Kentsel mavi-yeşil altyapıda ekosistem servislerinin hesaplanması: Karşıyaka, İzmir
Yıl 2025,
Cilt: 62 Sayı: 1, 19 - 33, 14.03.2025
Ahsen Tuğçe Yüksel
,
Çiğdem Coşkun Hepcan
Öz
Amaç: Bu çalışmada İzmir Karşıyaka’daki kentsel mavi-yeşil altyapının sağladığı karbon depolama, hava kalitesi, yüzey akış düzenleme ve kentsel ısı adasının azaltılmasını kapsayan düzenleyici ekosistem servislerinin değerlendirilmesi amaçlanmıştır.
Materyal ve Yöntem: Kentsel mavi-yeşil altyapının sağladığı düzenleyici ekosistem servisleri uzaktan algılama teknikleri ve coğrafi bilgi sistemleriyle hesaplanmıştır. Veri üretimi ve analizler ArcGIS 10.8 yazılımında gerçekleştirilmiştir.
Bulgular: Mavi-yeşil altyapının karbon depolama kapasitesi 2.45 kg C m^2, partikül madde tutma kapasitesi 4.73 g/m^2’dir. Mavi-yeşil altyapıdaki toplam yüzey akışı tutma oranı 0.008 m^3/m^2 olarak hesaplanmıştır. Kentsel ısı adası yoğunluğu ise sıcak adaların kentin merkezi ve kuzeyinde, serin adaların ise güneyinde yer aldığını göstermektedir.
Sonuç: Karşıyaka’daki mavi-yeşil altyapının değerlendirmeye alınan düzenleyici ekosistem servisleri açısından ağırlıklı olarak düşük değerlere sahip olduğu belirlenmiştir. Kentsel dayanıklılığı artırmak için mavi-yeşil altyapının iyileştirilmesi gerekmektedir.
Teşekkür
This paper is produced from MSc thesis. The authors thank Mr. Phil Rousculp for his valuable contribution to this paper.
Kaynakça
- Beckett, K., P. Freer-Smith & G. Taylor, 2000. Particulate pollution capture by urban trees: effect of species and windspeed. Global Change Biology, 6 (8): 995-1003. https://doi.org/10.1046/j.1365-2486.2000.00376.x
- Berberoğlu, S., A. Çilek & Y. Ünlükaplan, 2019. A Framework for Resilient Cities to Climate Change: Green Revision Guidebook. In: PARDUS (Eds. H. Alphan& Ç. Coşkun Hepcan), Ankara, 168 pp.
- Bossard, M., J. Feranec & J. Otahel, 2000. CORINE land cover technical guide. Addendum, 2000 (40).
- Bottalico, F., G. Chirici, F. Giannetti, A. D. Marco, S. Nocentini, E. Paoletti, F. Salbitano, G. Sanesi, C. Serenelli, D. Travaglini, 2016. Air pollution removal by green infrastructures and urban forests in the city of Florence. Agriculture and Agricultural Science Procedia, 8: 243-251. https://doi.org/10.1016/J.AASPRO.2016.02.099
- Caneva, G., E. Cicinelli, A. Scolastri & F. Bartoli, 2020. Guidelines for urban community gardening: proposal of preliminary indicators for several ecosystem services (Rome, Italy). Urban Forestry & Urban Greening, 561: 26866. https://doi.org/10.1016/J.UFUG.2020.126866
- Codemo, A., A. Pianegonda, M. Ciolli, S. Favargiott & R. Albatici, 2022. Mapping pervious surfaces and canopy cover using high-resolution airborne imagery and digital elevation models to support urban planning. Sustainability, 14 (10): 2-21. https://doi.org/10.3390/su14106149
- Coşkun Hepcan, Ç. & Ş. Hepcan, 2020. Air pollution removal by trees in Asik Veysel recreation area, Izmir, Turkey. Fresenıus Environmental Bulletin, 29 (9): 7379-7385.
- Derkzen, M. L., A. J. A. van Teeffelen & P. H. Verburg, 2015. REVIEW: Quantifying urban ecosystem services based on high-resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52 (4): 1020-1032. https://doi.org/10.1111/1365-2664.12469
- Dobbs, C., A. Hernández-Moreno, S. Reyes-Paecke & M. D. Miranda, 2018. Exploring temporal dynamics of urban ecosystem services in latin america: the case of Bogota (Colombia) and Santiago (Chile). Ecological Indicators, 85: 1068-1080. https://doi.org/10.1016/J.ECOLIND.2017.11.062
- Durkaya, B., T. Varol & A. Durkaya, 2019. ‘Calculation of carbon stock change; Çaycuma example, 325 -334.’ International Congress on Agriculture and Forestry Research (8-10 April 2019, Marmaris), 530 s.
- Ersoy Tonyaloğlu, E & B. Kesgin Atak, 2020. Mapping and analysis of urban ecosystem services; The case of Efeler district of Aydın province. Akademik Ziraat Dergisi, 9 (1): 71-80. https://doi.org/10.29278/azd.732799
- Escobedo, F. J. & D. J. Nowak, 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 90 (3-4): 102-110. https://doi.org/10.1016/J.LANDURBPLAN.2008.10.021
- Freer-Smith, P., K. Beckett & G. Taylor, 2005. Deposition velocities to sorbus aria, acer campestre, populus deltoides x trichocarpa ‘beaupre’, Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 133 (1): 157-167. https://doi.org/10.1016/j.envpol.2004.03.031
- Fung, T. & W. Siu, 2000. Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing, 21 (5): 1011-1024. https://doi.org/10.1080/014311600210407
- Gao, G., M. Chang & Z. Zhao, 2019. Research on temporal and spatial variation of heat island effect in Xı’ An China. Applied Ecology and Environmental Research, 17 (1): 231-244. http://dx.doi.org/10.15666/aeer/1701_231244
- Ghorbani, S., E. Salehi, S. Faryadi & H. R. Jafari, 2022. Analyzing urban environmental justice based on supply, demand, and access to cooling ecosystem services in Tehran, Iran. Journal of Environmental Planning and Management, 65 (2): 288-310. https://doi.org/10.1080/09640568.2021.1882964
- Hepcan, Ş. & Ç. Coşkun Hepcan, 2017. Structural Analysis of Urban Green Areas in Karşıyaka. Project Report. İzmir, 32 pp.
- Hepcan, Ş. & Ç. Coşkun Hepcan, 2021. Assessing ecosystem services of urban green spaces: the case of Eugene Pioneer Cemetery, Eugene, OR (USA). Ege Üniversitesi Ziraat Fakültesi Dergisi, 58 (4): 513-522. https://doi.org/10.20289/zfdergi.900698
- Huang, B., Y. Yang, R. Li, H. Zheng, X. Wang, X. Wang & Y. Zhang, 2022. Integrating remotely sensed leaf area ındex with biome-bgc to quantify the impact of land use/land cover change on water retention in Beijing. Remote Sensing, 14 (3) :743. https://doi.org/10.3390/rs14030743
- Huang, C. & X. Ye, 2015. Spatial modeling of urban vegetation and land surface temperature: a case study of Beijing. Sustainability, 7 (7): 9478-9504. https://doi.org/10.3390/su7079478
- Imhoff, M. L., P. Zhang, R. E. Wolfe & L. Bounoa, 2010. Remote sensing of the urban heat ısland effect across biomes in the continental USA. Remote Sensing of Environment, 114 (3): 504-513. https://doi.org/10.1016/J.RSE.2009.10.008
- IPCC, 2019. Climate change and land: an ipcc special report. intergovernmental panel on climate change climate change and land: an ipcc special report on climate change. (Web page: https://www.ipcc.ch/srccl/) (Date accessed: 20 March 2023)
- IPCC, 2021. Climate change 2021 the physical science basis summary for policymakers working group i contribution to the sixth assessment report of the intergovernmental panel on climate change. (Web page: https://www.ipcc.ch/report/ar6/wg1/) (Date accessed: April 2023)
- IPCC, 2023. Climate Change 2023: Synthesis report contribution of working groups i, ii and iii to the sixth assessment report of the intergovernmental panel on climate change. (Web page: https://www.ipcc.ch/report/sixth-assessment-report-cycle/) (Date accessed: February 2024)
- Jin, X., G. Yang, X. Xu, H. Yang, H. Feng, Z. Li, J. Shen, Y. Lan & C. Zhao, 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 7 (10): 13251-13272. https://doi.org/10.3390/rs71013251
- Khan, S. M., S. Ullah & L. Chen, 2021. Comparison on land-use/land-cover ındices in explaining land surface temperature variations in the city of Beijing, China. Land, 10 (10). https://doi.org/10.3390/land10101018
- Khorrami B. & O. Gündüz, 2019. “Uzaktan algılama ve CBS’nin yüzey sıcaklığı ve kentsel ısı adası tespit ve analizinde uygulanması, 1-22”. Meteorolojik Uzaktan Algılama Sempozyumu (2019, Antalya), 108 s.
- Lee, J., D. Tolunay, E. Makineci, A. Çömez, Y. M. Son, R. Kim & Y. Son, 2016. Estimating the age-dependent changes in carbon stocks of scots pine (Pinus sylvestris l.) stands in Turkey. Annals of Forest Science, 73: 523-531. https://doi.org/10.1007/s13595-016-0546-5
- Letter, C. & G. Jäger, 2020. Simulating the potential of trees to reduce particulate matter pollution in urban areas throughout the year. Environment Development and Sustainability, 22: 4311-4321. https://doi.org/10.1007/s10668-019-00385-6
- Lin, Y., Z. Wang, C. Y. Jim, J. Li, J. Deng & J. Liu, 2020. Water as an urban heat sink: blue infrastructure alleviates urban heat ısland effect in mega-city agglomeration. Journal of Cleaner Production, 262: 121411. https://doi.org/10.1016/J.JCLEPRO.2020.121411
- Litschike, T. & W. Kuttler, 2008. On the reduction of urban particle concentration by vegetation-A Review. Meteorologische Zeitschrift,17 (3): 229-240. https://doi.org/10.1127/0941-2948/2008/0284
- Liu, Z., S. Wang & C. Fang, 2023. Spatio temporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. Journal of Geographical Sciences, 33 (6): 1226-1244. https://doi.org/10.1007/s11442-023-2127-5
- Lovett, G. M., 1994. Atmospheric deposition of nutrients and pollutants in north America: an ecological perspective. Ecological Application, 4 (4): 629-650.
- Ma, Q., Y. Li & L. Xu, 2021. Identification of green infrastructure networks based on ecosystem services in a rapidly urbanizing area. Journal of Cleaner Production, 300: 126945. https://doi.org/10.1016/J.JCLEPRO.2021.126945
- Maes, J., A. Teller, M. Erhard & C. Liquete, 2013. Mapping and Assessment of Ecosystems and their Services. An Analytical Framework for Ecosystem Assessments Under Action 5 of the EU Biodiversity Strategy to 2020. Publications Office of the European Union, Luxembourg, 57 pp.
- Manes, F., V. Silli, E. Salvatori, G. Incerti, G. Galante, L. Fusaro & C. Perrino, 2014. Urban ecosystem services: tree diversity and stability of pm10 removal in the metropolitan area of Rome. Annali Di Botanica, 4: 19-26. https://doi.org/10.4462/annbotrm-11746
- Marando, F., E. Salvatori, A. Sebastiani, L. Fusaro & F. Manes, 2019. Regulating ecosystem services and green infrastructure: assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392 (November 2018): 92-102. https://doi.org/10.1016/j.ecolmodel.2018.11.011
- Marando, F., E. Salvatori, L. Fusaro & F. Manes, 2016. Removal of pm 10 by forests as a nature-based solution for air quality improvement in the metropolitan city of Rome. Forest, 7 (7). https://doi.org/10.3390/f7070150
- MoEU, 2019. Republic of Türkiye ministry of environment urbanization and climate change national air quality monitoring network. (Web page: https://sim.csb.gov.tr/SERVICES/airquality) (Date accessed May 2022).
- Morabito, M., A. Crisci, G. Guerri, A. Meseri, L. Congedo & M. Munafo, 2021. Surface urban heat islands in Italian metropolitan cities: tree cover and impervious surface influences. Science of The Total Environment, 751: 142334. https://doi.org/10.1016/J.SCITOTENV.2020.142334
- Myeong, S., D. J. Nowak & M. J. Duggin, 2006. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment, 101 (2): 277-282. https://doi.org/10.1016/j.rse.2005.12.001
- Nowak, D. J., 1994. ‘Air pollution removal by Chicago’s Urban Forest, 63-81.’In: Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report. (Eds. E. G. McPherson, D. J. Nowak & R. A. Rowntree), Pennsylvania, 94 pp.
- Nowak, D. J., D. E. Crane & J. C. Stevens, 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4 (3-4): 115-123. https://doi.org/10.1016/j.ufug.2006.01.007
- Nowak, D. J., E. J. Greenfield, R. E. Hoehn & E. Lapoint, 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178: 229-236. https://doi.org/10.1016/J.ENVPOL.2013.03.019
- Orta-Ortiz, M. S. & D. Geneletti, 2022. What variables matter when designing nature-based solutions for stormwater management? a review of impacts on ecosystem services. Environmental Impact Assessment Review, 95: 106802. https://doi.org/10.1016/J.EIAR.2022.106802
- Özeren Alkan, M. & Ş. Hepcan, 2022. Water sensitive spatial planning in terms of sustainable stormwater management: the case of Bornova stream catchment (Izmir), Turkey. Urban Water Journal, 1-16. https://doi.org/10.1080/1573062X.2022.2060840
- Pugh, T. A. M., A. Mackenzie, J. D. Robert Whyatt & N. Hewitt, 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environmental Science & Technology, 46 (14): 7692-7699. https://doi.org/10.1021/es300826w
- Rendon, O. R., A. Garbutt, M. Skov, I. Möller, M. Alexander, R. Ballinger, K. Wyles, G.Smith, E. McKinley, J. Griffin, M. Thomas, K. Davidson, J. F. Pages, S. Read & N. Beaumont, 2019. A framework linking ecosystem services and human well-being: Saltmarsh as a case study. People and Nature, 1 (4): 486-496. https://doi.org/10.1002/pan3.10050
- Rupprecht, C. D. D., J. A. Byrne, J. G. Garden & J. Hero, 2015. Informal urban green space: a trilingual systematic review of its role for biodiversity and trends in the literature. Urban Forestry & Urban Greening, 14 (4): 883-908. https://doi.org/10.1016/J.UFUG.2015.08.009
- Saito, K., M. Aihara & K. Otowa, 2001. “Estimates of LAI for forest management in Okutama, 1-6”. 22nd Asian Conference on Remote Sensing (5-9 November 2001, Singapore), 1544 pp.
- Sasaki, Y., K. Matsuo, M. Yokoyama, M. Sasaki, T. Tanaka & S. Sadohara, 2018. Sea breeze effect mapping for mitigating summer urban warming: for making urban environmental climate map of Yokohama and its surrounding area. Urban Climate, 24 (2018): 529-550. https://doi.org/10.1016/J.UCLIM.2017.07.00
- Schwarz, N., S. Lautenbach & R. Seppelt, 2011. Exploring indicators for quantifying surface urban heat islands of european cities with MODIS land surface temperatures. Remote Sensing of Environment, 115 (12): 3175-3186. https://doi.org/10.1016/J.RSE.2011.07.003
- Şentürk, Y. & K. M. Çubukçu, 2022. Investigating cooling capacity of urban cool areas, case of Izmir. Çevre, Şehir ve İklim Dergisi, 1 (1): 106-126.
- Seto, K. C., B. Güneralp & L. R. Hutyra, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America 109 (40): 16083-16088. https://doi.org/10.1073/pnas.1211658109
- Silli, V., E. Salvatori & F. Manes, 2015. Removal of airborne particulate matter by vegetation in an urban park in the city of Rome (Italy): an ecosystem services perspective. Annali Di Botanica, 5 (2015): 53-62.
- Sivrikaya, F. & N. Bozali, 2012. Determining carbon stock: A case study from Türkoğlu planning unit. Bartın Orman Fakültesi Dergisi, 14 (1): 69-76.
- Smith, P., M. R. Ashmore, H. J. Black, P. J. Burgess, C. D. Evans, T. A. Quine, A. M. Thomson, K. Hicks & H. G. Orr, 2013. The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50 (4): 812-829. https://doi.org/10.1111/1365-2664.12016
- Strom, S., K. Nathan & J. Woland, 2013. Site engineering for landscape architects (Sixth edition). John Wiley & Sons, Hoboken, NJ, 348 pp.
- Sun, X., J. Wu, H. Tang & P. Yang, 2022. An urban hierarchy-based approach integrating ecosystem services into multiscale sustainable land use planning: The case of China. Resources Conservation and Recycling, 178: 106097. https://doi.org/10.1016/J.RESCONREC.2021.106097
- Tallis, M., G. Taylor, D. Sinnett & P. Freer-Smith, 2011. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of london, under current and future environments. Landscape and Urban Planning, 103 (2): 129-138. https://doi.org/10.1016/j.landurbplan.2011.07.003
- Tolunay, D., 2011.Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35 (3): 265-279. https://doi.org/10.3906/tar-0909-369
- TSMS, 2019. Turkish State Meteorological Service. (Web page: https://mgm.gov.tr/eng/forecast-cities.aspx?m=IZMIR) (Date accessed March 2022).
- TSMS, 2023. Turkish State Meteorological Service Rainfall Data. (Web page: https://www.mgm.gov.tr/eng/forecast-cities.aspx?m=IZMIR) (Date accessed: February 2023).
- USDA, 1986. Urban hydrology for small. United States Department of Agriculture, Soil Conservation, Technical Release 55 (TR-55), 164 pp.
- Vihervaara, P., J. Maes, L. Mononen, F. Santos, M. Adamescu, C. Cazacu, S. Luque, D. Geneletti & J. Maes, 2017. “Ecosystem Services Quantification, 75-83”. In: Mapping Ecosystem Services (Eds. B. Burkhard & M. Joachim). Pensoft, 373 pp.
- Wang, Y. & G. Zhou, 2000. Analysis on quantitative simulation of stomatal conductance of aneurolepidium Chinense. Acta Phytoecologica Sinica, 24 (6): 739-743.
- Wang, Y. C., J. K. Shen & W. N. Xiang, 2018. Ecosystem service of green infrastructure for adaptation to urban growth: function and configuration. Ecosystem Health and Sustainability, 4 (5): 132-143. https://doi.org/10.1080/20964129.2018.1474721
- Xiao, X. D., L. Dong, H. Yan, N. Yang & Y. Xiong, 2018. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40: 428-439. https://doi.org/10.1016/J.SCS.2018.04.002
- Xiao, Y. & Q. Xiao, 2018. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environmental Monitoring and Assessment, 190 (258): 2-15. https://doi.org/10.1007/s10661-023-11587
- Yang, J., J. McBride, J. Zhou & Z. Sun., 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3 (2): 65-78. https://doi.org/10.1016/J.UFUG.2004.09.001
- Yao, L., W. Wei, Y. Yu, X. Jun & C. Liding, 2018. Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model. Journal of Geographical Sciences, 28 (5): 656-668. https://doi.org/10.1007/s11442-018-1497-6
- Zhao, H., J. Tan, Z. Ren & Z. Wang, 2020. Spatiotemporal characteristics of urban surface temperature and its relationship with landscape metrics and vegetation cover in rapid urbanization region. Hindawi Complexity, 2020 (1): 1-12. https://doi.org/10.1155/2020/7892362
- Zhou, B., D. Rybski & J. P. Kropp, 2017. The role of city size and urban form in the surface urban heat island. Scientific Reports, 7 (1): 1-9. https://doi.org/10.1038/s41598-017-04242-2
- Zhou, L., G. Shen, C. Li, T. Chen, S. Li & R. Brown, 2021. Impacts of land covers on stormwater runoff and urban development: a land use and parcel-based regression approach. Land Use Policy, 103: 105280. https://doi.org/10.1016/J.LANDUSEPOL.2021.105280
Assessing ecosystem services of urban blue-green infrastructure in Karşıyaka, Izmir
Yıl 2025,
Cilt: 62 Sayı: 1, 19 - 33, 14.03.2025
Ahsen Tuğçe Yüksel
,
Çiğdem Coşkun Hepcan
Öz
Objective: This study aimed to calculate the regulating ecosystem services such as carbon storage, air pollution, runoff retention, and urban heat island reduction provided by the blue-green infrastructure of Karşıyaka, Izmir (Türkiye).
Material and Method: Regulating ecosystem services provided by urban blue-green infrastructure were calculated with remote sensing techniques and geographic information system. Data preparation and analyzes were performed in ArcGIS 10.8 software.
Results: The findings showed that the carbon storage potential of blue-green infrastructure was 2.45 kg C m2 while the particulate matter removal potential was 4.73 g/m2. The total rate of runoff in the BGI has been calculated to be 0.008 m^3/m^2. The urban heat island intensity index showed that the hot islands were located in the middle and north, and the cool islands were located in the south of the city.
Conclusion: It has been determined that the blue-green infrastructure in Karşıyaka has predominantly low values in terms of the regulating ecosystem services evaluated. It has been concluded that the blue-green infrastructure needs to be improved to boost ecosystem services and urban resilience.
Teşekkür
This paper is produced from MSc thesis. The authors thank Mr. Phil Rousculp for his valuable contribution to this paper.
Kaynakça
- Beckett, K., P. Freer-Smith & G. Taylor, 2000. Particulate pollution capture by urban trees: effect of species and windspeed. Global Change Biology, 6 (8): 995-1003. https://doi.org/10.1046/j.1365-2486.2000.00376.x
- Berberoğlu, S., A. Çilek & Y. Ünlükaplan, 2019. A Framework for Resilient Cities to Climate Change: Green Revision Guidebook. In: PARDUS (Eds. H. Alphan& Ç. Coşkun Hepcan), Ankara, 168 pp.
- Bossard, M., J. Feranec & J. Otahel, 2000. CORINE land cover technical guide. Addendum, 2000 (40).
- Bottalico, F., G. Chirici, F. Giannetti, A. D. Marco, S. Nocentini, E. Paoletti, F. Salbitano, G. Sanesi, C. Serenelli, D. Travaglini, 2016. Air pollution removal by green infrastructures and urban forests in the city of Florence. Agriculture and Agricultural Science Procedia, 8: 243-251. https://doi.org/10.1016/J.AASPRO.2016.02.099
- Caneva, G., E. Cicinelli, A. Scolastri & F. Bartoli, 2020. Guidelines for urban community gardening: proposal of preliminary indicators for several ecosystem services (Rome, Italy). Urban Forestry & Urban Greening, 561: 26866. https://doi.org/10.1016/J.UFUG.2020.126866
- Codemo, A., A. Pianegonda, M. Ciolli, S. Favargiott & R. Albatici, 2022. Mapping pervious surfaces and canopy cover using high-resolution airborne imagery and digital elevation models to support urban planning. Sustainability, 14 (10): 2-21. https://doi.org/10.3390/su14106149
- Coşkun Hepcan, Ç. & Ş. Hepcan, 2020. Air pollution removal by trees in Asik Veysel recreation area, Izmir, Turkey. Fresenıus Environmental Bulletin, 29 (9): 7379-7385.
- Derkzen, M. L., A. J. A. van Teeffelen & P. H. Verburg, 2015. REVIEW: Quantifying urban ecosystem services based on high-resolution data of urban green space: an assessment for Rotterdam, the Netherlands. Journal of Applied Ecology, 52 (4): 1020-1032. https://doi.org/10.1111/1365-2664.12469
- Dobbs, C., A. Hernández-Moreno, S. Reyes-Paecke & M. D. Miranda, 2018. Exploring temporal dynamics of urban ecosystem services in latin america: the case of Bogota (Colombia) and Santiago (Chile). Ecological Indicators, 85: 1068-1080. https://doi.org/10.1016/J.ECOLIND.2017.11.062
- Durkaya, B., T. Varol & A. Durkaya, 2019. ‘Calculation of carbon stock change; Çaycuma example, 325 -334.’ International Congress on Agriculture and Forestry Research (8-10 April 2019, Marmaris), 530 s.
- Ersoy Tonyaloğlu, E & B. Kesgin Atak, 2020. Mapping and analysis of urban ecosystem services; The case of Efeler district of Aydın province. Akademik Ziraat Dergisi, 9 (1): 71-80. https://doi.org/10.29278/azd.732799
- Escobedo, F. J. & D. J. Nowak, 2009. Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning, 90 (3-4): 102-110. https://doi.org/10.1016/J.LANDURBPLAN.2008.10.021
- Freer-Smith, P., K. Beckett & G. Taylor, 2005. Deposition velocities to sorbus aria, acer campestre, populus deltoides x trichocarpa ‘beaupre’, Pinus nigra and x Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environmental Pollution, 133 (1): 157-167. https://doi.org/10.1016/j.envpol.2004.03.031
- Fung, T. & W. Siu, 2000. Environmental quality and its changes, an analysis using NDVI. International Journal of Remote Sensing, 21 (5): 1011-1024. https://doi.org/10.1080/014311600210407
- Gao, G., M. Chang & Z. Zhao, 2019. Research on temporal and spatial variation of heat island effect in Xı’ An China. Applied Ecology and Environmental Research, 17 (1): 231-244. http://dx.doi.org/10.15666/aeer/1701_231244
- Ghorbani, S., E. Salehi, S. Faryadi & H. R. Jafari, 2022. Analyzing urban environmental justice based on supply, demand, and access to cooling ecosystem services in Tehran, Iran. Journal of Environmental Planning and Management, 65 (2): 288-310. https://doi.org/10.1080/09640568.2021.1882964
- Hepcan, Ş. & Ç. Coşkun Hepcan, 2017. Structural Analysis of Urban Green Areas in Karşıyaka. Project Report. İzmir, 32 pp.
- Hepcan, Ş. & Ç. Coşkun Hepcan, 2021. Assessing ecosystem services of urban green spaces: the case of Eugene Pioneer Cemetery, Eugene, OR (USA). Ege Üniversitesi Ziraat Fakültesi Dergisi, 58 (4): 513-522. https://doi.org/10.20289/zfdergi.900698
- Huang, B., Y. Yang, R. Li, H. Zheng, X. Wang, X. Wang & Y. Zhang, 2022. Integrating remotely sensed leaf area ındex with biome-bgc to quantify the impact of land use/land cover change on water retention in Beijing. Remote Sensing, 14 (3) :743. https://doi.org/10.3390/rs14030743
- Huang, C. & X. Ye, 2015. Spatial modeling of urban vegetation and land surface temperature: a case study of Beijing. Sustainability, 7 (7): 9478-9504. https://doi.org/10.3390/su7079478
- Imhoff, M. L., P. Zhang, R. E. Wolfe & L. Bounoa, 2010. Remote sensing of the urban heat ısland effect across biomes in the continental USA. Remote Sensing of Environment, 114 (3): 504-513. https://doi.org/10.1016/J.RSE.2009.10.008
- IPCC, 2019. Climate change and land: an ipcc special report. intergovernmental panel on climate change climate change and land: an ipcc special report on climate change. (Web page: https://www.ipcc.ch/srccl/) (Date accessed: 20 March 2023)
- IPCC, 2021. Climate change 2021 the physical science basis summary for policymakers working group i contribution to the sixth assessment report of the intergovernmental panel on climate change. (Web page: https://www.ipcc.ch/report/ar6/wg1/) (Date accessed: April 2023)
- IPCC, 2023. Climate Change 2023: Synthesis report contribution of working groups i, ii and iii to the sixth assessment report of the intergovernmental panel on climate change. (Web page: https://www.ipcc.ch/report/sixth-assessment-report-cycle/) (Date accessed: February 2024)
- Jin, X., G. Yang, X. Xu, H. Yang, H. Feng, Z. Li, J. Shen, Y. Lan & C. Zhao, 2015. Combined multi-temporal optical and radar parameters for estimating LAI and biomass in winter wheat using HJ and RADARSAR-2 data. Remote Sensing, 7 (10): 13251-13272. https://doi.org/10.3390/rs71013251
- Khan, S. M., S. Ullah & L. Chen, 2021. Comparison on land-use/land-cover ındices in explaining land surface temperature variations in the city of Beijing, China. Land, 10 (10). https://doi.org/10.3390/land10101018
- Khorrami B. & O. Gündüz, 2019. “Uzaktan algılama ve CBS’nin yüzey sıcaklığı ve kentsel ısı adası tespit ve analizinde uygulanması, 1-22”. Meteorolojik Uzaktan Algılama Sempozyumu (2019, Antalya), 108 s.
- Lee, J., D. Tolunay, E. Makineci, A. Çömez, Y. M. Son, R. Kim & Y. Son, 2016. Estimating the age-dependent changes in carbon stocks of scots pine (Pinus sylvestris l.) stands in Turkey. Annals of Forest Science, 73: 523-531. https://doi.org/10.1007/s13595-016-0546-5
- Letter, C. & G. Jäger, 2020. Simulating the potential of trees to reduce particulate matter pollution in urban areas throughout the year. Environment Development and Sustainability, 22: 4311-4321. https://doi.org/10.1007/s10668-019-00385-6
- Lin, Y., Z. Wang, C. Y. Jim, J. Li, J. Deng & J. Liu, 2020. Water as an urban heat sink: blue infrastructure alleviates urban heat ısland effect in mega-city agglomeration. Journal of Cleaner Production, 262: 121411. https://doi.org/10.1016/J.JCLEPRO.2020.121411
- Litschike, T. & W. Kuttler, 2008. On the reduction of urban particle concentration by vegetation-A Review. Meteorologische Zeitschrift,17 (3): 229-240. https://doi.org/10.1127/0941-2948/2008/0284
- Liu, Z., S. Wang & C. Fang, 2023. Spatio temporal evolution and influencing mechanism of ecosystem service value in the Guangdong-Hong Kong-Macao Greater Bay Area. Journal of Geographical Sciences, 33 (6): 1226-1244. https://doi.org/10.1007/s11442-023-2127-5
- Lovett, G. M., 1994. Atmospheric deposition of nutrients and pollutants in north America: an ecological perspective. Ecological Application, 4 (4): 629-650.
- Ma, Q., Y. Li & L. Xu, 2021. Identification of green infrastructure networks based on ecosystem services in a rapidly urbanizing area. Journal of Cleaner Production, 300: 126945. https://doi.org/10.1016/J.JCLEPRO.2021.126945
- Maes, J., A. Teller, M. Erhard & C. Liquete, 2013. Mapping and Assessment of Ecosystems and their Services. An Analytical Framework for Ecosystem Assessments Under Action 5 of the EU Biodiversity Strategy to 2020. Publications Office of the European Union, Luxembourg, 57 pp.
- Manes, F., V. Silli, E. Salvatori, G. Incerti, G. Galante, L. Fusaro & C. Perrino, 2014. Urban ecosystem services: tree diversity and stability of pm10 removal in the metropolitan area of Rome. Annali Di Botanica, 4: 19-26. https://doi.org/10.4462/annbotrm-11746
- Marando, F., E. Salvatori, A. Sebastiani, L. Fusaro & F. Manes, 2019. Regulating ecosystem services and green infrastructure: assessment of urban heat island effect mitigation in the municipality of Rome, Italy. Ecological Modelling, 392 (November 2018): 92-102. https://doi.org/10.1016/j.ecolmodel.2018.11.011
- Marando, F., E. Salvatori, L. Fusaro & F. Manes, 2016. Removal of pm 10 by forests as a nature-based solution for air quality improvement in the metropolitan city of Rome. Forest, 7 (7). https://doi.org/10.3390/f7070150
- MoEU, 2019. Republic of Türkiye ministry of environment urbanization and climate change national air quality monitoring network. (Web page: https://sim.csb.gov.tr/SERVICES/airquality) (Date accessed May 2022).
- Morabito, M., A. Crisci, G. Guerri, A. Meseri, L. Congedo & M. Munafo, 2021. Surface urban heat islands in Italian metropolitan cities: tree cover and impervious surface influences. Science of The Total Environment, 751: 142334. https://doi.org/10.1016/J.SCITOTENV.2020.142334
- Myeong, S., D. J. Nowak & M. J. Duggin, 2006. A temporal analysis of urban forest carbon storage using remote sensing. Remote Sensing of Environment, 101 (2): 277-282. https://doi.org/10.1016/j.rse.2005.12.001
- Nowak, D. J., 1994. ‘Air pollution removal by Chicago’s Urban Forest, 63-81.’In: Chicago’s Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project. USDA Forest Service General Technical Report. (Eds. E. G. McPherson, D. J. Nowak & R. A. Rowntree), Pennsylvania, 94 pp.
- Nowak, D. J., D. E. Crane & J. C. Stevens, 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry and Urban Greening, 4 (3-4): 115-123. https://doi.org/10.1016/j.ufug.2006.01.007
- Nowak, D. J., E. J. Greenfield, R. E. Hoehn & E. Lapoint, 2013. Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178: 229-236. https://doi.org/10.1016/J.ENVPOL.2013.03.019
- Orta-Ortiz, M. S. & D. Geneletti, 2022. What variables matter when designing nature-based solutions for stormwater management? a review of impacts on ecosystem services. Environmental Impact Assessment Review, 95: 106802. https://doi.org/10.1016/J.EIAR.2022.106802
- Özeren Alkan, M. & Ş. Hepcan, 2022. Water sensitive spatial planning in terms of sustainable stormwater management: the case of Bornova stream catchment (Izmir), Turkey. Urban Water Journal, 1-16. https://doi.org/10.1080/1573062X.2022.2060840
- Pugh, T. A. M., A. Mackenzie, J. D. Robert Whyatt & N. Hewitt, 2012. Effectiveness of green infrastructure for improvement of air quality in urban street canyons. Environmental Science & Technology, 46 (14): 7692-7699. https://doi.org/10.1021/es300826w
- Rendon, O. R., A. Garbutt, M. Skov, I. Möller, M. Alexander, R. Ballinger, K. Wyles, G.Smith, E. McKinley, J. Griffin, M. Thomas, K. Davidson, J. F. Pages, S. Read & N. Beaumont, 2019. A framework linking ecosystem services and human well-being: Saltmarsh as a case study. People and Nature, 1 (4): 486-496. https://doi.org/10.1002/pan3.10050
- Rupprecht, C. D. D., J. A. Byrne, J. G. Garden & J. Hero, 2015. Informal urban green space: a trilingual systematic review of its role for biodiversity and trends in the literature. Urban Forestry & Urban Greening, 14 (4): 883-908. https://doi.org/10.1016/J.UFUG.2015.08.009
- Saito, K., M. Aihara & K. Otowa, 2001. “Estimates of LAI for forest management in Okutama, 1-6”. 22nd Asian Conference on Remote Sensing (5-9 November 2001, Singapore), 1544 pp.
- Sasaki, Y., K. Matsuo, M. Yokoyama, M. Sasaki, T. Tanaka & S. Sadohara, 2018. Sea breeze effect mapping for mitigating summer urban warming: for making urban environmental climate map of Yokohama and its surrounding area. Urban Climate, 24 (2018): 529-550. https://doi.org/10.1016/J.UCLIM.2017.07.00
- Schwarz, N., S. Lautenbach & R. Seppelt, 2011. Exploring indicators for quantifying surface urban heat islands of european cities with MODIS land surface temperatures. Remote Sensing of Environment, 115 (12): 3175-3186. https://doi.org/10.1016/J.RSE.2011.07.003
- Şentürk, Y. & K. M. Çubukçu, 2022. Investigating cooling capacity of urban cool areas, case of Izmir. Çevre, Şehir ve İklim Dergisi, 1 (1): 106-126.
- Seto, K. C., B. Güneralp & L. R. Hutyra, 2012. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America 109 (40): 16083-16088. https://doi.org/10.1073/pnas.1211658109
- Silli, V., E. Salvatori & F. Manes, 2015. Removal of airborne particulate matter by vegetation in an urban park in the city of Rome (Italy): an ecosystem services perspective. Annali Di Botanica, 5 (2015): 53-62.
- Sivrikaya, F. & N. Bozali, 2012. Determining carbon stock: A case study from Türkoğlu planning unit. Bartın Orman Fakültesi Dergisi, 14 (1): 69-76.
- Smith, P., M. R. Ashmore, H. J. Black, P. J. Burgess, C. D. Evans, T. A. Quine, A. M. Thomson, K. Hicks & H. G. Orr, 2013. The role of ecosystems and their management in regulating climate, and soil, water and air quality. Journal of Applied Ecology, 50 (4): 812-829. https://doi.org/10.1111/1365-2664.12016
- Strom, S., K. Nathan & J. Woland, 2013. Site engineering for landscape architects (Sixth edition). John Wiley & Sons, Hoboken, NJ, 348 pp.
- Sun, X., J. Wu, H. Tang & P. Yang, 2022. An urban hierarchy-based approach integrating ecosystem services into multiscale sustainable land use planning: The case of China. Resources Conservation and Recycling, 178: 106097. https://doi.org/10.1016/J.RESCONREC.2021.106097
- Tallis, M., G. Taylor, D. Sinnett & P. Freer-Smith, 2011. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of london, under current and future environments. Landscape and Urban Planning, 103 (2): 129-138. https://doi.org/10.1016/j.landurbplan.2011.07.003
- Tolunay, D., 2011.Total carbon stocks and carbon accumulation in living tree biomass in forest ecosystems of Turkey. Turkish Journal of Agriculture and Forestry, 35 (3): 265-279. https://doi.org/10.3906/tar-0909-369
- TSMS, 2019. Turkish State Meteorological Service. (Web page: https://mgm.gov.tr/eng/forecast-cities.aspx?m=IZMIR) (Date accessed March 2022).
- TSMS, 2023. Turkish State Meteorological Service Rainfall Data. (Web page: https://www.mgm.gov.tr/eng/forecast-cities.aspx?m=IZMIR) (Date accessed: February 2023).
- USDA, 1986. Urban hydrology for small. United States Department of Agriculture, Soil Conservation, Technical Release 55 (TR-55), 164 pp.
- Vihervaara, P., J. Maes, L. Mononen, F. Santos, M. Adamescu, C. Cazacu, S. Luque, D. Geneletti & J. Maes, 2017. “Ecosystem Services Quantification, 75-83”. In: Mapping Ecosystem Services (Eds. B. Burkhard & M. Joachim). Pensoft, 373 pp.
- Wang, Y. & G. Zhou, 2000. Analysis on quantitative simulation of stomatal conductance of aneurolepidium Chinense. Acta Phytoecologica Sinica, 24 (6): 739-743.
- Wang, Y. C., J. K. Shen & W. N. Xiang, 2018. Ecosystem service of green infrastructure for adaptation to urban growth: function and configuration. Ecosystem Health and Sustainability, 4 (5): 132-143. https://doi.org/10.1080/20964129.2018.1474721
- Xiao, X. D., L. Dong, H. Yan, N. Yang & Y. Xiong, 2018. The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou Industrial Park. Sustainable Cities and Society, 40: 428-439. https://doi.org/10.1016/J.SCS.2018.04.002
- Xiao, Y. & Q. Xiao, 2018. Identifying key areas of ecosystem services potential to improve ecological management in Chongqing City, southwest China. Environmental Monitoring and Assessment, 190 (258): 2-15. https://doi.org/10.1007/s10661-023-11587
- Yang, J., J. McBride, J. Zhou & Z. Sun., 2005. The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening, 3 (2): 65-78. https://doi.org/10.1016/J.UFUG.2004.09.001
- Yao, L., W. Wei, Y. Yu, X. Jun & C. Liding, 2018. Rainfall-runoff risk characteristics of urban function zones in Beijing using the SCS-CN model. Journal of Geographical Sciences, 28 (5): 656-668. https://doi.org/10.1007/s11442-018-1497-6
- Zhao, H., J. Tan, Z. Ren & Z. Wang, 2020. Spatiotemporal characteristics of urban surface temperature and its relationship with landscape metrics and vegetation cover in rapid urbanization region. Hindawi Complexity, 2020 (1): 1-12. https://doi.org/10.1155/2020/7892362
- Zhou, B., D. Rybski & J. P. Kropp, 2017. The role of city size and urban form in the surface urban heat island. Scientific Reports, 7 (1): 1-9. https://doi.org/10.1038/s41598-017-04242-2
- Zhou, L., G. Shen, C. Li, T. Chen, S. Li & R. Brown, 2021. Impacts of land covers on stormwater runoff and urban development: a land use and parcel-based regression approach. Land Use Policy, 103: 105280. https://doi.org/10.1016/J.LANDUSEPOL.2021.105280