Araştırma Makalesi
BibTex RIS Kaynak Göster

CRISPR/Cas9-Mediated genome editing in grapevine protoplasts

Yıl 2025, Cilt: 62 Sayı: 1, 117 - 131, 14.03.2025
https://doi.org/10.20289/zfdergi.1432614

Öz

Objective: This study aims to perform targeted mutation in grapevine protoplasts using the CRISPR/Cas9-mediated genome editing method.
Material and Methods: For CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9)-mediated genome editing in the Chardonnay cultivar, a gRNA design targeting the desired gene was performed, resulting in obtaining a final CRISPR/Cas9 vector containing both the gRNA and Cas9 and GFP genes. Protoplast isolation and transformation were performed using leaves, followed by analysis of transformation and mutation efficiency.
Results: In the study, Chardonnay leaf protoplast isolation produced 1x107 protoplasts per 1 g of fresh leaves. The vector targeting the VvPDS gene (~10 kb) achieved a transformation efficiency of 40-60%, while the vector containing only the GFP gene (~3 kb) reached 80-90% efficiency. Vector size notably impacted transformation, with larger vectors reducing efficiency. Despite successful transformation, the presence of the targeted mutation could not be confirmed.
Conclusion: The study successfully completed all stages from gRNA design, the initial step of CRISPR/Cas9-mediated genome editing in protoplasts, to the final protoplast transformation stage, showcasing the system's seamless usability. The protocols applied and the results obtained can be utilized in future studies aimed at implementing targeted mutations in grapevines.

Destekleyen Kurum

Bu çalışma Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından finansal olarak desteklenmiştir (BAP, Proje No; 2020-123). Yazar finansal destek için teşekkür eder.

Proje Numarası

2020-123

Kaynakça

  • Bailey-Serres, J., J. E. Parker, E. A. Ainsworth, G. E. Oldroyd & J. I. Schroeder, 2019. Genetic strategies for improving crop yields. Nature, 575 (7781): 109-118. https://doi.org/10.1038/s41586-019-1679-0
  • Belhaj, K., A. Chaparro-Garcia, S. Kamoun, N. J. Patron & V. Nekrasov, 2015. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32: 76-84. https://doi.org/10.1016/j.copbio.2014.11.007
  • Bernabé‐Orts, J. M., I. Casas‐Rodrigo, E. G. Minguet, V. Landolfi, V. Garcia‐Carpintero, S. Gianoglio, M. Vázquez‐Vilar, A. Granell & D. Orzaez, 2019. Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17 (10): 1971-1984. https://doi.org/10.1111/pbi.13113
  • Campos, G., C. Chialva, S. Miras & D. Lijavetzky, 2021. New technologies and strategies for grapevine breeding through genetic transformation. Frontiers in Plant Science, 12: 767522. https://doi.org/10.3389/fpls.2021.767522
  • Cermak, T., S. J. Curtin, J. Gil-Humanes, R. Cegan, T. J. Y. Kono, E. Konecna, J. J. Belanto, C. G. Starker, J. W. Mathre, R. L. Greenstein & D. F. Voytas, 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29 (6): 1196-1217. https://doi.org/10.1105/tpc.16.00922
  • Chen, K., Y. Wang, R. Zhang, H. Zhang & C. Gao, 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70: 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049
  • Chen, S., L. Tao, L. Zeng, M. E. Vega‐Sanchez, K. Umemura & G. L. Wang, 2006. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Molecular Plant Pathology, 7 (5): 417-427. https://doi.org/10.1111/j.1364-3703.2006.00346.x
  • Chiu, W., Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi & J. Sheen, 1996. Engineered GFP as a vital reporter in plants. Current Biology, 6 (3): 325-330. Doi: 10.1016/s0960-9822(02)00483-9
  • Dalla Costa, L., M. Malnoy & I. Gribaudo, 2017. Breeding next generation tree fruits: technical and legal challenges. Horticulture Research, 4. https://doi.org/10.1038/hortres.2017.67
  • Doench, J. G., E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde, I. Smith, M. Sullender, B. L. Ebert, R. J. Xavier & D. E. Root, 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology, 32 (12): 1262-1267. https://doi.org/10.1038/nbt.3026
  • Engler, C., M. Youles, R. Gruetzner, T.-M. Ehnert, S. Werner, J. D. Jones, N. J. Patron & S. Marillonnet, 2014. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology, 3 (11): 839-843. https://doi.org/10.1021/sb4001504
  • Feng, Z., B. Zhang, W. Ding, X. Liu, D.-L. Yang, P. Wei, F. Cao, S. Zhu, F. Zhang & Y. Mao, 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23 (10): 1229-1232. https://doi.org/10.1038/cr.2013.114
  • Giacomelli, L., T. Zeilmaker, M. Malnoy, J. Rouppe van der Voort & C. Moser, 2018. Generation of mildew-resistant grapevine clones via genome editing. XII International Conference on Grapevine Breeding and Genetics, 1248. https://doi.org/10.17660/ActaHortic.2019.1248.28
  • Gibson, D. G., G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas & M. A. Algire, 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319 (5867): 1215-1220. https://doi.org/10.1126/science.1151721
  • Gilissen, L. J., P. L. Metz, W. J. Stiekema & J.-P. Nap, 1998. Biosafety of E. coli β-glucuronidase, GUS) in plants. Transgenic Research, 7: 157-163. https://doi.org/10.1023/A:1008832711805
  • Gohlke, C., A. Murchie, D. Lilley & R. M. Clegg, 1994. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences, 91 (24): 11660-11664. https://doi.org/10.1073/pnas.91.24.11660
  • Hardiyani, W. A., A. Wafa, W. I. D. Fanata & H. S. Addy, 2023. Design and construction of single guide RNA for CRISPR/Cas9 system based on the xa13 resistance gene in some varieties of rice, Oryza sativa). Jurnal Hama dan Penyakit Tumbuhan Tropika, 23 (1): 47-55. https://doi.org/10.23960/jhptt.12347-55
  • Hassan, M. M., Y. Zhang, G. Yuan, K. De, J.-G. Chen, W. Muchero, G. A. Tuskan, Y. Qi & X. Yang, 2021. Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 26 (11): 1133-1152. https://doi.org/10.1016/j.tplants.2021.06.015
  • Hong, S., P. J. Seo, S.-H. Cho & C.-M. Park, 2012. Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. Journal of Plant Biology, 55: 390-397. https://doi.org/10.1007/s12374-012-0159-y
  • Hou, X., J. Rivers, P. León, R. P. McQuinn & B. J. Pogson, 2016. Synthesis and function of apocarotenoid signals in plants. Trends in Plant Science, 21 (9): 792-803. https://doi.org/10.1016/j.tplants.2016.06.001
  • Howells, R. M., M. Craze, S. Bowden & E. J. Wallington, 2018. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biology 18 (1): 1-11. https://doi.org/10.1186/s12870-018-1433-z
  • Huttly, A., 2009. “Reporter Genes, 39-69”. In: Transgenic Wheat, Barley and Oats: Production and Characterization Protocols (Eds. H. D. Jones & P. R. Shewry), Humana Press, New York, USA, 349 pp.
  • Ishino, Y., H. Shinagawa, K. Makino, M. Amemura & A. Nakata, 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169: 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
  • Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan & G. Venkataraman, 2018. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985
  • Jiang, F., D. W. Taylor, J. S. Chen, J. E. Kornfeld, K. Zhou, A. J. Thompson, E. Nogales & J. A. Doudna, 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 351 (6275): 867-871. https://doi.org/10.1126/science.aad8282
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna & E. Charpentier, 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337 (6096): 816-821. https://doi.org/10.1126/science.1225829
  • Kaya, H. B., Y. Dilli, T. Oncu-Oner & A. Ünal, 2023. Exploring genetic diversity and population structure of a large grapevine, Vitis vinifera L.) germplasm collection in Türkiye. Frontiers in Plant Science, 14: 1121811. https://doi.org/10.3389/fpls.2023.1121811
  • Kolasinliler, G., M. M. Aagre, C. Akkale & H. B. Kaya, 2023. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochemical Engineering Journal, 194: 108880. https://doi.org/10.1016/j.bej.2023.108880
  • Konstantakos, V., A. Nentidis, A. Krithara & G. Paliouras, 2022. CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Research, 50 (7): 3616-3637. https://doi.org/10.1093/nar/gkac192
  • Kuşaksız, E. K. & H. Çimer, 2019. Asma, Vitis vinifera var. Sultani çekirdeksiz) yapraklarında farklı salamura ortamlarının pestisit kalıntı düzeylerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 267-272. https://doi.org/10.20289/zfdergi.446022
  • Lin, C. S., C. T. Hsu, L. H. Yang, L. Y. Lee, J. Y. Fu, Q. W. Cheng, F. H. Wu, H. C. W. Hsiao, Y. Zhang & R. Zhang, 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal, 16 (7): 1295-1310. https://doi.org/10.1111/pbi.12870
  • Liu, X., A. Homma, J. Sayadi, S. Yang, J. Ohashi & T. Takumi, 2016. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Reports, 6 (1): 19675. https://doi.org/10.1038/srep19675
  • Maher, M. F., R. A. Nasti, M. Vollbrecht, C. G. Starker, M. D. Clark & D. F. Voytas, 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology, 38 (1): 84-89. https://doi.org/10.1038/s41587-019-0337-2
  • Malik, A., A. Gul, F. Munir, R. Amir, H. Alipour, M. M. Babar, S. M. Bakhtiar, R. Z. Paracha, Z. Khalid & M. Q. Hayat, 2021. Evaluating the cleavage efficacy of CRISPR-Cas9 sgRNAs targeting ineffective regions of Arabidopsis thaliana genome. PeerJ, 9: e11409. https://doi.org/10.7717/peerj.11409
  • Malnoy, M., R. Viola, M.-H. Jung, O.-J. Koo, S. Kim, J.-S. Kim, R. Velasco & C. Nagamangala Kanchiswamy, 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7: 1904. https://doi.org/10.3389/fpls.2016.01904
  • Nadakuduti, S. S., C. G. Starker, D. K. Ko, T. B. Jayakody, C. R. Buell, D. F. Voytas & D. S. Douches, 2019. Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts. Frontiers in Plant Science, 10: 110. https://doi.org/10.3389/fpls.2019.00110
  • Nakajima, I., Y. Ban, A. Azuma, N. Onoue, T. Moriguchi, T. Yamamoto, S. Toki & M. Endo, 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One, 12 (5): e0177966. https://doi.org/10.1371/journal.pone.0177966
  • Ow, D. W., K. V. Wood, M. DeLuca, J. R. De Wet, D. R. Helinski & S. H. Howell, 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234 (4778): 856-859. https://doi.org/10.1126/science.234.4778.856
  • Pan, C., L. Ye, L. Qin, X. Liu, Y. He, J. Wang, L. Chen & G. Lu, 2016. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6 (1): 24765. https://doi.org/10.1038/srep24765
  • Qin, G., H. Gu, L. Ma, Y. Peng, X. W. Deng, Z. Chen & L.-J. Qu, 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17 (5): 471-482. https://doi.org/10.1038/cr.2007.40
  • Reed, K. M. & B. O. Bargmann, 2021. Protoplast regeneration and its use in new plant breeding technologies. Frontiers in Genome Editing, 20. https://doi.org/10.3389/fgeed.2021.734951
  • Ren, C., E. Gathunga, S. Li & Z. Liang, 2018. Application and optimization of the CRISPR/Cas9 system in grape. XII International Conference on Grapevine Breeding & Genetics 1248. https://doi.org/10.17660/ActaHortic.2019.1248.22
  • Ren, C., Y. Guo, J. Kong, F. Lecourieux, Z. Dai, S. Li & Z. Liang, 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology, 20 (1): 1-8. https://doi.org/10.1186/s12870-020-2263-3
  • Ren, C., X. Liu, Z. Zhang, Y. Wang, W. Duan, S. Li & Z. Liang, 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay, Vitis vinifera L. Scientific Reports, 6 (1): 32289. https://doi.org/10.1038/srep32289
  • Sattar, M. N., Z. Iqbal, J. M. Al-Khayri & S. M. Jain, 2021. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants, 10 (7): 1347. https://doi.org/10.3390/plants10071347
  • Secgin, Z., M. Kavas & K. Yildirim, 2021. Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry, 45 (6): 704-716. https://doi.org/10.3906/tar-2009-49
  • Sentmanat, M. F., S. T. Peters, C. P. Florian, J. P. Connelly & S. M. Pruett-Miller, 2018. A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports, 8 (1): 888. https://doi.org/10.1038/s41598-018-19441-8
  • Shan, Q., Y. Wang, J. Li & C. Gao, 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9 (10): 2395-2410. https://doi.org/10.1038/nprot.2014.157
  • Svitashev, S., J. K. Young, C. Schwartz, H. Gao, S. C. Falco & A. M. Cigan, 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169 (2): 931-945. https://doi.org/10.1104/pp.15.00793
  • Tang, T., X. Yu, H. Yang, Q. Gao, H. Ji, Y. Wang, G. Yan, Y. Peng, H. Luo & K. Liu, 2018. Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Frontiers in Plant Science, 9: 1533. https://doi.org/10.3389/fpls.2018.01533
  • Öncü-Öner, T., M. Temel, S. Pamay, A. K. Abaci & H. B. Kaya, 2023. an ımproved method for efficient DNA extraction from grapevine. International Journal of Life Sciences and Biotechnology, 6 (1): 21-36. https://doi.org/10.38001/ijlsb.1150387
  • Vouillot, L., A. Thélie & N. Pollet, 2015. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: Genes, Genomes, Genetics, 5 (3): 407-415. https://doi.org/10.1534/g3.114.015834
  • Wada, N., R. Ueta, Y. Osakabe & K. Osakabe, 2020. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 20: 1-12. https://doi.org/10.1186/s12870-020-02385-5
  • Wan, D., Y. Guo, Y. Cheng, Y. Hu, S. Xiao, Y. Wang & Y.-Q. Wen, 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine, Vitis vinifera. Horticulture Research, 7. https://doi.org/10.1038/s41438-020-0339-8
  • Wang, L., H. B. Kaya, N. Zhang, R. Rai, M. R. Willmann, S. C. Carpenter, A. C. Read, F. Martin, Z. Fei & J. E. Leach, 2021. Spelling changes and fluorescent tagging with prime editing vectors for plants. Frontiers in Genome Editing, 3: 617553. https://doi.org/10.3389/fgeed.2021.617553
  • Wang, S., S. Zhang, W. Wang, X. Xiong, F. Meng & X. Cui, 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34: 1473-1476. https://doi.org/10.1007/s00299-015-1816-7
  • Wang, X., M. Tu, D. Wang, J. Liu, Y. Li, Z. Li, Y. Wang & X. Wang, 2018. CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16 (4): 844-855. https://doi.org/10.1111/pbi.12832
  • Yang, H., J.-J. Wu, T. Tang, K.-D. Liu & C. Dai, 2017. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific Reports, 7 (1): 7489. https://doi.org/10.1038/s41598-017-07871-9
  • Yin, K., C. Gao & J.-L. Qiu, 2017. Progress and prospects in plant genome editing. Nature Plants, 3 (8): 1-6. https://doi.org/10.1038/nplants.2017.107
  • Zhang, N., H. M. Roberts, J. Van Eck & G. B. Martin, 2020. Generation and molecular characterization of CRISPR/Cas9-induced mutations in 63 immunity-associated genes in tomato reveals specificity and a range of gene modifications. Frontiers in Plant Science, 11: 10. https://doi.org/10.3389/fpls.2020.00010
  • Zhang, Y., J. Su, S. Duan, Y. Ao, J. Dai, J. Liu, P. Wang, Y. Li, B. Liu & D. Feng, 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7 (1): 1-14. https://doi.org/10.1186/1746-4811-7-30
  • Zhao, F., Y.-J. Li, Y. Hu, Y.-R. Gao, X.-W. Zang, Q. Ding, Y.-J. Wang & Y.-Q. Wen, 2016. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell, Tissue and Organ Culture, 125: 43-57. https://doi.org/10.1007/s11240-015-0928-7

Asma protoplastlarında CRISPR/Cas9 aracılı genom düzenleme

Yıl 2025, Cilt: 62 Sayı: 1, 117 - 131, 14.03.2025
https://doi.org/10.20289/zfdergi.1432614

Öz

Amaç: Bu çalışmanın amacı, CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein 9) aracılı genom düzenleme yöntemi kullanılarak asma protoplastlarında hedefe yönelik mutasyonun gerçekleştirilmesidir.
Materyal ve Yöntem: Chardonnay asma çeşidinde CRISPR/Cas9 aracılı genom düzenleme için hedef gene uygun gRNA tasarımı yapılarak, hem gRNA’yı hem de Cas9 ve GFP genlerini içeren final CRISPR/Cas9 vektörü elde edilmiştir. Asma yapraklarından protoplast izolasyonu ve transformasyonu gerçekleştirilerek, transformasyon ve mutasyon verimliliği analiz edilmiştir.
Araştırma Bulguları: Çalışmada Chardonnay yapraklarından yapılan protoplast izolasyonunda 1 g taze yapraktan 1x107 protoplast elde edilmiştir. VvPDS genini hedef alan vektörün (~10 kb) protoplastlarda transformasyon verimliliği %40-60 iken, sadece GFP genini içeren vektörde (~3 kb), transformasyon verimliliği %80-90 olarak bulunmuştur. Vektör büyüklüğü transformasyon verimliliğini büyük oranda etkilemiş, vektör büyüklüğü arttıkça verimlilik azalmıştır. Transformasyon gerçekleşmesine rağmen, hedeflenen mutasyon doğrulanamamıştır.
Sonuç: Çalışmada asma protoplastlarında CRISPR/Cas9 aracılı genom düzenleme için ilk aşama olan gRNA tasarımından son aşama olan protoplast transformasyonuna kadar uygulanan basamaklar başarılı bir şekilde gerçekleştirilerek, sistemin sorunsuz uygulanabilirliği gösterilmiştir. Uygulanan protokoller ve elde edilen sonuçlar asmada hedef mutasyonların gerçekleştirilmesi amacıyla yapılacak olan diğer çalışmalarda kullanılabilecektir.

Destekleyen Kurum

Bu çalışma Manisa Celal Bayar Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından finansal olarak desteklenmiştir (BAP, Proje No; 2020-123). Yazar finansal destek için teşekkür eder.

Proje Numarası

2020-123

Teşekkür

Çalışmada kullanılan plazmitleri temin etmemi sağlayan Cornell Üniversitesi’nden Prof. Dr. Adam Bogdanove’a ve Minesota Üniversitesi’nden Dr. Colby Starker’a desteklerinden dolayı teşekkür ederim.

Kaynakça

  • Bailey-Serres, J., J. E. Parker, E. A. Ainsworth, G. E. Oldroyd & J. I. Schroeder, 2019. Genetic strategies for improving crop yields. Nature, 575 (7781): 109-118. https://doi.org/10.1038/s41586-019-1679-0
  • Belhaj, K., A. Chaparro-Garcia, S. Kamoun, N. J. Patron & V. Nekrasov, 2015. Editing plant genomes with CRISPR/Cas9. Current Opinion in Biotechnology, 32: 76-84. https://doi.org/10.1016/j.copbio.2014.11.007
  • Bernabé‐Orts, J. M., I. Casas‐Rodrigo, E. G. Minguet, V. Landolfi, V. Garcia‐Carpintero, S. Gianoglio, M. Vázquez‐Vilar, A. Granell & D. Orzaez, 2019. Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17 (10): 1971-1984. https://doi.org/10.1111/pbi.13113
  • Campos, G., C. Chialva, S. Miras & D. Lijavetzky, 2021. New technologies and strategies for grapevine breeding through genetic transformation. Frontiers in Plant Science, 12: 767522. https://doi.org/10.3389/fpls.2021.767522
  • Cermak, T., S. J. Curtin, J. Gil-Humanes, R. Cegan, T. J. Y. Kono, E. Konecna, J. J. Belanto, C. G. Starker, J. W. Mathre, R. L. Greenstein & D. F. Voytas, 2017. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell, 29 (6): 1196-1217. https://doi.org/10.1105/tpc.16.00922
  • Chen, K., Y. Wang, R. Zhang, H. Zhang & C. Gao, 2019. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annual Review of Plant Biology, 70: 667-697. https://doi.org/10.1146/annurev-arplant-050718-100049
  • Chen, S., L. Tao, L. Zeng, M. E. Vega‐Sanchez, K. Umemura & G. L. Wang, 2006. A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Molecular Plant Pathology, 7 (5): 417-427. https://doi.org/10.1111/j.1364-3703.2006.00346.x
  • Chiu, W., Y. Niwa, W. Zeng, T. Hirano, H. Kobayashi & J. Sheen, 1996. Engineered GFP as a vital reporter in plants. Current Biology, 6 (3): 325-330. Doi: 10.1016/s0960-9822(02)00483-9
  • Dalla Costa, L., M. Malnoy & I. Gribaudo, 2017. Breeding next generation tree fruits: technical and legal challenges. Horticulture Research, 4. https://doi.org/10.1038/hortres.2017.67
  • Doench, J. G., E. Hartenian, D. B. Graham, Z. Tothova, M. Hegde, I. Smith, M. Sullender, B. L. Ebert, R. J. Xavier & D. E. Root, 2014. Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology, 32 (12): 1262-1267. https://doi.org/10.1038/nbt.3026
  • Engler, C., M. Youles, R. Gruetzner, T.-M. Ehnert, S. Werner, J. D. Jones, N. J. Patron & S. Marillonnet, 2014. A golden gate modular cloning toolbox for plants. ACS Synthetic Biology, 3 (11): 839-843. https://doi.org/10.1021/sb4001504
  • Feng, Z., B. Zhang, W. Ding, X. Liu, D.-L. Yang, P. Wei, F. Cao, S. Zhu, F. Zhang & Y. Mao, 2013. Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23 (10): 1229-1232. https://doi.org/10.1038/cr.2013.114
  • Giacomelli, L., T. Zeilmaker, M. Malnoy, J. Rouppe van der Voort & C. Moser, 2018. Generation of mildew-resistant grapevine clones via genome editing. XII International Conference on Grapevine Breeding and Genetics, 1248. https://doi.org/10.17660/ActaHortic.2019.1248.28
  • Gibson, D. G., G. A. Benders, C. Andrews-Pfannkoch, E. A. Denisova, H. Baden-Tillson, J. Zaveri, T. B. Stockwell, A. Brownley, D. W. Thomas & M. A. Algire, 2008. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science, 319 (5867): 1215-1220. https://doi.org/10.1126/science.1151721
  • Gilissen, L. J., P. L. Metz, W. J. Stiekema & J.-P. Nap, 1998. Biosafety of E. coli β-glucuronidase, GUS) in plants. Transgenic Research, 7: 157-163. https://doi.org/10.1023/A:1008832711805
  • Gohlke, C., A. Murchie, D. Lilley & R. M. Clegg, 1994. Kinking of DNA and RNA helices by bulged nucleotides observed by fluorescence resonance energy transfer. Proceedings of the National Academy of Sciences, 91 (24): 11660-11664. https://doi.org/10.1073/pnas.91.24.11660
  • Hardiyani, W. A., A. Wafa, W. I. D. Fanata & H. S. Addy, 2023. Design and construction of single guide RNA for CRISPR/Cas9 system based on the xa13 resistance gene in some varieties of rice, Oryza sativa). Jurnal Hama dan Penyakit Tumbuhan Tropika, 23 (1): 47-55. https://doi.org/10.23960/jhptt.12347-55
  • Hassan, M. M., Y. Zhang, G. Yuan, K. De, J.-G. Chen, W. Muchero, G. A. Tuskan, Y. Qi & X. Yang, 2021. Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 26 (11): 1133-1152. https://doi.org/10.1016/j.tplants.2021.06.015
  • Hong, S., P. J. Seo, S.-H. Cho & C.-M. Park, 2012. Preparation of leaf mesophyll protoplasts for transient gene expression in Brachypodium distachyon. Journal of Plant Biology, 55: 390-397. https://doi.org/10.1007/s12374-012-0159-y
  • Hou, X., J. Rivers, P. León, R. P. McQuinn & B. J. Pogson, 2016. Synthesis and function of apocarotenoid signals in plants. Trends in Plant Science, 21 (9): 792-803. https://doi.org/10.1016/j.tplants.2016.06.001
  • Howells, R. M., M. Craze, S. Bowden & E. J. Wallington, 2018. Efficient generation of stable, heritable gene edits in wheat using CRISPR/Cas9. BMC Plant Biology 18 (1): 1-11. https://doi.org/10.1186/s12870-018-1433-z
  • Huttly, A., 2009. “Reporter Genes, 39-69”. In: Transgenic Wheat, Barley and Oats: Production and Characterization Protocols (Eds. H. D. Jones & P. R. Shewry), Humana Press, New York, USA, 349 pp.
  • Ishino, Y., H. Shinagawa, K. Makino, M. Amemura & A. Nakata, 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169: 5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
  • Jaganathan, D., K. Ramasamy, G. Sellamuthu, S. Jayabalan & G. Venkataraman, 2018. CRISPR for crop improvement: an update review. Frontiers in Plant Science, 9: 985. https://doi.org/10.3389/fpls.2018.00985
  • Jiang, F., D. W. Taylor, J. S. Chen, J. E. Kornfeld, K. Zhou, A. J. Thompson, E. Nogales & J. A. Doudna, 2016. Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science, 351 (6275): 867-871. https://doi.org/10.1126/science.aad8282
  • Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna & E. Charpentier, 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337 (6096): 816-821. https://doi.org/10.1126/science.1225829
  • Kaya, H. B., Y. Dilli, T. Oncu-Oner & A. Ünal, 2023. Exploring genetic diversity and population structure of a large grapevine, Vitis vinifera L.) germplasm collection in Türkiye. Frontiers in Plant Science, 14: 1121811. https://doi.org/10.3389/fpls.2023.1121811
  • Kolasinliler, G., M. M. Aagre, C. Akkale & H. B. Kaya, 2023. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochemical Engineering Journal, 194: 108880. https://doi.org/10.1016/j.bej.2023.108880
  • Konstantakos, V., A. Nentidis, A. Krithara & G. Paliouras, 2022. CRISPR–Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning. Nucleic Acids Research, 50 (7): 3616-3637. https://doi.org/10.1093/nar/gkac192
  • Kuşaksız, E. K. & H. Çimer, 2019. Asma, Vitis vinifera var. Sultani çekirdeksiz) yapraklarında farklı salamura ortamlarının pestisit kalıntı düzeylerine etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 56 (3): 267-272. https://doi.org/10.20289/zfdergi.446022
  • Lin, C. S., C. T. Hsu, L. H. Yang, L. Y. Lee, J. Y. Fu, Q. W. Cheng, F. H. Wu, H. C. W. Hsiao, Y. Zhang & R. Zhang, 2018. Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single‐cell mutation detection to mutant plant regeneration. Plant Biotechnology Journal, 16 (7): 1295-1310. https://doi.org/10.1111/pbi.12870
  • Liu, X., A. Homma, J. Sayadi, S. Yang, J. Ohashi & T. Takumi, 2016. Sequence features associated with the cleavage efficiency of CRISPR/Cas9 system. Scientific Reports, 6 (1): 19675. https://doi.org/10.1038/srep19675
  • Maher, M. F., R. A. Nasti, M. Vollbrecht, C. G. Starker, M. D. Clark & D. F. Voytas, 2020. Plant gene editing through de novo induction of meristems. Nature Biotechnology, 38 (1): 84-89. https://doi.org/10.1038/s41587-019-0337-2
  • Malik, A., A. Gul, F. Munir, R. Amir, H. Alipour, M. M. Babar, S. M. Bakhtiar, R. Z. Paracha, Z. Khalid & M. Q. Hayat, 2021. Evaluating the cleavage efficacy of CRISPR-Cas9 sgRNAs targeting ineffective regions of Arabidopsis thaliana genome. PeerJ, 9: e11409. https://doi.org/10.7717/peerj.11409
  • Malnoy, M., R. Viola, M.-H. Jung, O.-J. Koo, S. Kim, J.-S. Kim, R. Velasco & C. Nagamangala Kanchiswamy, 2016. DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Frontiers in Plant Science, 7: 1904. https://doi.org/10.3389/fpls.2016.01904
  • Nadakuduti, S. S., C. G. Starker, D. K. Ko, T. B. Jayakody, C. R. Buell, D. F. Voytas & D. S. Douches, 2019. Evaluation of methods to assess in vivo activity of engineered genome-editing nucleases in protoplasts. Frontiers in Plant Science, 10: 110. https://doi.org/10.3389/fpls.2019.00110
  • Nakajima, I., Y. Ban, A. Azuma, N. Onoue, T. Moriguchi, T. Yamamoto, S. Toki & M. Endo, 2017. CRISPR/Cas9-mediated targeted mutagenesis in grape. PLoS One, 12 (5): e0177966. https://doi.org/10.1371/journal.pone.0177966
  • Ow, D. W., K. V. Wood, M. DeLuca, J. R. De Wet, D. R. Helinski & S. H. Howell, 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science, 234 (4778): 856-859. https://doi.org/10.1126/science.234.4778.856
  • Pan, C., L. Ye, L. Qin, X. Liu, Y. He, J. Wang, L. Chen & G. Lu, 2016. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Scientific Reports, 6 (1): 24765. https://doi.org/10.1038/srep24765
  • Qin, G., H. Gu, L. Ma, Y. Peng, X. W. Deng, Z. Chen & L.-J. Qu, 2007. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis. Cell Research, 17 (5): 471-482. https://doi.org/10.1038/cr.2007.40
  • Reed, K. M. & B. O. Bargmann, 2021. Protoplast regeneration and its use in new plant breeding technologies. Frontiers in Genome Editing, 20. https://doi.org/10.3389/fgeed.2021.734951
  • Ren, C., E. Gathunga, S. Li & Z. Liang, 2018. Application and optimization of the CRISPR/Cas9 system in grape. XII International Conference on Grapevine Breeding & Genetics 1248. https://doi.org/10.17660/ActaHortic.2019.1248.22
  • Ren, C., Y. Guo, J. Kong, F. Lecourieux, Z. Dai, S. Li & Z. Liang, 2020. Knockout of VvCCD8 gene in grapevine affects shoot branching. BMC Plant Biology, 20 (1): 1-8. https://doi.org/10.1186/s12870-020-2263-3
  • Ren, C., X. Liu, Z. Zhang, Y. Wang, W. Duan, S. Li & Z. Liang, 2016. CRISPR/Cas9-mediated efficient targeted mutagenesis in Chardonnay, Vitis vinifera L. Scientific Reports, 6 (1): 32289. https://doi.org/10.1038/srep32289
  • Sattar, M. N., Z. Iqbal, J. M. Al-Khayri & S. M. Jain, 2021. Induced genetic variations in fruit trees using new breeding tools: Food security and climate resilience. Plants, 10 (7): 1347. https://doi.org/10.3390/plants10071347
  • Secgin, Z., M. Kavas & K. Yildirim, 2021. Optimization of Agrobacterium-mediated transformation and regeneration for CRISPR/Cas9 genome editing of commercial tomato cultivars. Turkish Journal of Agriculture and Forestry, 45 (6): 704-716. https://doi.org/10.3906/tar-2009-49
  • Sentmanat, M. F., S. T. Peters, C. P. Florian, J. P. Connelly & S. M. Pruett-Miller, 2018. A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports, 8 (1): 888. https://doi.org/10.1038/s41598-018-19441-8
  • Shan, Q., Y. Wang, J. Li & C. Gao, 2014. Genome editing in rice and wheat using the CRISPR/Cas system. Nature Protocols, 9 (10): 2395-2410. https://doi.org/10.1038/nprot.2014.157
  • Svitashev, S., J. K. Young, C. Schwartz, H. Gao, S. C. Falco & A. M. Cigan, 2015. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiology, 169 (2): 931-945. https://doi.org/10.1104/pp.15.00793
  • Tang, T., X. Yu, H. Yang, Q. Gao, H. Ji, Y. Wang, G. Yan, Y. Peng, H. Luo & K. Liu, 2018. Development and validation of an effective CRISPR/Cas9 vector for efficiently isolating positive transformants and transgene-free mutants in a wide range of plant species. Frontiers in Plant Science, 9: 1533. https://doi.org/10.3389/fpls.2018.01533
  • Öncü-Öner, T., M. Temel, S. Pamay, A. K. Abaci & H. B. Kaya, 2023. an ımproved method for efficient DNA extraction from grapevine. International Journal of Life Sciences and Biotechnology, 6 (1): 21-36. https://doi.org/10.38001/ijlsb.1150387
  • Vouillot, L., A. Thélie & N. Pollet, 2015. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases. G3: Genes, Genomes, Genetics, 5 (3): 407-415. https://doi.org/10.1534/g3.114.015834
  • Wada, N., R. Ueta, Y. Osakabe & K. Osakabe, 2020. Precision genome editing in plants: state-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biology, 20: 1-12. https://doi.org/10.1186/s12870-020-02385-5
  • Wan, D., Y. Guo, Y. Cheng, Y. Hu, S. Xiao, Y. Wang & Y.-Q. Wen, 2020. CRISPR/Cas9-mediated mutagenesis of VvMLO3 results in enhanced resistance to powdery mildew in grapevine, Vitis vinifera. Horticulture Research, 7. https://doi.org/10.1038/s41438-020-0339-8
  • Wang, L., H. B. Kaya, N. Zhang, R. Rai, M. R. Willmann, S. C. Carpenter, A. C. Read, F. Martin, Z. Fei & J. E. Leach, 2021. Spelling changes and fluorescent tagging with prime editing vectors for plants. Frontiers in Genome Editing, 3: 617553. https://doi.org/10.3389/fgeed.2021.617553
  • Wang, S., S. Zhang, W. Wang, X. Xiong, F. Meng & X. Cui, 2015. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Reports, 34: 1473-1476. https://doi.org/10.1007/s00299-015-1816-7
  • Wang, X., M. Tu, D. Wang, J. Liu, Y. Li, Z. Li, Y. Wang & X. Wang, 2018. CRISPR/Cas9‐mediated efficient targeted mutagenesis in grape in the first generation. Plant Biotechnology Journal, 16 (4): 844-855. https://doi.org/10.1111/pbi.12832
  • Yang, H., J.-J. Wu, T. Tang, K.-D. Liu & C. Dai, 2017. CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus. Scientific Reports, 7 (1): 7489. https://doi.org/10.1038/s41598-017-07871-9
  • Yin, K., C. Gao & J.-L. Qiu, 2017. Progress and prospects in plant genome editing. Nature Plants, 3 (8): 1-6. https://doi.org/10.1038/nplants.2017.107
  • Zhang, N., H. M. Roberts, J. Van Eck & G. B. Martin, 2020. Generation and molecular characterization of CRISPR/Cas9-induced mutations in 63 immunity-associated genes in tomato reveals specificity and a range of gene modifications. Frontiers in Plant Science, 11: 10. https://doi.org/10.3389/fpls.2020.00010
  • Zhang, Y., J. Su, S. Duan, Y. Ao, J. Dai, J. Liu, P. Wang, Y. Li, B. Liu & D. Feng, 2011. A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods, 7 (1): 1-14. https://doi.org/10.1186/1746-4811-7-30
  • Zhao, F., Y.-J. Li, Y. Hu, Y.-R. Gao, X.-W. Zang, Q. Ding, Y.-J. Wang & Y.-Q. Wen, 2016. A highly efficient grapevine mesophyll protoplast system for transient gene expression and the study of disease resistance proteins. Plant Cell, Tissue and Organ Culture, 125: 43-57. https://doi.org/10.1007/s11240-015-0928-7
Toplam 62 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyoteknolojinin Genetik Modifikasyonsuz Kullanımı, Genetiği Değiştirilmiş Bahçe Bitkileri, Tarımsal Biyoteknoloji (Diğer)
Bölüm Makaleler
Yazarlar

Hilal Betul Kaya 0000-0002-2543-7212

Proje Numarası 2020-123
Erken Görünüm Tarihi 13 Mart 2025
Yayımlanma Tarihi 14 Mart 2025
Gönderilme Tarihi 8 Şubat 2024
Kabul Tarihi 2 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 62 Sayı: 1

Kaynak Göster

APA Kaya, H. B. (2025). Asma protoplastlarında CRISPR/Cas9 aracılı genom düzenleme. Journal of Agriculture Faculty of Ege University, 62(1), 117-131. https://doi.org/10.20289/zfdergi.1432614

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.