-03396-z.
  • Kabaş Demirelli, A., 2008. Domateste Fusarium oxysporum f.sp. radicis-lycopersici'ye karşı dayanıklılık için moleküler işaretleyicilerin belirlenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı (Basılmamış) Doktora Tezi, İzmir, 128 s.
  • Kaya, D. & Z. Dalkılıç, 2021. Determination of a sex-related RAPD marker in carob (Ceratonia siliqua L.). Genetica, 53 (2): 575-582. https://doi.org/10.2298/GENSR2102575K.
  • Kim, S., C.-W. Kim, M. Park & D. Choi, 2015. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor. Appl. Genet., 128: 2289-2299. https://doi.org/ 10.1007/s00122-015-2584-z.
  • Klein, H. & Y. Xiao, P.A. Conklin, R. Govindarajulu, J.A. Kelly, M.J. Scanlon, C.J. Whipple & M. Bartlett, 2018. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3-Genes Genomes Genetics, 8 (11): 3583-3592. https://doi.org/10.1534/g3.118.200499.
  • Li, Z. & Y. Xu, 2022. Bulk segregation analysis in the NGS era: a review of its teenage years. Plant Journal, 109: 1355-1374. https://doi.org/10.1111/tpj.15646.
  • Liang, T., W. Chi, L. Huang, M. Qu, S. Zhang, Z.-Q. Chen, Z.-J. Chen, D. Tian, Y. Gui, X. Chen, Z. Wang, W. Tang & S. Chen, 2020. Bulked segregant analysis coupled with whole-genome sequencing (BSA-Seq) mapping identifies a novel pi21 haplotype conferring basal resistance to rice blast disease. Int. J. Mol. Sci., 21: 2162. https://doi.org/10.3390/ijms21062162.
  • Lu, H., T. Lin, J. Klein, S. Wang, J. Qi, Q. Zhou, J. Sun, Z. Zhang, Y. Wenig &·S. Huang, 2014. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor. Appl. Genet. 127: 1491–1499. htps: //doi.org/10.1007/s00122-014-2313-z.
  • Majeed, A., P. Johar, A. Raina, R.K. Salgotra, X. Feng & J.A. Bhat, 2022. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Frontiers in Genetics, 13: 94450. https;//doi.org/10.3389/fgene.2022.944501.
  • Meng, G., G. Zhu, W. Fang, C. Chen, X. Wang, L. Wang & K. Cao, 2019. Identification of loci for single/double flower trait by combining genome-wide association analysis and bulked segregant analysis in peach (Prunus persica). Plant Breeding, 138: 360-367. https://doi.org/10.1111/pbr.12673.
  • Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9828-9832.
  • Mutlu, N., A. Demirelli, H. Ilbi & C. Ikten, 2015. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor. Appl. Genet., 128: 1791-1798. https://doi.org/10.1007/s00122-015-2547-4.
  • Mutlu, N., F.H. Boyacı, M. Göçmen & K. Abak, 2008. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor. Appl. Genet., 117: 1303-1312. https://doi.org/10.1007/s00122-008-0864-6.
  • Pierce, B. A., 2021. Genetics Essentials: Concepts and Connections. 5th Ed. W. H. Freeman and Company, New York, NY, 2106 pp.
  • Pradhan, D. D. Mathew, S. K. Mathew & P. A. Nazeem, 2018 Identifying the markers and tagging a leucine-rich repeat receptor-like kinase gene for resistance to anthracnose disease in vegetable cowpea [Vigna unguiculata (L.) Walp.], The Journal of Horticultural Science and Biotechnology, 93 (3): 225-231, https://doi.org/10.1080/14620316.2017.1362962.
  • Quarrie, S.A., V. Lazić-Jančić, Dragan Kovačević, A. Steed & S. Pekić, 1999. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany, 50 (337): 1299-1306. https://doi.org/10.1093/jxb/50.337.1299.
  • Sahoo, J., R. Mishra & R.K. Joshi, 2024. Bulked Segregant RNA Sequencing (BSR-Seq) combined with SNP genotyping towards mapping and characterization of a purple blotch resistance gene in onion (Allium cepa L.). Plant Mol Biol Rep., (ön izleme). https://doi.org/10.1007/s11105-024-01466-1.
  • Shen, F., L. Bianco, B. Wu, Z. Tian, Y. Wang, T. Wu, X. Xu, Z. Han, R. Velasco, P. Fontana & X. Zhang, 2022. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. Journal of Advanced Research, 42: 149-162. https://doi.org/10.1016/j.jare.2022.03.013.
  • Shen, F., Z. Huang, B. Zhang, Y. Wang, X. Zhang, T. Wu, X. Xu, X. Zhang & Z. Han, 2019. Mapping gene markers for apple fruit ring rot disease resistance using a multi-omics approach. G3, 9: 1663-1678. https://doi.org/10.1534/g3.119.400167.
  • Singh, G., M. Pathak, D. Pathak & N.K. Sarao, 2023. Identification of SSR markers through bulk segregant analysis and inheritance of resistance to yellow vein mosaic disease in okra (Abelmoschus esculentus L. Moench). Virus Dis., 34: 498-503. https://doi.org/10.1007/s13337-023-00844-9.
  • Singh, M., S.P. Sharma, N.K. Sarao, S. Kaur & P. Chhuneja, 2020. Molecular mapping of nuclear male-sterility gene ms-1 in muskmelon (Cucumis melo L.), The Journal of Horticultural Science and Biotechnology, 95(2): 162-168. https://doi.org/10.1080/14620316.2019.1652119.
  • Singh, R. K., N. Rai, J. M. Lima, M. Singh, S. N. Singh & S. Kumar, 2015. Genetic and molecular characterisations of Tomato leaf curl virus resistance in tomato (Solanum lycopersicum L.). The Journal of Horticultural Science and Biotechnology, 90 (5): 503-510. https://doi.org/10.1080/14620316.2015.11668706.
  • Song, J., Z. Li, Z. Li, Y. Guo & L.J. Qiu, 2017. Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Front. Plant Sci., 8: 919. https://doi.org/10.3389/fpls.2017.00919.
  • Song, Z., J. Zhong, J. Dong, F. Hu, B. Zhang, J. Cheng & K. Hu, 2022. Mapping immature fruit colour-related genes via bulked segregant analysis combined with whole-genome re-sequencing in pepper (Capsicum annuum). Plant Breeding, 141 (2): 277-285. https://doi.org/10.1111/pbr.12997.
  • Sreenivasa, V., S.K. Lal, P.K. Babu, H.K.M. Swamy, R.R. Yadav, A. Talukdar & D.R. Rathod, 2020. Inheritance and mapping of drought tolerance in soybean at seedling stage using bulked segregant analysis. NIAB Plant Genetic Resources: Characterization and Utilization: 1-8. https://doi.org/10.1017/S1479262120000052.
  • Suematsu, K. & M. Tanaka, 2024. Mapping of a major locus involved in shoot growth habit in hexaploid sweetpotato using bulked-segregant analysis. Euphytica, 220: 48. https://doi.org/10.1007/s10681-024-03308-3.
  • Şimşek Uçkun, M. & Z. Dalkılıç, 2022. Nar (Punica granatum L.)’da bitki boyu ile ilişkili bir RAPD belirteci. ADÜ Ziraat Derg., 19 (2): 199-205. https://doi.org/10.25308/aduziraat.1096352.
  • Teoman, S., M. Ipek, U. Erturk, N. Tangu, E. Durgut, E. Barut, S. Ercisli & A. Ipek, 2017. Assessment of genetic relationship among male and female fig genotypes using simple sequence repeat (SSR) markers. Not. Bot. Horti. Agrobot. Cluj Napoca, 45: 172-178. https://doi.org/10.15835/nbha45110756.
  • Torrance, L., G.H. Cowan, K. McLean, S. MacFarlane, A.N. Al-Abedy, M. Armstrong, T.-Y. Lim, I. Hein & G.J. Bryan, 2020. Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja. Theor. Appl. Genet., 133: 967-980. https://doi.org/10.1007/s00122-019-03521-y.
  • Vardar-Kanlıtepe, Ç., S. Aras & D. Cansaran-Duman, 2010. Bitki ıslahında moleküler belirteçlerin kullanımı ve gen aktarımı. Türk Hijyen ve Deneysel Biyoloji Dergisi, 67 (1): 33-43.
  • Wallace, J. G., E. Rodgers-Melnick & E. S. Buckler, 2018. On the road to Breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet., 52: 421-444. https://doi.org/10.1146/annurev-genet-120116-024846.
  • Wang, C. H., W. Li, Y. K. Tian, D. L. Hou & M. D. Bai, 2016. Development of molecular markers for genetic and physical mapping of the PcDw locus in pear (Pyrus communis L.). The Journal of Horticultural Science and Biotechnology, 91 (3): 299-307. http: //dx.doi.org/10.1080/14620316.2016.1155319.
  • Wang, J.-Y., J.-D. Chen, S.-L. Wang, L. Chen, C.-L. Ma & M.-Z. Yao, 2020. Repressed gene expression of photosynthetic antenna proteins associated with yellow leaf variation as revealed by bulked segregant RNA-seq in tea plant Camellia sinensis. Journal of Agricultural and Food Chemistry, 68, 8068-8079. https://doi.org/10.1021/acs.jafc.0c01883.
  • Wang, X., L. Han, J. Li, X. Shang, Q. Liu, L. Li & H. Zhang, 2023. Next-generation bulked segregant analysis for Breeding 4.0. Cell Reports, 42 (9): 113039. https://doi.org/10.1016/j.celrep.2023.113039.
  • Yazıcı, K., B. Gönülkırmaz & M. Şahin Çevik, 2023. Development of molecular marker linked to seed hardness in pomegranate using bulked segregant analysis. Life, 13: 1123. https://doi.org/10.3390/life13051123.
  • Zhang, J. & D.R. Panthee, 2020. PyBSASeq: a simple and effective algorithm for bulked segregant analysis with whole genome sequencing data. BMC Bioinformatics, 21: 99. https://doi.org/10.1186/s12859-020-3435-8.
  • Zhang, T., J. Liu, S. Liu, Z. Ding, F. Luan & P. Gao, 2019. Bulked-segregant analysis identified a putative region related to short internode length in melon. HortScience, 54 (8): 1293-1298. https://doi.org/10.21273/HORTSCI14052-19.
  • Zou, C., P. Wang & Y. Xu, 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J., 1941-1955. https://doi.org/10.1111/pbi.12559.

Determination of molecular markers reated with important characteristics using Bulked Segregant Analysis (BSA) in horticultural plants

Yıl 2025, Cilt: 62 Sayı: 1, 133 - 149, 14.03.2025
https://doi.org/10.20289/zfdergi.1426043

Öz

Bulked Segregant Analysis (BSA) is a powerful method reveals only the differences between individuals opposite to each other for a particular trait at the top and bottom two extremes of a population. Equal number of individuals are used to make up both the top and bottom cluster (bulk). The two bulks and the two parents compared for a trait are analyzed to identify the markers that distinguish them. DNA from each individual at both ends are extracted separately. Equal amounts of DNA from the individuals located at the top and bottom extreme are mixed in separate test tubes. The DNA samples from these two bulks are compared using molecular markers. Individuals in each bulk are identical only for the gene of interest. The BSA method gives successful results for traits exhibiting both qualitative (monogenic) and quantitative (multigenic) inheritance. Dominant (RAPD, ISSR, AFLP, SRAP) and codominant (RFLP, SSR, SCAR, CAPS, SNP, QTL-Seq) marker systems can be used. The objective of this review is to introduce the creation strategy of the BSA method and to reveal its functioning in determining important characters and comprehensive markers in horticultural plants.

Kaynakça

  • Ağır, A.R. & Z. Dalkılıç, 2022. Identification of sex in Ficus carica with RAPD, SRAP and SCAR markers. In: Ficus carica: Production, Cultivation and Uses (Ed. Z. Dalkılıç). Nova Science Publishers, Inc., Hauppauge, NY, USA, 246 pp. https://doi.org/10.52305/TPCS5872.
  • Aydın, A. & H. Başak, 2023. Farklı melez kombinasyonları ile elde edilmiş su kabağı (Lagenaria siceraria) melezlerinin su kültürü koşullarında tuz stresine morfolojik ve fizyolojik olarak tolerans düzeylerinin belirlenmesi. Ege Üniv. Ziraat Fak. Derg., 60 (4): 665-678. https://doi.org/10.20289/zfdergi.1284786.
  • Best, N.B. & P. McSteen, 2022. Mapping maize mutants using bulked‐segregant analysis and next‐generation sequencing. Current Protocols, 2: e591. https://doi.org/10.1002/cpz1.591.
  • Best, N.B., C. Addo-Quaye, B.-S. Kim, C.F. Weil, B. Schulz, G. Johal & B.P. Dilkes, 2021. Mutation of the nuclear pore complex component, aladin1, disrupts asymmetric cell division in Zea mays (maize). G3 Genes, Genomes, Genetics, 11 (7): jkab106. https://doi.org/10.1093/g3journal/jkab106.
  • Branham, S.E. & M.W. Farnham, 2019. Identification of heat tolerance loci in broccoli through bulked segregant analysis using whole genome resequencing. Euphytica, 215: 34. https://doi.org/10.1007/s10681-018-2334-9.
  • Cardeña, R., G.R. Ashburner & C. Oropeza, 2003. Identifcation of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Sci. Hortic., 98 (3): 257-263. https://doi.org/10.1016/S0304-4238(02)00162-0.
  • Cekic, C., N.H. Battey & M.J. Wilkinson, 2001. The potential of ISSR-PCR primer-pair combinations for genetic linkage analysis using the seasonal flowering locus in Fragaria vesca as a model. Theor. Appl. Genet., 103: 540-546. https://doi.org/10.1007/PL00002907.
  • Chagué, V., J.C. Mercier, M. Guénard, A. Courcel & F. Vedel. 1996. Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor. Appl. Genet., 92: 1045-1051. https://doi.org/10.1007/BF00224047.
  • Chungwongse, J., C. Chungwongse, L. Black & P. Hanson, 2002. Molecular mapping of Ph-3 gene for late blight resistance in tomato. The Journal of Horticultural Science and Biotechnology, 77 (3): 281-286. https://doi.org/10.1080/14620316.2002.11511493.
  • Cuenca, J, P. Aleza, A. Vicent, D. Brunel, P. Ollitrault & L. Navarro, 2013. Genetically based location from triploid populations and gene ontology of a 3.3-Mb genome region linked to Alternaria Brown Spot resistance in citrus reveal clusters of resistance genes. PLoS ONE, 8 (10): e76755. https//doi.org/10.1371/journal.pone.0076755.
  • Çekiç, Ç., 2015. Bulk segregant analysis technique to target seasonality and runnering loci in diploid strawberries. Journal of New Results in Science, 9: 92-98. http: //jnrs.gop.edu.tr.
  • da Silva, M.P., A.Z. Zaccaron, B.H. Bluhm, J.C. Rupe, L. Wood, L.A. Mozzoni, R.E. Mason, S. Yingling & A. Pereira, 2020. Bulked segregant analysis using next-generation sequencing for identification of genetic loci for charcoal rot resistance in soybean. Physiol. Mol. Plant Pathol., 109: 101440. https://doi.org/10.1016/j.pmpp.2019.101440.
  • Dakouri, A., X. Zhang, G. Peng, K.C. Falk, B.D. Gossen, S.E. Strelkov & F. Yu, 2018. Analysis of genome-wide variants through bulked segregant RNA sequencing reveals a major gene for resistance to Plasmodiophora brassicae in Brassica oleracea. Sci. Rep., 8: 17657. https://doi.org/10.1038/s41598-018-36187-5.
  • Dalkilic, Z. 1999. Identification and Mapping of genes for Alternaria and Phytophthora Disease Resistance in Citrus Hybrids. University of Florida (Unpublished) Ph. D. Dissertation, Gainesville FL, USA, 107 pp.
  • Dalkilic, Z., L.W. Timmer & F.G. Gmitter, Jr, 2005. Linkage of an Alternaria disease resistance gene in mandarin hybrids with RAPD fragments. J. Amer. Soc. Hort. Sci., 130 (2): 191-195. https://doi.org/10.21273/JASHS.130.2.191. de la Fuente Cantó, C. & Y. Vigouroux, 2022. Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches. BMC Genomics, 23: 490. https://doi.org/10.1186/s12864-022-08718-y.
  • Deol, J.K., S.P. Sharma, R. Rani, A. Kalia, P. Chhuneja & N.K. Sarao, 2022. Inheritance analysis and identification of SSR markers associated with fusarium wilt resistance in melon. The Journal of Horticultural Science and Biotechnology, 97 (1): 66-74. https://doi.org/10.1080/14620316.2021.1948360.
  • Dou, J., S. Zhao, X. Lu, N. He, L. Zhang, A. Ali, H. Kuang & W. Liu, 2018. Genetic mapping reveals a candidate gene (ClFS1) for fruit shape in watermelon (Citrullus lanatus L.). Theor. Appl. Genet., 131 (4): 947-958. https://doi.org/10.1007/s00122-018-3050-5.
  • Durham, R.E. & S.S. Korban, 1994. Evidence of gene introgression in apple using RAPD markers. Euphytica, 79: 109-114.
  • Ekbiç, E. K. Abak, S. Büyükalaca & M.A. Yılmaz, 1999. Biberlerde patates Y Virüsü’ne (PVY) dayanıklılık özelliği için RAPD Markır’larının araştırılması. Türkiye III. Ulusal Bahçe Bitkileri Kongresi, Ankara, pp.459-463.
  • Gebretsadik, K., W. Chen, Y. Duan, Y. Sun, Y. He, Q. Liao, C. Wang & K. Bo, 2024. Map-based cloning reveals Cpgp gene encoding an APRR2 protein to regulate the green fruit peel formation in Cucurbita pepo. Mol. Breed., 44: 53. https://doi.org/10.1007/s11032-024-01492-7.
  • Giovannoni, J.J., R.A. Wing, M.W. Ganal & S.D. Tanksley, 1991. Isolation of molecular markers from specific chromosomal intervals using DNA pools from existing mapping populations. Nucleic Acids Res. 19 (23): 6553-6568.
  • Huo, H, I.M. Henry, E.R. Coppoolse, M. Verhoef-Post, J.W. Schut, H. de Rooij, A. Vogelaar, R.V.L. Joosen, L. Woudenberg, L. Comai & K.J. Bradford, 2016. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing. The Plant Journal, 88: 345-350. https://doi.org/10.1111/tpj.13267.
  • Ikten, H., O. Gulsen, N. Mutlu, I. Polat & U. Aksoy, 2023. Genetic diversity, population structure, and asssociation analysis of female and male fig genotypes (Ficus carica L.). Erwerbs-Obstbau, 65: 1603-1616. https://doi.org/10.1007/s10341-023-00844-5.
  • Illa-Berenguer, E., J. Van Houten, Z. Huang & E. van der Knaap, 2015. Rapid and reliable identification of tomato fruit weight and locule number loci by QTL-seq. Theor. Appl. Genet., 128: 1329-1342. https://doi.org/10.1007/s00122-015-2509-x.
  • Itoh, M., T. Segawa, M. Tamiru, A. Abe, S. Sakamoto, A. Uemura, K. Oikawa, H. Kutsuzawa, H. Koga, T. Imamura, R. Terauchi & H. Takagi, 2019. Next-generation sequencing-based bulked segregant analysis for QTL mapping in the heterozygous species Brassica rapa. Theor. Appl. Genet., 132: 2913-2925. https://doi.org/10.1007/s00122-019-03396-z.
  • Kabaş Demirelli, A., 2008. Domateste Fusarium oxysporum f.sp. radicis-lycopersici'ye karşı dayanıklılık için moleküler işaretleyicilerin belirlenmesi. Ege Üniversitesi Fen Bilimleri Enstitüsü Bahçe Bitkileri Anabilim Dalı (Basılmamış) Doktora Tezi, İzmir, 128 s.
  • Kaya, D. & Z. Dalkılıç, 2021. Determination of a sex-related RAPD marker in carob (Ceratonia siliqua L.). Genetica, 53 (2): 575-582. https://doi.org/10.2298/GENSR2102575K.
  • Kim, S., C.-W. Kim, M. Park & D. Choi, 2015. Identification of candidate genes associated with fertility restoration of cytoplasmic male-sterility in onion (Allium cepa L.) using a combination of bulked segregant analysis and RNA-seq. Theor. Appl. Genet., 128: 2289-2299. https://doi.org/ 10.1007/s00122-015-2584-z.
  • Klein, H. & Y. Xiao, P.A. Conklin, R. Govindarajulu, J.A. Kelly, M.J. Scanlon, C.J. Whipple & M. Bartlett, 2018. Bulked-segregant analysis coupled to whole genome sequencing (BSA-Seq) for rapid gene cloning in maize. G3-Genes Genomes Genetics, 8 (11): 3583-3592. https://doi.org/10.1534/g3.118.200499.
  • Li, Z. & Y. Xu, 2022. Bulk segregation analysis in the NGS era: a review of its teenage years. Plant Journal, 109: 1355-1374. https://doi.org/10.1111/tpj.15646.
  • Liang, T., W. Chi, L. Huang, M. Qu, S. Zhang, Z.-Q. Chen, Z.-J. Chen, D. Tian, Y. Gui, X. Chen, Z. Wang, W. Tang & S. Chen, 2020. Bulked segregant analysis coupled with whole-genome sequencing (BSA-Seq) mapping identifies a novel pi21 haplotype conferring basal resistance to rice blast disease. Int. J. Mol. Sci., 21: 2162. https://doi.org/10.3390/ijms21062162.
  • Lu, H., T. Lin, J. Klein, S. Wang, J. Qi, Q. Zhou, J. Sun, Z. Zhang, Y. Wenig &·S. Huang, 2014. QTL-seq identifies an early flowering QTL located near Flowering Locus T in cucumber. Theor. Appl. Genet. 127: 1491–1499. htps: //doi.org/10.1007/s00122-014-2313-z.
  • Majeed, A., P. Johar, A. Raina, R.K. Salgotra, X. Feng & J.A. Bhat, 2022. Harnessing the potential of bulk segregant analysis sequencing and its related approaches in crop breeding. Frontiers in Genetics, 13: 94450. https;//doi.org/10.3389/fgene.2022.944501.
  • Meng, G., G. Zhu, W. Fang, C. Chen, X. Wang, L. Wang & K. Cao, 2019. Identification of loci for single/double flower trait by combining genome-wide association analysis and bulked segregant analysis in peach (Prunus persica). Plant Breeding, 138: 360-367. https://doi.org/10.1111/pbr.12673.
  • Michelmore, R.W., I. Paran & R.V. Kesseli, 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA, 88: 9828-9832.
  • Mutlu, N., A. Demirelli, H. Ilbi & C. Ikten, 2015. Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theor. Appl. Genet., 128: 1791-1798. https://doi.org/10.1007/s00122-015-2547-4.
  • Mutlu, N., F.H. Boyacı, M. Göçmen & K. Abak, 2008. Development of SRAP, SRAP-RGA, RAPD and SCAR markers linked with a Fusarium wilt resistance gene in eggplant. Theor. Appl. Genet., 117: 1303-1312. https://doi.org/10.1007/s00122-008-0864-6.
  • Pierce, B. A., 2021. Genetics Essentials: Concepts and Connections. 5th Ed. W. H. Freeman and Company, New York, NY, 2106 pp.
  • Pradhan, D. D. Mathew, S. K. Mathew & P. A. Nazeem, 2018 Identifying the markers and tagging a leucine-rich repeat receptor-like kinase gene for resistance to anthracnose disease in vegetable cowpea [Vigna unguiculata (L.) Walp.], The Journal of Horticultural Science and Biotechnology, 93 (3): 225-231, https://doi.org/10.1080/14620316.2017.1362962.
  • Quarrie, S.A., V. Lazić-Jančić, Dragan Kovačević, A. Steed & S. Pekić, 1999. Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. Journal of Experimental Botany, 50 (337): 1299-1306. https://doi.org/10.1093/jxb/50.337.1299.
  • Sahoo, J., R. Mishra & R.K. Joshi, 2024. Bulked Segregant RNA Sequencing (BSR-Seq) combined with SNP genotyping towards mapping and characterization of a purple blotch resistance gene in onion (Allium cepa L.). Plant Mol Biol Rep., (ön izleme). https://doi.org/10.1007/s11105-024-01466-1.
  • Shen, F., L. Bianco, B. Wu, Z. Tian, Y. Wang, T. Wu, X. Xu, Z. Han, R. Velasco, P. Fontana & X. Zhang, 2022. A bulked segregant analysis tool for out-crossing species (BSATOS) and QTL-based genomics-assisted prediction of complex traits in apple. Journal of Advanced Research, 42: 149-162. https://doi.org/10.1016/j.jare.2022.03.013.
  • Shen, F., Z. Huang, B. Zhang, Y. Wang, X. Zhang, T. Wu, X. Xu, X. Zhang & Z. Han, 2019. Mapping gene markers for apple fruit ring rot disease resistance using a multi-omics approach. G3, 9: 1663-1678. https://doi.org/10.1534/g3.119.400167.
  • Singh, G., M. Pathak, D. Pathak & N.K. Sarao, 2023. Identification of SSR markers through bulk segregant analysis and inheritance of resistance to yellow vein mosaic disease in okra (Abelmoschus esculentus L. Moench). Virus Dis., 34: 498-503. https://doi.org/10.1007/s13337-023-00844-9.
  • Singh, M., S.P. Sharma, N.K. Sarao, S. Kaur & P. Chhuneja, 2020. Molecular mapping of nuclear male-sterility gene ms-1 in muskmelon (Cucumis melo L.), The Journal of Horticultural Science and Biotechnology, 95(2): 162-168. https://doi.org/10.1080/14620316.2019.1652119.
  • Singh, R. K., N. Rai, J. M. Lima, M. Singh, S. N. Singh & S. Kumar, 2015. Genetic and molecular characterisations of Tomato leaf curl virus resistance in tomato (Solanum lycopersicum L.). The Journal of Horticultural Science and Biotechnology, 90 (5): 503-510. https://doi.org/10.1080/14620316.2015.11668706.
  • Song, J., Z. Li, Z. Li, Y. Guo & L.J. Qiu, 2017. Next-generation sequencing from bulked-segregant analysis accelerates the simultaneous identification of two qualitative genes in soybean. Front. Plant Sci., 8: 919. https://doi.org/10.3389/fpls.2017.00919.
  • Song, Z., J. Zhong, J. Dong, F. Hu, B. Zhang, J. Cheng & K. Hu, 2022. Mapping immature fruit colour-related genes via bulked segregant analysis combined with whole-genome re-sequencing in pepper (Capsicum annuum). Plant Breeding, 141 (2): 277-285. https://doi.org/10.1111/pbr.12997.
  • Sreenivasa, V., S.K. Lal, P.K. Babu, H.K.M. Swamy, R.R. Yadav, A. Talukdar & D.R. Rathod, 2020. Inheritance and mapping of drought tolerance in soybean at seedling stage using bulked segregant analysis. NIAB Plant Genetic Resources: Characterization and Utilization: 1-8. https://doi.org/10.1017/S1479262120000052.
  • Suematsu, K. & M. Tanaka, 2024. Mapping of a major locus involved in shoot growth habit in hexaploid sweetpotato using bulked-segregant analysis. Euphytica, 220: 48. https://doi.org/10.1007/s10681-024-03308-3.
  • Şimşek Uçkun, M. & Z. Dalkılıç, 2022. Nar (Punica granatum L.)’da bitki boyu ile ilişkili bir RAPD belirteci. ADÜ Ziraat Derg., 19 (2): 199-205. https://doi.org/10.25308/aduziraat.1096352.
  • Teoman, S., M. Ipek, U. Erturk, N. Tangu, E. Durgut, E. Barut, S. Ercisli & A. Ipek, 2017. Assessment of genetic relationship among male and female fig genotypes using simple sequence repeat (SSR) markers. Not. Bot. Horti. Agrobot. Cluj Napoca, 45: 172-178. https://doi.org/10.15835/nbha45110756.
  • Torrance, L., G.H. Cowan, K. McLean, S. MacFarlane, A.N. Al-Abedy, M. Armstrong, T.-Y. Lim, I. Hein & G.J. Bryan, 2020. Natural resistance to Potato virus Y in Solanum tuberosum Group Phureja. Theor. Appl. Genet., 133: 967-980. https://doi.org/10.1007/s00122-019-03521-y.
  • Vardar-Kanlıtepe, Ç., S. Aras & D. Cansaran-Duman, 2010. Bitki ıslahında moleküler belirteçlerin kullanımı ve gen aktarımı. Türk Hijyen ve Deneysel Biyoloji Dergisi, 67 (1): 33-43.
  • Wallace, J. G., E. Rodgers-Melnick & E. S. Buckler, 2018. On the road to Breeding 4.0: unraveling the good, the bad, and the boring of crop quantitative genomics. Annu. Rev. Genet., 52: 421-444. https://doi.org/10.1146/annurev-genet-120116-024846.
  • Wang, C. H., W. Li, Y. K. Tian, D. L. Hou & M. D. Bai, 2016. Development of molecular markers for genetic and physical mapping of the PcDw locus in pear (Pyrus communis L.). The Journal of Horticultural Science and Biotechnology, 91 (3): 299-307. http: //dx.doi.org/10.1080/14620316.2016.1155319.
  • Wang, J.-Y., J.-D. Chen, S.-L. Wang, L. Chen, C.-L. Ma & M.-Z. Yao, 2020. Repressed gene expression of photosynthetic antenna proteins associated with yellow leaf variation as revealed by bulked segregant RNA-seq in tea plant Camellia sinensis. Journal of Agricultural and Food Chemistry, 68, 8068-8079. https://doi.org/10.1021/acs.jafc.0c01883.
  • Wang, X., L. Han, J. Li, X. Shang, Q. Liu, L. Li & H. Zhang, 2023. Next-generation bulked segregant analysis for Breeding 4.0. Cell Reports, 42 (9): 113039. https://doi.org/10.1016/j.celrep.2023.113039.
  • Yazıcı, K., B. Gönülkırmaz & M. Şahin Çevik, 2023. Development of molecular marker linked to seed hardness in pomegranate using bulked segregant analysis. Life, 13: 1123. https://doi.org/10.3390/life13051123.
  • Zhang, J. & D.R. Panthee, 2020. PyBSASeq: a simple and effective algorithm for bulked segregant analysis with whole genome sequencing data. BMC Bioinformatics, 21: 99. https://doi.org/10.1186/s12859-020-3435-8.
  • Zhang, T., J. Liu, S. Liu, Z. Ding, F. Luan & P. Gao, 2019. Bulked-segregant analysis identified a putative region related to short internode length in melon. HortScience, 54 (8): 1293-1298. https://doi.org/10.21273/HORTSCI14052-19.
  • Zou, C., P. Wang & Y. Xu, 2016. Bulked sample analysis in genetics, genomics and crop improvement. Plant Biotechnol. J., 1941-1955. https://doi.org/10.1111/pbi.12559.
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Meyve Yetiştirme ve Islahı, Sebze Yetiştirme ve Islahı
Bölüm Derleme
Yazarlar

Zeynel Dalkılıç 0000-0002-0946-1036

Erken Görünüm Tarihi 13 Mart 2025
Yayımlanma Tarihi 14 Mart 2025
Gönderilme Tarihi 26 Ocak 2024
Kabul Tarihi 9 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 62 Sayı: 1

Kaynak Göster

APA Dalkılıç, Z. (2025). Bahçe bitkilerinde önemli karakterlerle ilişkili moleküler belirteçlerin Küme Segregasyon Analizi (BSA) ile belirlenmesi. Journal of Agriculture Faculty of Ege University, 62(1), 133-149. https://doi.org/10.20289/zfdergi.1426043

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.