Araştırma Makalesi
BibTex RIS Kaynak Göster

FACILITATING CONCEPTUAL CHANGE IN ATOM, MOLECULE, ION AND MATTER COCEPTS

Yıl 2014, Sayı: 23, 303 - 321, 01.12.2014

Öz

The main purpose of the study was to investigate the effects of conceptual change texts oriented instruction accompanied with analogies on seven grade students’ understanding of atom, molecule, ion and matter concepts. In addition, the effect of instruction on students’ attitudes toward science as a school subject and the effect of gender difference on understanding of atom, molecule, ion and matter concepts were investigated.. In this study, 70 students at seventh grade from two classes were participated and they were instructed by the same teacher. The study was conducted during 2004-2005 first semester. Two groups were selected randomly throughout five classes. One of the group was defined as control group and other group defined as experimental group. Students in control group were instructed traditional method and students experimental group were instructed by conceptual change text oriented instruction accompanied with analogies. Attitude Toward Science and Atom, Molecule, Ion, Matter Test were administered to both groups as a pre-test and post-test. ANOVA model was used to test hypothesis. The results showed that experimental group significantly better acquisition of the scientific conceptions related to atom, molecule, ion and matter concepts than the traditional group. On the other hand, no significant effect of gender difference on understanding of atom, molecule, ion and matter concepts and students’ attitudes toward science as a school subject was found.

Kaynakça

  • Anderson, C. W., Smith, E. L. (1983). Childerens’ preconceptions ad content area textbooks. In G. Duff, L. Rochler, J. Mason (Eds.), Comprehension instruction: Perspective and suggestions. New York: Longman, 187-201.
  • Ayas. A. & Ozmen, H. (2002). Students’ misconceptions about chemical reactions at secondary level. The First International Education Conference on Changing Times, Changing Needs, Eastern Mediterranean University Faculty of Education, Gazimagusa, Turkish Republic of Northern Cyprus.
  • Bodner, G. M., (1986). Constructivism: A Theory of knowledge, Journal of Chemical Education, 63, 873-878.
  • Boo, H. K. (1998). Students’ understanding of chemical bonds and the energetic of chemical reactions. Journal of Research in Science Teaching, 35, 569–581.
  • Blanco, A. & Prieto, t. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: a cross-age study (12 to 18). International Journal of Science Education, 19, 303-315.
  • Chambers,S. K. & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2),107-123.
  • Chiu, M.H. (2005). A national survey of students’ conceptions in chemistry in Taiwan. Chemical Education International. 6(1), 1-8.
  • Coll, R.K. & Taylor, N. (2002). Mental models in chemistry: Senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and practice in Europe, 3, 3.
  • Duit, R. (1991). On the role of analogies and metphors in learning science. Science Education. 75, 649-672.
  • Geban O., Ertepınar, H., Yılmaz, G., Atlan, A. & Şahbaz, O. (1994). Bilgisayar destekli eğitiminin öğrencilerin Fen Bilgisi başarılarına ve Fen Bilgisi bilgilerine etkisi. I. Ulusal Fen Bilimleri Eğitimi Sempozyumu, Dokuz Eylül Üniversitesi.
  • Gilbert, J., Osborne, R. and Fensham, P. (1982). Children’s science and its consequences for teaching. Science Education, 66, 623-633.
  • Harrison, A.G. and Treagust, D.F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education. 80 (5), 509-534.
  • Hein, G.E. (1991). Constructivist learning theory: The museum and the needs of people. Paper prented at the CECA conference, Jerusale, Israel.
  • Heywood, D. (2002). The Place of Analogies in Science Education.Cambridge Journal of Educarion,32 (2), 233-247.
  • Hynd,C. R., McWhorter,I. Y., Phares,V. L. & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933-946.
  • Hyde, A.A. and Bizar, M. (1989). Thinking in context: Teaching cognitive process across the elementary school curriculum. White Plains, New York: Longman.
  • Novick, S., & J. Nussbaum. (1982). Brainstorming in the classroom to invent a model: a case study. School Science Review, 62, 771-778.
  • Lee, O., Eichinger, C.D., Anderson, W.C., Berkheimer, D.G.,& Blakeslee, T.D.(1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249- 270.
  • McCloskey, M., (1983). Intuitive physics. Scientific American, 248, 122-130.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry? Chemical misconceptions. Journal of Chemical Education 69: 191–196.
  • Novick, S. and Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of mater: An interview study. Science Education, 62 (3), 273-281.
  • Pabuccu, A. & Geban, Ö. (2006). Remediating misconceptions concerning chemical bonding through conceptual change text. Hacettepe University Journal of Education, 30, 184-192.
  • Posner, G. J., Strike, K. A., Hewson, P. W., and Gertzog, W. A. (1982). Accommodation of a scientific conception: Towards a theory of conceptual change. Science Education 66: 211–217.
  • Rule, A.C. & Furletti, C. (2004). Using form and function analogy object boxes to teach human body systems, School Science and Mathematics, 104, 155-169.
  • Taber, K. S., & Watts, M. (1997). Constructivism and concept learning in chemistry- perspective from a case study. Rearch Education, 58, 10- 20.
  • Taylor, J.A. (2001). Using a particial context to encourage conceptual change: An instruction sequence in bcycle science. School Science & Mathematics, 101 (2), 91-102.
  • Tekkaya, C. (2003). Remediating high school students' misconceptions conceming diffusion and osmosis through concept mapping and conceptual change text. Research in Science & Technalogical Education, 21(1), 5-16.
  • Osborne, R. I. & Wittrock, M. C. (1983). Leaming science: A generative process. Science Education, 67(4),489-508.
  • Yanowitz., K.L. (2001). Using analogy to improve elementary school student’ inferential reasoning ability about scientific concepts. School Science & Mathematics, 101 (3), 133-142.

Atom, İyon, Molekül ve Madde Kavramlarının Öğrenilmesinde Kavramsal Değişim Metinlerinin Etkisi

Yıl 2014, Sayı: 23, 303 - 321, 01.12.2014

Öz

Bu çalışmanın amacı analojilerle desteklenmiş olarak hazırlanan kavramsal değişim yaklaşımına dayalı öğretimin 7. sınıf öğrencilerinin atom, molekül, iyon ve madde konusu ile ilgili kavramları anlamalarına etkisini incelemektir. Aynı zamanda, öğretim yönteminin öğrencilerin Fen Bilgisi dersine yönelik tutumlarına etkisi ve cinsiyet farkının öğrencilerin atom, molekül, iyon ve madde kavramlarını anlamalarına etkisini incelemektir. Çalışmada, aynı fen öğretmeninin eğitim verdiği 70 yedinci sınıf öğrencisi yer almıştır. Çalışma, 2004-2005 eğitim öğretim yılı birinci dönemde yürütülmüştür. Çalışmada iki grup, beş grup arasından rastgele seçilmiştir. Gruplardan biri kontrol grubu olarak adlandırılmış diğeri deney grubu olarak adlandırılmıştır. Kontrol grubundaki öğrenciler geleneksel yöntem ile öğrenim görmüş ve deney grubundaki öğrenciler analojilerle desteklenen kavramsal değişim metinleri ile öğrenim görmüşlerdir. Çalışmada, Fen Bilgisi Dersi Tutum Ölçeği ve Atom, Molekül, Iyon ve Madde Kavram Testi her iki gruba da ön test ve son test olarak uygulanmıştır. Çalışmanın hipotezlerini desteklemek için ANOVA istatistiksel analiz yöntemleri kullanılmıştır. Analiz sonuçları deney grubundaki öğrencilerin atom, molekül, iyon ve madde konularındaki başarılarının, kontrol grubundaki öğrencilere göre daha yüksek olduğunu göstermiştir. Ancak, cinsiyet farkının atom, molekül, iyon ve madde kavramlarını anlama ve Fen bilgisi dersine olan tutumlarına bir etkisi olmadığı saptanmıştır.

Kaynakça

  • Anderson, C. W., Smith, E. L. (1983). Childerens’ preconceptions ad content area textbooks. In G. Duff, L. Rochler, J. Mason (Eds.), Comprehension instruction: Perspective and suggestions. New York: Longman, 187-201.
  • Ayas. A. & Ozmen, H. (2002). Students’ misconceptions about chemical reactions at secondary level. The First International Education Conference on Changing Times, Changing Needs, Eastern Mediterranean University Faculty of Education, Gazimagusa, Turkish Republic of Northern Cyprus.
  • Bodner, G. M., (1986). Constructivism: A Theory of knowledge, Journal of Chemical Education, 63, 873-878.
  • Boo, H. K. (1998). Students’ understanding of chemical bonds and the energetic of chemical reactions. Journal of Research in Science Teaching, 35, 569–581.
  • Blanco, A. & Prieto, t. (1997). Pupils’ views on how stirring and temperature affect the dissolution of a solid in a liquid: a cross-age study (12 to 18). International Journal of Science Education, 19, 303-315.
  • Chambers,S. K. & Andre, T. (1997). Gender, prior knowledge, interest, and experience in electricity and conceptual change text manipulations in learning about direct current. Journal of Research in Science Teaching, 34(2),107-123.
  • Chiu, M.H. (2005). A national survey of students’ conceptions in chemistry in Taiwan. Chemical Education International. 6(1), 1-8.
  • Coll, R.K. & Taylor, N. (2002). Mental models in chemistry: Senior chemistry students’ mental models of chemical bonding. Chemistry Education: Research and practice in Europe, 3, 3.
  • Duit, R. (1991). On the role of analogies and metphors in learning science. Science Education. 75, 649-672.
  • Geban O., Ertepınar, H., Yılmaz, G., Atlan, A. & Şahbaz, O. (1994). Bilgisayar destekli eğitiminin öğrencilerin Fen Bilgisi başarılarına ve Fen Bilgisi bilgilerine etkisi. I. Ulusal Fen Bilimleri Eğitimi Sempozyumu, Dokuz Eylül Üniversitesi.
  • Gilbert, J., Osborne, R. and Fensham, P. (1982). Children’s science and its consequences for teaching. Science Education, 66, 623-633.
  • Harrison, A.G. and Treagust, D.F. (1996). Secondary students’ mental models of atoms and molecules: Implications for teaching chemistry. Science Education. 80 (5), 509-534.
  • Hein, G.E. (1991). Constructivist learning theory: The museum and the needs of people. Paper prented at the CECA conference, Jerusale, Israel.
  • Heywood, D. (2002). The Place of Analogies in Science Education.Cambridge Journal of Educarion,32 (2), 233-247.
  • Hynd,C. R., McWhorter,I. Y., Phares,V. L. & Suttles, C. W. (1994). The role of instructional variables in conceptual change in high school physics topics. Journal of Research in Science Teaching, 31(9), 933-946.
  • Hyde, A.A. and Bizar, M. (1989). Thinking in context: Teaching cognitive process across the elementary school curriculum. White Plains, New York: Longman.
  • Novick, S., & J. Nussbaum. (1982). Brainstorming in the classroom to invent a model: a case study. School Science Review, 62, 771-778.
  • Lee, O., Eichinger, C.D., Anderson, W.C., Berkheimer, D.G.,& Blakeslee, T.D.(1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30(3), 249- 270.
  • McCloskey, M., (1983). Intuitive physics. Scientific American, 248, 122-130.
  • Nakhleh, M. B. (1992). Why some students don’t learn chemistry? Chemical misconceptions. Journal of Chemical Education 69: 191–196.
  • Novick, S. and Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of mater: An interview study. Science Education, 62 (3), 273-281.
  • Pabuccu, A. & Geban, Ö. (2006). Remediating misconceptions concerning chemical bonding through conceptual change text. Hacettepe University Journal of Education, 30, 184-192.
  • Posner, G. J., Strike, K. A., Hewson, P. W., and Gertzog, W. A. (1982). Accommodation of a scientific conception: Towards a theory of conceptual change. Science Education 66: 211–217.
  • Rule, A.C. & Furletti, C. (2004). Using form and function analogy object boxes to teach human body systems, School Science and Mathematics, 104, 155-169.
  • Taber, K. S., & Watts, M. (1997). Constructivism and concept learning in chemistry- perspective from a case study. Rearch Education, 58, 10- 20.
  • Taylor, J.A. (2001). Using a particial context to encourage conceptual change: An instruction sequence in bcycle science. School Science & Mathematics, 101 (2), 91-102.
  • Tekkaya, C. (2003). Remediating high school students' misconceptions conceming diffusion and osmosis through concept mapping and conceptual change text. Research in Science & Technalogical Education, 21(1), 5-16.
  • Osborne, R. I. & Wittrock, M. C. (1983). Leaming science: A generative process. Science Education, 67(4),489-508.
  • Yanowitz., K.L. (2001). Using analogy to improve elementary school student’ inferential reasoning ability about scientific concepts. School Science & Mathematics, 101 (3), 133-142.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eğitim Üzerine Çalışmalar
Bölüm Research Article
Yazarlar

Aytül Gökulu Bu kişi benim

Ömer Geban Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2014
Gönderilme Tarihi 12 Mayıs 2014
Yayımlandığı Sayı Yıl 2014 Sayı: 23

Kaynak Göster

APA Gökulu, A., & Geban, Ö. (2014). FACILITATING CONCEPTUAL CHANGE IN ATOM, MOLECULE, ION AND MATTER COCEPTS. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi(23), 303-321.