Araştırma Makalesi
BibTex RIS Kaynak Göster

Damla sulama sistemlerinde 2B ıslatma desenlerinin tahmini için bir simulasyon modeli

Yıl 2025, Cilt: 62 Sayı: 4, 465 - 476, 12.12.2025
https://doi.org/10.20289/zfdergi.1527322

Öz

Amaç: Bu çalışmanın amacı, damla sulama sistemlerinde oluşan 2 boyutlu ıslatma deseninin analitik olarak tanımlanmasına olanak tanıyan bir model geliştirmektir.
Materyal ve Yöntem: Modelde ıslatma deseni kesik elips olarak simüle edilmiştir. Toprak yüzeyindeki ıslatma yarıçapı, toprak profilindeki maksimum ıslatma derinliği ve genişliği ve bu maksimum ıslatma genişliğinin toprak yüzeyinden itibaren derinliği dikkate alınmıştır. Denemeler, uniform toprak profili koşullarında ve tınlı kum bünyeye sahip toprakta gerçekleştirilmiştir. Araştırma, farklı damlatıcı debilerinde gerçekleştirilmiştir.
Araştırma Bulguları: Bu çalışmada geliştirilen sayısal modeller, farklı damlatıcı debilerinde herhangi bir t anında oluşan ıslatma yarıçapı, maksimum ıslatma derinliği ve ıslak kesit alanını sırasıyla 0.961, 0.947 ve 0.995 belirleme katsayıları ile tahmin etmektedir. Sonuçlar, damlatıcı debisi arttıkça 2B kesit alanının da arttığını göstermektedir.
Sonuç: Bu çalışmanın sonuçları, önerilen modelin ıslatma deseninin genel şeklini tanımladığını ve desenin ıslatma yarıçapı, maksimum ıslatma derinliği ve kesit alanını belirlemek için kullanılabileceğini göstermiştir.

Etik Beyan

Ege Üniversitesi Ziraat Fakültesi Dergisi’ne yolladığımız “A simulation model for estimating 2D wetting patterns in drip irrigation systems” isimli çalıma, hayvan deneyleri, anket, mülakat, odak grup çalışması vb. çalışmaları içermediği için Etik Kurul Onayı gerekmemektedir.

Kaynakça

  • Al-Ogaidi, A.A.M., A. Wayayok, M. R. Kamal & A.F. Abdullah, 2015. A modified empirical model for estimating the wetted zone dimensions under drip irrigation. Jurnal Teknologi, 76 (15): 69-73. https://doi.org/10.11113/jt.v76.5954
  • Al-Ogaidi, A.A.M., A. Wayayok, M.K. Rowshon & A.F. Abdullah, 2016. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management, 176: 203-213. https://doi.org/10.1016/j.agwat.2016.06.002
  • Amin, M.S. & A.I. Ekhmaj, 2006. “DIPAC-drip irrigation water distribution pattern calculator, 503-513”. In: 7th International Micro Irrigation Congress, (13-15 September 2006, Kuala Lumpur, Malaysia) 1016 pp.
  • Badr, A.E. & M.E. Abuarab, 2013. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Irrigation Science, 31 (3): 317-332. https://doi.org/10.1007/s00271-011-0306-0
  • Bhatnagar, P. & H. Chauhan, 2008. Soil water movement under a single surface trickle source. Agricultural Water Management, 95 (7): 799-808. https://doi.org/10.1016/j.agwat.2008.02.003
  • Bresler, E., 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1 (1): 3-17. https://doi.org/10.1007/BF00269003
  • Chu, S.T., 1994. Green-Ampt analysis of wetting patterns for surface emitters. Journal of Irrigation and Drainage Engineering, 120 (2): 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120(1994)120:2(414)
  • Dabral, P., P. Pandey, A. Pandey, K. Singh & M.S. Singh, 2012. Modelling of wetting pattern under trickle source in sandy soil of Nirjuli, Arunachal Pradesh (India). Irrigation Science, 30 (4): 287-292. https://doi.org/10.1007/s00271-011-0283-3
  • Demir, V., H. Yürdem, A. Yazgi & T. Günhan, 2019. Effect of different pipe wall thicknesses on flow rate of cylindrical type integrated emitters used in drip irrigation pipes, Journal of Agriculture Faculty of Ege University, 56 (2): 213-220. https://doi.org/10.20289/zfdergi.485854
  • Elmaloglou, S. & E. Diamantopoulos, 2007. Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation. Agricultural Water Management, 90 (1-2): 160-163. https://doi.org/10.1016/j.agwat.2007.02.005
  • Elmaloglou, S. & N. Malamos, 2006. A methodology for determining the surface and vertical components of the wetting front under a surface point source, with root water uptake and evaporation. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 55 (1): 99-111. https://doi.org/10.1002/ird.220
  • Elmaloglou, S., K.X. Soulis & N. Dercas, 2013. Simulation of soil water dynamics under surface drip irrigation from equidistant line sources. Water Resources Management, 27 (12): 4131-4148. https://doi.org/10.1007/s11269-013-0399-8
  • Healy, R. & A. Warrick, 1988. A generalized solution to infiltration from a surface point source. Soil Science Society of America Journal, 52 (5): 1245-1251. https://doi.org/10.2136/sssaj1988.03615995005200050006x
  • Kilic, M., 2020. A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system. Agricultural Water Management, 228 (105898): 1-12. https://doi.org/10.1016/j.agwat.2019.105898
  • Kuklik, V. & T. Dai Hoang, 2014. Soil moisture regimes under point irrigation. Agricultural Water Management, 134: 42-49. https://doi.org/10.1016/j.agwat.2013.11.012
  • Lazarovitch, N., A. Warrick, A. Furman & J. Simunek, 2007. Subsurface water distribution from drip irrigation described by moment analyses. Vadose Zone Journal, 6 (1): 116-123. https://doi.org/10.2136/vzj2006.0052
  • Li, J-S., H-Y. Ji, L. Bei & Y-C. Liu, 2007. Wetting patterns and nitrate distributions in layered-textural soils under drip irrigation. Agricultural Sciences in China, 6 (8): 970-980. https://doi.org/10.1016/S1671-2927(07)60136-9
  • Li, J., J. Zhang & L. Ren, 2003. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source. Irrigation Science, 22 (1): 19-30. https://doi.org/10.1007/s00271-003-0064-8
  • Malek, K. & R. T. Peters, 2011. Wetting pattern models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137 (8): 530-536. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320
  • Molai, K.M., A.A.M. Liaghat & F. Abbasi, 2008. Estimating soil moisture pattern in subsurface drip irrigation using dimensional analysis method. Iranian Journal of Agricultural Sciences 39 (2): 371-378.
  • Moncef, H. & Z. Khemaies, 2016. An analytical approach to predict the moistened bulb volume beneath a surface point source. Agricultural Water Management, 166: 123-129. https://doi.org/10.1016/j.agwat.2015.12.020
  • Moncef, H., D. Hedi, B. Jelloul & M. Mohamed, 2002. Approach for predicting the wetting front depth beneath a surface point source: theory and numerical aspect. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 51 (4): 347-360. https://doi.org/10.1002/ird.60
  • Naglič, B., C. Kechavarzi, F. Coulon & M. Pintar, 2014. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation Science, 32 (6): 421-436. https://doi.org/10.1007/s00271-014-0439-z
  • Philip, J., 1984. Travel times from buried and surface infiltration point sources. Water Resources Research, 20 (7): 990-994. https://doi.org/10.1029/WR020i007p00990
  • Schwartzman, M. & B. Zur, 1986. Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering, 112 (3): 242-253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242)
  • Sepaskhah, A. R. & H. Chitsaz, 2004. Validating the green-ampt analysis of wetted radius and depth in trickle irrigation. Biosystems Engineering, 89 (2): 231-236. https://doi.org/10.1016/j.biosystemseng.2004.06.011
  • Taghavi, S.A., M.A. Mariño & D.E. Rolston, 1984. Infiltration from trickle irrigation source. Journal of Irrigation and Drainage Engineering, 110 (4): 331-341. https://doi.org/10.1061/(ASCE)0733-9437(1984)110:4(331)
  • Thabet, M. & K. Zayani, 2008. Wetting patterns under trickle source in a loamy sand soil of south Tunisia. American-Eurasian Journal of Agricultural & Environmental Sciences, 3 (1): 38-42.
  • Tian, F., L. Gao & H. Hu, 2011. A two-dimensional Richards equation solver based on CVODE for variably saturated soil water movement. Science China Technological Sciences, 54 (12): 3251-3264. https://doi.org/10.1007/s11431-011-4566-y
  • Zur, B., 1996. Wetted soil volume as a design objective in trickle irrigation. Irrigation Science, 16 (3): 101-105. https://doi.org/10.1007/BF02215617

A simulation model for estimating 2D wetting patterns in drip irrigation systems

Yıl 2025, Cilt: 62 Sayı: 4, 465 - 476, 12.12.2025
https://doi.org/10.20289/zfdergi.1527322

Öz

Objective: The aim of this study is to develop a model that allows the 2D wetting pattern that occurs in drip irrigation systems to be analytically defined.
Material and Methods: In the model, the wetting pattern is simulated as a truncated ellipse. Wetting radius at the soil surface, the maximum wetting depth and width in the soil profile, and the depth of this maximum wetting width from the soil surface were taken into account. The experiments were carried out under uniform profile conditions and on soil samples with a loamy sand texture. The investigation was carried out for different emitter discharges.
Results: The wetting radius, maximum wetting depth, and cross-sectional area of the wetting pattern occurring at any time t of the water application period under each emitter discharge are estimated with the determination coefficients of 0.961, 0.947 and 0.995, respectively, by the numerical models developed in this study. The results show that the values of 2D cross-sectional area also increase as the emitter discharge increases.
Conclusion: The results of this study indicate that the proposed model defines the overall shape of the wetting pattern and can be used to determine the cross-sectional area of the pattern.

Destekleyen Kurum

This study did not receive funding from any organisation.

Kaynakça

  • Al-Ogaidi, A.A.M., A. Wayayok, M. R. Kamal & A.F. Abdullah, 2015. A modified empirical model for estimating the wetted zone dimensions under drip irrigation. Jurnal Teknologi, 76 (15): 69-73. https://doi.org/10.11113/jt.v76.5954
  • Al-Ogaidi, A.A.M., A. Wayayok, M.K. Rowshon & A.F. Abdullah, 2016. Wetting patterns estimation under drip irrigation systems using an enhanced empirical model. Agricultural Water Management, 176: 203-213. https://doi.org/10.1016/j.agwat.2016.06.002
  • Amin, M.S. & A.I. Ekhmaj, 2006. “DIPAC-drip irrigation water distribution pattern calculator, 503-513”. In: 7th International Micro Irrigation Congress, (13-15 September 2006, Kuala Lumpur, Malaysia) 1016 pp.
  • Badr, A.E. & M.E. Abuarab, 2013. Soil moisture distribution patterns under surface and subsurface drip irrigation systems in sandy soil using neutron scattering technique. Irrigation Science, 31 (3): 317-332. https://doi.org/10.1007/s00271-011-0306-0
  • Bhatnagar, P. & H. Chauhan, 2008. Soil water movement under a single surface trickle source. Agricultural Water Management, 95 (7): 799-808. https://doi.org/10.1016/j.agwat.2008.02.003
  • Bresler, E., 1978. Analysis of trickle irrigation with application to design problems. Irrigation Science, 1 (1): 3-17. https://doi.org/10.1007/BF00269003
  • Chu, S.T., 1994. Green-Ampt analysis of wetting patterns for surface emitters. Journal of Irrigation and Drainage Engineering, 120 (2): 414-421. https://doi.org/10.1061/(ASCE)0733-9437(1994)120(1994)120:2(414)
  • Dabral, P., P. Pandey, A. Pandey, K. Singh & M.S. Singh, 2012. Modelling of wetting pattern under trickle source in sandy soil of Nirjuli, Arunachal Pradesh (India). Irrigation Science, 30 (4): 287-292. https://doi.org/10.1007/s00271-011-0283-3
  • Demir, V., H. Yürdem, A. Yazgi & T. Günhan, 2019. Effect of different pipe wall thicknesses on flow rate of cylindrical type integrated emitters used in drip irrigation pipes, Journal of Agriculture Faculty of Ege University, 56 (2): 213-220. https://doi.org/10.20289/zfdergi.485854
  • Elmaloglou, S. & E. Diamantopoulos, 2007. Wetting front advance patterns and water losses by deep percolation under the root zone as influenced by pulsed drip irrigation. Agricultural Water Management, 90 (1-2): 160-163. https://doi.org/10.1016/j.agwat.2007.02.005
  • Elmaloglou, S. & N. Malamos, 2006. A methodology for determining the surface and vertical components of the wetting front under a surface point source, with root water uptake and evaporation. Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 55 (1): 99-111. https://doi.org/10.1002/ird.220
  • Elmaloglou, S., K.X. Soulis & N. Dercas, 2013. Simulation of soil water dynamics under surface drip irrigation from equidistant line sources. Water Resources Management, 27 (12): 4131-4148. https://doi.org/10.1007/s11269-013-0399-8
  • Healy, R. & A. Warrick, 1988. A generalized solution to infiltration from a surface point source. Soil Science Society of America Journal, 52 (5): 1245-1251. https://doi.org/10.2136/sssaj1988.03615995005200050006x
  • Kilic, M., 2020. A new analytical method for estimating the 3D volumetric wetting pattern under drip irrigation system. Agricultural Water Management, 228 (105898): 1-12. https://doi.org/10.1016/j.agwat.2019.105898
  • Kuklik, V. & T. Dai Hoang, 2014. Soil moisture regimes under point irrigation. Agricultural Water Management, 134: 42-49. https://doi.org/10.1016/j.agwat.2013.11.012
  • Lazarovitch, N., A. Warrick, A. Furman & J. Simunek, 2007. Subsurface water distribution from drip irrigation described by moment analyses. Vadose Zone Journal, 6 (1): 116-123. https://doi.org/10.2136/vzj2006.0052
  • Li, J-S., H-Y. Ji, L. Bei & Y-C. Liu, 2007. Wetting patterns and nitrate distributions in layered-textural soils under drip irrigation. Agricultural Sciences in China, 6 (8): 970-980. https://doi.org/10.1016/S1671-2927(07)60136-9
  • Li, J., J. Zhang & L. Ren, 2003. Water and nitrogen distribution as affected by fertigation of ammonium nitrate from a point source. Irrigation Science, 22 (1): 19-30. https://doi.org/10.1007/s00271-003-0064-8
  • Malek, K. & R. T. Peters, 2011. Wetting pattern models for drip irrigation: new empirical model. Journal of Irrigation and Drainage Engineering, 137 (8): 530-536. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000320
  • Molai, K.M., A.A.M. Liaghat & F. Abbasi, 2008. Estimating soil moisture pattern in subsurface drip irrigation using dimensional analysis method. Iranian Journal of Agricultural Sciences 39 (2): 371-378.
  • Moncef, H. & Z. Khemaies, 2016. An analytical approach to predict the moistened bulb volume beneath a surface point source. Agricultural Water Management, 166: 123-129. https://doi.org/10.1016/j.agwat.2015.12.020
  • Moncef, H., D. Hedi, B. Jelloul & M. Mohamed, 2002. Approach for predicting the wetting front depth beneath a surface point source: theory and numerical aspect. Irrigation and Drainage: The Journal of the International Commission on Irrigation and Drainage, 51 (4): 347-360. https://doi.org/10.1002/ird.60
  • Naglič, B., C. Kechavarzi, F. Coulon & M. Pintar, 2014. Numerical investigation of the influence of texture, surface drip emitter discharge rate and initial soil moisture condition on wetting pattern size. Irrigation Science, 32 (6): 421-436. https://doi.org/10.1007/s00271-014-0439-z
  • Philip, J., 1984. Travel times from buried and surface infiltration point sources. Water Resources Research, 20 (7): 990-994. https://doi.org/10.1029/WR020i007p00990
  • Schwartzman, M. & B. Zur, 1986. Emitter spacing and geometry of wetted soil volume. Journal of Irrigation and Drainage Engineering, 112 (3): 242-253. https://doi.org/10.1061/(ASCE)0733-9437(1986)112:3(242)
  • Sepaskhah, A. R. & H. Chitsaz, 2004. Validating the green-ampt analysis of wetted radius and depth in trickle irrigation. Biosystems Engineering, 89 (2): 231-236. https://doi.org/10.1016/j.biosystemseng.2004.06.011
  • Taghavi, S.A., M.A. Mariño & D.E. Rolston, 1984. Infiltration from trickle irrigation source. Journal of Irrigation and Drainage Engineering, 110 (4): 331-341. https://doi.org/10.1061/(ASCE)0733-9437(1984)110:4(331)
  • Thabet, M. & K. Zayani, 2008. Wetting patterns under trickle source in a loamy sand soil of south Tunisia. American-Eurasian Journal of Agricultural & Environmental Sciences, 3 (1): 38-42.
  • Tian, F., L. Gao & H. Hu, 2011. A two-dimensional Richards equation solver based on CVODE for variably saturated soil water movement. Science China Technological Sciences, 54 (12): 3251-3264. https://doi.org/10.1007/s11431-011-4566-y
  • Zur, B., 1996. Wetted soil volume as a design objective in trickle irrigation. Irrigation Science, 16 (3): 101-105. https://doi.org/10.1007/BF02215617
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sulama Sistemleri, Tarım Makineleri
Bölüm Araştırma Makalesi
Yazarlar

Vedat Demir 0000-0001-8341-9672

Murat Kılıç 0000-0002-7755-5595

Hüseyin Yürdem 0000-0003-2711-2697

Maciej Neugebauer 0000-0002-9067-3609

Cengiz Akdeniz 0000-0001-6234-1888

Yayımlanma Tarihi 12 Aralık 2025
Gönderilme Tarihi 10 Ekim 2024
Kabul Tarihi 22 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 62 Sayı: 4

Kaynak Göster

APA Demir, V., Kılıç, M., Yürdem, H., … Neugebauer, M. (2025). A simulation model for estimating 2D wetting patterns in drip irrigation systems. Journal of Agriculture Faculty of Ege University, 62(4), 465-476. https://doi.org/10.20289/zfdergi.1527322

      27559           trdizin ile ilgili görsel sonucu                 27560                    Clarivate Analysis ile ilgili görsel sonucu            CABI logo                      NAL Catalog (AGRICOLA), ile ilgili görsel sonucu             EBSCO Information Services 

                                                       Creative Commons Lisansı This website is licensed under the Creative Commons Attribution 4.0 International License.