Derleme
BibTex RIS Kaynak Göster

Pediatrik öncü B-ALL’ye Moleküler Yaklaşım

Yıl 2019, Cilt: 50 Sayı: 2, 91 - 101, 15.06.2019
https://doi.org/10.16948/zktipb.425982

Öz

Lösemi, çocukluk çağında en sık görülen malign
hastalıktır. Bu hastalık yaklaşık 150 yıl önce tanımlanmıştır, ancak son 30
yıllık süreçte tedavide %90’lara varan bir başarı oranına ulaşılabilmiştir. Bu
başarılı sonuçlara ulaşılmasında çoklu ilaç uygulamaları, santral sinir sistemi
profilaksisi, idame ve destek tedavi uygulamaları etkili olmuştur. Tedavide bu
kadar başarılı sonuçların alınmasına rağmen nüks lösemi için bir risk olmaya
devam etmekte ve ALL hastalarının %20’sinde görülmektedir. Tedaviden alınan
farklı sonuçlar diğer bütün kanser tiplerinde olduğu gibi lösemi’nin de
heterojen bir yapıya sahip olduğunu işaret etmektedir. Bu nedenle erken, doğru
bir teşhis ile daha etkin bir tedavinin ancak kişiye özgü (hastalık alt
gruplarına) tedavi, yöntem ve müdahale stratejilerinin geliştirilmesi ile
mümkün olabileceği öngörülmektedir. Bu kapsamda diğer bütün kanser tiplerinde
olduğu gibi “lösemi genomunda” yapısal ve/veya işlevsel bozukluk gösteren
genler, lösemi tanısı, tedavisi ve nüksünün önlenebilmesi için yeni prognostik
araçlar olabilme potansiyeli taşımaktadır.

Kaynakça

  • 1. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nature reviews Clinical oncology, 2015;12(6):344-57.
  • 2. Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia, 2009 J;23(7):1209-18.
  • 3. Berg SL, Steuber P, Poplack DG. Clinical manifestations of acute lymphoblastic leukemia. In: Hoffman R, Benz EJ, Shattil SJ, et al., editors. Hematology Basic principles and practice. Philadelphia; 2005. p. 1155-62.
  • 4. Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1996;14(1):18-24.
  • 5. Gokbuget N, Hoelzer D. Recent approaches in acute lymphoblastic leukemia in adults. Reviews in clinical and experimental hematology, 2002;6(2):114-41; discussion 200-2.
  • 6. Durmaz ÖE. B hücre aktivasyonu ve antikor üretimi B cell activation and antibody. Türkderm, 2013;47(1):24-7.
  • 7. Schwab CJ, Chilton L, Morrison H, et al. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica, 2013 ;98(7):1081-8.
  • 8. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013;:118-25.
  • 9. Parikh NI, Vasan RS. Assessing the clinical utility of biomarkers in medicine. Biomarkers in medicine, 2007;1(3):419-36.
  • 10. Strimbu K, Tavel JA. What are biomarkers? Current opinion in HIV and AIDS, 2010;5(6):463-6.
  • 11. Oikawa T. ETS transcription factors: possible targets for cancer therapy. Cancer science. 2004;95(8):626-33.
  • 12. Rashed RA, Kadry DY, El Taweel M, Abd El Wahab N, Abd El Hameed T. Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. Asian Pacific journal of cancer prevention : APJCP. 2015;16(17):7875-82.
  • 13. http://www.ensembl.org/index.html. [cited; Available from:
  • 14. Siddique HR, Rao VN, Lee L, Reddy ES. Characterization of the DNA binding and transcriptional activation domains of the erg protein. Oncogene. 1993 Jul;8(7):1751-5.
  • 15. Bock J, Mochmann LH, Schlee C, et al. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PloS one. 2013;8(1):e52872.
  • 16. Eid MA, Attia M, Abdou S, et al. BAALC and ERG expression in acute myeloid leukemia with normal karyotype: impact on prognosis. International journal of laboratory hematology. 2010 Apr;32(2):197-205.
  • 17. Pigazzi M, Masetti R, Martinolli F, et al. Presence of high-ERG expression is an independent unfavorable prognostic marker in MLL-rearranged childhood myeloid leukemia. Blood. 2012 Jan 26;119(4):1086-7; author reply 7-8.
  • 18. Salek-Ardakani S, Smooha G, de Boer J, et al. ERG is a megakaryocytic oncogene. Cancer research. 2009 Jun 1;69(11):4665-73.
  • 19. Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005 Dec 20;23(36):9234-42.
  • 20. Huber RG, Fan H, Bond PJ. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain. PLoS computational biology. 2015 Oct;11(10):e1004560.
  • 21. Saito T, Matsuda Y, Ito H, Fusaki N, Hori T, Yamamoto T. Localization of Zap70, the gene for a T cell-specific protein tyrosine kinase, to mouse and rat chromosomes by fluorescence in situ hybridization and molecular genetic linkage analyses. Mammalian genome : official journal of the International Mammalian Genome Society. 1997 Jan;8(1):45-6.
  • 22. Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002 Dec 15;100(13):4609-14.
  • 23. Chakupurakal G, Bell A, Griffiths M, Wandroo F, Moss P. Analysis of ZAP70 expression in adult acute lymphoblastic leukaemia by real time quantitative PCR. Molecular cytogenetics. 2012;5(1):22.
  • 24. Kong GH, Bu JY, Kurosaki T, Shaw AS, Chan AC. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity. 1995 May;2(5):485-92.
  • 25. Ebeid E, Kamel M, Moussa H, Galal U. ZAP-70 as a possible prognostic factor in childhood acute lymphoblastic leukemia. Journal of the Egyptian National Cancer Institute. 2008 Jun;20(2):121-6.
  • 26. Wandroo F, Bell A, Darbyshire P, et al. ZAP-70 is highly expressed in most cases of childhood pre-B cell acute lymphoblastic leukemia. International journal of laboratory hematology. 2008 Apr;30(2):149-57.
  • 27. Crespo M, Villamor N, Gine E, et al. ZAP-70 expression in normal pro/pre B cells, mature B cells, and in B-cell acute lymphoblastic leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006 Feb 1;12(3 Pt 1):726-34.
  • 28. Tasian SK, Loh ML. Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia. Critical reviews in oncogenesis. 2011;16(1-2):13-24.
  • 29. Quentmeier H, Drexler HG, Fleckenstein D, et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia. 2001 Aug;15(8):1286-92.
  • 30. Ziegler SF. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Current opinion in immunology. 2010 Dec;22(6):795-9.
  • 31. Zhong J, Sharma J, Raju R, et al. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. Database : the journal of biological databases and curation. 2014;2014:bau007.
  • 32. Rochman Y, Leonard WJ. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis. Journal of immunology. 2008 Dec 1;181(11):7699-705.
  • 33. Scheeren FA, van Lent AU, Nagasawa M, et al. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. European journal of immunology. 2010 Apr;40(4):955-65.
  • 34. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2010 Jan 5;107(1):252-7.
  • 35. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010 Jul 1;115(26):5312-21.
  • 36. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013;2013:118-25.
  • 37. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nature genetics. 2009 Nov;41(11):1243-6.
  • 38. Roll JD, Reuther GW. CRLF2 and JAK2 in B-progenitor acute lymphoblastic leukemia: a novel association in oncogenesis. Cancer research. 2010 Oct 1;70(19):7347-52.
  • 39. Ensor HM, Schwab C, Russell LJ, et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood. 2011 Feb 17;117(7):2129-36.
  • 40. Schindler CW. Series introduction. JAK-STAT signaling in human disease. The Journal of clinical investigation. 2002 May;109(9):1133-7.
  • 41. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010 Jun;24(6):1128-38.
  • 42. Er TK, Lin SF, Chang JG, et al. Detection of the JAK2 V617F missense mutation by high resolution melting analysis and its validation. Clinica chimica acta; international journal of clinical chemistry. 2009 Oct;408(1-2):39-44.
  • 43. Veneri D, Capuzzo E, de Matteis G, et al. Comparison of JAK2V617F mutation assessment employing different molecular diagnostic techniques. Blood transfusion = Trasfusione del sangue. 2009 Jul;7(3):204-9.
  • 44. McLornan D, Percy M, McMullin MF. JAK2 V617F: a single mutation in the myeloproliferative group of disorders. The Ulster medical journal. 2006 May;75(2):112-9.45. Vladareanu AM, Muller-Tidow C, Bumbea H, Radesi S. Molecular markers guide diagnosis and treatment in Philadelphia chromosome-negative myeloproliferative disorders (Review). Oncology reports. 2010 Mar;23(3):595-604.
  • 46. Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2009 Jun 9;106(23):9414-8.
  • 47. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 1992 Oct 30;258(5083):808-12.
  • 48. Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nature immunology. 2014 Mar;15(3):294-304.
  • 49. Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentiation. International journal of hematology. 2014 Sep;100(3):220-9.
  • 50. van der Sligte NE, Scherpen FJ, Ter Elst A, Guryev V, van Leeuwen FN, de Bont ES. Effect of IKZF1 deletions on signal transduction pathways in Philadelphia chromosome negative pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Experimental hematology & oncology. 2015;4:23.
  • 51. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell. 1995 Oct 20;83(2):289-99.52. Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011 Feb;25(2):254-8.
  • 53. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England journal of medicine. 2009 Jan 29;360(5):470-80.
  • 54. Dai YE, Tang L, Healy J, Sinnett D. Contribution of polymorphisms in IKZF1 gene to childhood acute leukemia: a meta-analysis of 33 case-control studies. PloS one. 2014;9(11):e113748.
  • 55. de Rooij JD, Beuling E, van den Heuvel-Eibrink MM, et al. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia. Haematologica. 2015 Sep;100(9):1151-9.
  • 56. Shang Z, Zhao Y, Zhou K, Xu Y, Huang W. PAX5 alteration-associated gene-expression signatures in B-cell acute lymphoblastic leukemia. International journal of hematology. 2013 May;97(5):599-603.
  • 57. Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expression programme by Pax5. Immunology and cell biology. 2008 Jan;86(1):47-53.
  • 58. Nutt SL, Busslinger M. Monoallelic expression of Pax5: a paradigm for the haploinsufficiency of mammalian Pax genes? Biological chemistry. 1999 Jun;380(6):601-11.
  • 59. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nature immunology. 2007 May;8(5):463-70.
  • 60. Iacobucci I, Lonetti A, Paoloni F, et al. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party. Haematologica. 2010 Oct;95(10):1683-90.
  • 61. Heltemes-Harris LM, Willette MJ, Ramsey LB, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. The Journal of experimental medicine. 2011 Jun 6;208(6):1135-49.
  • 62. Miller CB, Mullighan CG, Su X, et al. Pax5 Haploinsufficiency cooperates with BCR-ABL1 to induce acute lymphoblastic leukemia. ASH Annu Meeting; 2008. p. 112-293.
  • 63. Familiades J, Bousquet M, Lafage-Pochitaloff M, et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia. 2009 Nov;23(11):1989-98.
  • 64. Shang Z, Zhao Y, Zhou K, Xu Y, Huang W. PAX5 alteration-associated gene-expression signatures in B-cell acute lymphoblastic leukemia. International journal of hematology. 2013 May;97(5):599-603.
  • 65. Shah S, Schrader KA, Waanders E, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature genetics. 2013 Oct;45(10):1226-31.
  • 66. Fazio G, Daniele G, Cazzaniga V, et al. Three novel fusion transcripts of the paired box 5 gene in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2015 Jan;100(1):e14-7.
  • 67. Denk D, Nebral K, Bradtke J, et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leukemia research. 2012 Aug;36(8):e178-81.
  • 68. Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunological reviews. 2014 Sep;261(1):102-15.
  • 69. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Molecular cancer research : MCR. 2009 Dec;7(12):1893-901.
  • 70. Hagman J, Gutch MJ, Lin H, Grosschedl R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. The EMBO journal. 1995 Jun 15;14(12):2907-16.
  • 71. Hagman J, Ramirez J, Lukin K. B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1. Current topics in microbiology and immunology. 2012;356:17-38.
  • 72. Heltemes-Harris LM, Willette MJ, Ramsey LB, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. The Journal of experimental medicine. 2011 Jun 6;208(6):1135-49.
  • 73. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Molecular cancer research : MCR. 2009 Dec;7(12):1893-901.
  • 74. Prasad MA, Ungerback J, Ahsberg J, et al. Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood. 2015 Jun 25;125(26):4052-9.
  • 75. Gyory I, Boller S, Nechanitzky R, et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes & development. 2012 Apr 1;26(7):668-82.
  • 76. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004 May 24;23(24):4225-31.
  • 77. Blobel GA. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 2000 Feb 1;95(3):745-55.
  • 78. Cho EC, Mitton B, Sakamoto KM. CREB and leukemogenesis. Critical reviews in oncogenesis. 2011;16(1-2):37-46.
  • 79. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011 Mar 10;471(7337):235-9.
  • 80. Malinowska-Ozdowy K, Frech C, Schonegger A, et al. KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia. 2015 Aug;29(8):1656-67.
  • 81. Inthal A, Zeitlhofer P, Zeginigg M, et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012 Aug;26(8):1797-803.82. Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature communications. 2015;6:6604.83. Huether R, Dong L, Chen X, et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature communications. 2014;5:3630.84. Zhang Z, Burch PE, Cooney AJ, et al. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome research. 2004 Apr;14(4):580-90.
  • 85. Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. The Journal of biological chemistry. 2001 Jan 26;276(4):2329-32.
  • 86. Hecht K, Carlstedt-Duke J, Stierna P, Gustafsson J, Bronnegard M, Wikstrom AC. Evidence that the beta-isoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. The Journal of biological chemistry. 1997 Oct 17;272(42):26659-64.
  • 87. Hayashi R, Wada H, Ito K, Adcock IM. Effects of glucocorticoids on gene transcription. European journal of pharmacology. 2004 Oct 1;500(1-3):51-62.
  • 88. Prima V, Depoix C, Masselot B, Formstecher P, Lefebvre P. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds. The Journal of steroid biochemistry and molecular biology. 2000 Jan-Feb;72(1-2):1-12.
  • 89. Longui CA, Vottero A, Adamson PC, et al. Low glucocorticoid receptor alpha/beta ratio in T-cell lymphoblastic leukemia. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2000 Oct;32(10):401-6.
  • 90. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America. 1994 Jan 18;91(2):752-6.
  • 91. Haarman EG, Kaspers GJ, Pieters R, Rottier MM, Veerman AJ. Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia. Leukemia. 2004 Mar;18(3):530-7.
  • 92. Bhadri VA, Trahair TN, Lock RB. Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia. Journal of paediatrics and child health. 2012 Aug;48(8):634-40.
  • 93. Ho GA, Odenwald E, Reiter A, Sauter S, Riehm H. Lack of correlation between glucocorticoid receptor levels, response to prednisone monotherapy and relapse-free survival in childhood leukemia. Proc Am Soc Clin Oncol. 1991;18(3):530-7.
  • 94. Haarman EG, Kaspers GJ, Pieters R, et al. In vitro glucocorticoid resistance in childhood leukemia correlates with receptor affinity determined at 37 degrees C, but not with affinity determined at room temperature. Leukemia. 2002 Sep;16(9):1882-4.
  • 95. Longui CA, Vottero A, Adamson PC, et al. Low glucocorticoid receptor alpha/beta ratio in T-cell lymphoblastic leukemia. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2000 Oct;32(10):401-6.
  • 96. Labuda M, Gahier A, Gagne V, Moghrabi A, Sinnett D, Krajinovic M. Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leukemia research. 2010 Apr;34(4):492-7.
  • 97. Tissing WJ, Meijerink JP, Brinkhof B, et al. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood. 2006 Aug 1;108(3):1045-9.

Molecular Approach to Pediatric Precursor B-ALL

Yıl 2019, Cilt: 50 Sayı: 2, 91 - 101, 15.06.2019
https://doi.org/10.16948/zktipb.425982

Öz

Leukemia is the most common malignant disease in
childhood. This disease was identified almost 150 years ago, but in the last 30
years, treatment processes have achieved a success rate of up to 90%. These
successful outcomes were supported by multi-drug treatments, central nervous
system prophylaxis, maintainability and therapeutic applications. Although
successful treatment outcome relapse continues to be a risk for leukemia and is
seen in 20% of patients with leukemia. In this case, all other types of cancers
as well as leukemia have a structure that is heterogeneous. Therefore,
individualized treatment methods are more effective than early accurate
diagnosis, hence the development of individualised treatment methods and
intervention strategies have become necessary. In this context, as in all other
types of cancer the leukemia genome contain structural abnormalities several
genes leading to their functional dysfunction. These genes have the potential
to become novel biomarkers for diagnosis, prognosis, treatment and prevention
of relapse.

Kaynakça

  • 1. Roberts KG, Mullighan CG. Genomics in acute lymphoblastic leukaemia: insights and treatment implications. Nature reviews Clinical oncology, 2015;12(6):344-57.
  • 2. Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia, 2009 J;23(7):1209-18.
  • 3. Berg SL, Steuber P, Poplack DG. Clinical manifestations of acute lymphoblastic leukemia. In: Hoffman R, Benz EJ, Shattil SJ, et al., editors. Hematology Basic principles and practice. Philadelphia; 2005. p. 1155-62.
  • 4. Smith M, Arthur D, Camitta B, et al. Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 1996;14(1):18-24.
  • 5. Gokbuget N, Hoelzer D. Recent approaches in acute lymphoblastic leukemia in adults. Reviews in clinical and experimental hematology, 2002;6(2):114-41; discussion 200-2.
  • 6. Durmaz ÖE. B hücre aktivasyonu ve antikor üretimi B cell activation and antibody. Türkderm, 2013;47(1):24-7.
  • 7. Schwab CJ, Chilton L, Morrison H, et al. Genes commonly deleted in childhood B-cell precursor acute lymphoblastic leukemia: association with cytogenetics and clinical features. Haematologica, 2013 ;98(7):1081-8.
  • 8. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013;:118-25.
  • 9. Parikh NI, Vasan RS. Assessing the clinical utility of biomarkers in medicine. Biomarkers in medicine, 2007;1(3):419-36.
  • 10. Strimbu K, Tavel JA. What are biomarkers? Current opinion in HIV and AIDS, 2010;5(6):463-6.
  • 11. Oikawa T. ETS transcription factors: possible targets for cancer therapy. Cancer science. 2004;95(8):626-33.
  • 12. Rashed RA, Kadry DY, El Taweel M, Abd El Wahab N, Abd El Hameed T. Relation of BAALC and ERG Gene Expression with Overall Survival in Acute Myeloid Leukemia Cases. Asian Pacific journal of cancer prevention : APJCP. 2015;16(17):7875-82.
  • 13. http://www.ensembl.org/index.html. [cited; Available from:
  • 14. Siddique HR, Rao VN, Lee L, Reddy ES. Characterization of the DNA binding and transcriptional activation domains of the erg protein. Oncogene. 1993 Jul;8(7):1751-5.
  • 15. Bock J, Mochmann LH, Schlee C, et al. ERG transcriptional networks in primary acute leukemia cells implicate a role for ERG in deregulated kinase signaling. PloS one. 2013;8(1):e52872.
  • 16. Eid MA, Attia M, Abdou S, et al. BAALC and ERG expression in acute myeloid leukemia with normal karyotype: impact on prognosis. International journal of laboratory hematology. 2010 Apr;32(2):197-205.
  • 17. Pigazzi M, Masetti R, Martinolli F, et al. Presence of high-ERG expression is an independent unfavorable prognostic marker in MLL-rearranged childhood myeloid leukemia. Blood. 2012 Jan 26;119(4):1086-7; author reply 7-8.
  • 18. Salek-Ardakani S, Smooha G, de Boer J, et al. ERG is a megakaryocytic oncogene. Cancer research. 2009 Jun 1;69(11):4665-73.
  • 19. Marcucci G, Baldus CD, Ruppert AS, et al. Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005 Dec 20;23(36):9234-42.
  • 20. Huber RG, Fan H, Bond PJ. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain. PLoS computational biology. 2015 Oct;11(10):e1004560.
  • 21. Saito T, Matsuda Y, Ito H, Fusaki N, Hori T, Yamamoto T. Localization of Zap70, the gene for a T cell-specific protein tyrosine kinase, to mouse and rat chromosomes by fluorescence in situ hybridization and molecular genetic linkage analyses. Mammalian genome : official journal of the International Mammalian Genome Society. 1997 Jan;8(1):45-6.
  • 22. Chen L, Widhopf G, Huynh L, et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood. 2002 Dec 15;100(13):4609-14.
  • 23. Chakupurakal G, Bell A, Griffiths M, Wandroo F, Moss P. Analysis of ZAP70 expression in adult acute lymphoblastic leukaemia by real time quantitative PCR. Molecular cytogenetics. 2012;5(1):22.
  • 24. Kong GH, Bu JY, Kurosaki T, Shaw AS, Chan AC. Reconstitution of Syk function by the ZAP-70 protein tyrosine kinase. Immunity. 1995 May;2(5):485-92.
  • 25. Ebeid E, Kamel M, Moussa H, Galal U. ZAP-70 as a possible prognostic factor in childhood acute lymphoblastic leukemia. Journal of the Egyptian National Cancer Institute. 2008 Jun;20(2):121-6.
  • 26. Wandroo F, Bell A, Darbyshire P, et al. ZAP-70 is highly expressed in most cases of childhood pre-B cell acute lymphoblastic leukemia. International journal of laboratory hematology. 2008 Apr;30(2):149-57.
  • 27. Crespo M, Villamor N, Gine E, et al. ZAP-70 expression in normal pro/pre B cells, mature B cells, and in B-cell acute lymphoblastic leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research. 2006 Feb 1;12(3 Pt 1):726-34.
  • 28. Tasian SK, Loh ML. Understanding the biology of CRLF2-overexpressing acute lymphoblastic leukemia. Critical reviews in oncogenesis. 2011;16(1-2):13-24.
  • 29. Quentmeier H, Drexler HG, Fleckenstein D, et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia. 2001 Aug;15(8):1286-92.
  • 30. Ziegler SF. The role of thymic stromal lymphopoietin (TSLP) in allergic disorders. Current opinion in immunology. 2010 Dec;22(6):795-9.
  • 31. Zhong J, Sharma J, Raju R, et al. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. Database : the journal of biological databases and curation. 2014;2014:bau007.
  • 32. Rochman Y, Leonard WJ. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis. Journal of immunology. 2008 Dec 1;181(11):7699-705.
  • 33. Scheeren FA, van Lent AU, Nagasawa M, et al. Thymic stromal lymphopoietin induces early human B-cell proliferation and differentiation. European journal of immunology. 2010 Apr;40(4):955-65.
  • 34. Yoda A, Yoda Y, Chiaretti S, et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2010 Jan 5;107(1):252-7.
  • 35. Harvey RC, Mullighan CG, Chen IM, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010 Jul 1;115(26):5312-21.
  • 36. Harrison CJ. Targeting signaling pathways in acute lymphoblastic leukemia: new insights. Hematology / the Education Program of the American Society of Hematology American Society of Hematology Education Program. 2013;2013:118-25.
  • 37. Mullighan CG, Collins-Underwood JR, Phillips LA, et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nature genetics. 2009 Nov;41(11):1243-6.
  • 38. Roll JD, Reuther GW. CRLF2 and JAK2 in B-progenitor acute lymphoblastic leukemia: a novel association in oncogenesis. Cancer research. 2010 Oct 1;70(19):7347-52.
  • 39. Ensor HM, Schwab C, Russell LJ, et al. Demographic, clinical, and outcome features of children with acute lymphoblastic leukemia and CRLF2 deregulation: results from the MRC ALL97 clinical trial. Blood. 2011 Feb 17;117(7):2129-36.
  • 40. Schindler CW. Series introduction. JAK-STAT signaling in human disease. The Journal of clinical investigation. 2002 May;109(9):1133-7.
  • 41. Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010 Jun;24(6):1128-38.
  • 42. Er TK, Lin SF, Chang JG, et al. Detection of the JAK2 V617F missense mutation by high resolution melting analysis and its validation. Clinica chimica acta; international journal of clinical chemistry. 2009 Oct;408(1-2):39-44.
  • 43. Veneri D, Capuzzo E, de Matteis G, et al. Comparison of JAK2V617F mutation assessment employing different molecular diagnostic techniques. Blood transfusion = Trasfusione del sangue. 2009 Jul;7(3):204-9.
  • 44. McLornan D, Percy M, McMullin MF. JAK2 V617F: a single mutation in the myeloproliferative group of disorders. The Ulster medical journal. 2006 May;75(2):112-9.45. Vladareanu AM, Muller-Tidow C, Bumbea H, Radesi S. Molecular markers guide diagnosis and treatment in Philadelphia chromosome-negative myeloproliferative disorders (Review). Oncology reports. 2010 Mar;23(3):595-604.
  • 46. Mullighan CG, Zhang J, Harvey RC, et al. JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proceedings of the National Academy of Sciences of the United States of America. 2009 Jun 9;106(23):9414-8.
  • 47. Georgopoulos K, Moore DD, Derfler B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science. 1992 Oct 30;258(5083):808-12.
  • 48. Joshi I, Yoshida T, Jena N, et al. Loss of Ikaros DNA-binding function confers integrin-dependent survival on pre-B cells and progression to acute lymphoblastic leukemia. Nature immunology. 2014 Mar;15(3):294-304.
  • 49. Yoshida T, Georgopoulos K. Ikaros fingers on lymphocyte differentiation. International journal of hematology. 2014 Sep;100(3):220-9.
  • 50. van der Sligte NE, Scherpen FJ, Ter Elst A, Guryev V, van Leeuwen FN, de Bont ES. Effect of IKZF1 deletions on signal transduction pathways in Philadelphia chromosome negative pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Experimental hematology & oncology. 2015;4:23.
  • 51. Winandy S, Wu P, Georgopoulos K. A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell. 1995 Oct 20;83(2):289-99.52. Waanders E, van der Velden VH, van der Schoot CE, et al. Integrated use of minimal residual disease classification and IKZF1 alteration status accurately predicts 79% of relapses in pediatric acute lymphoblastic leukemia. Leukemia. 2011 Feb;25(2):254-8.
  • 53. Mullighan CG, Su X, Zhang J, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. The New England journal of medicine. 2009 Jan 29;360(5):470-80.
  • 54. Dai YE, Tang L, Healy J, Sinnett D. Contribution of polymorphisms in IKZF1 gene to childhood acute leukemia: a meta-analysis of 33 case-control studies. PloS one. 2014;9(11):e113748.
  • 55. de Rooij JD, Beuling E, van den Heuvel-Eibrink MM, et al. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia. Haematologica. 2015 Sep;100(9):1151-9.
  • 56. Shang Z, Zhao Y, Zhou K, Xu Y, Huang W. PAX5 alteration-associated gene-expression signatures in B-cell acute lymphoblastic leukemia. International journal of hematology. 2013 May;97(5):599-603.
  • 57. Holmes ML, Pridans C, Nutt SL. The regulation of the B-cell gene expression programme by Pax5. Immunology and cell biology. 2008 Jan;86(1):47-53.
  • 58. Nutt SL, Busslinger M. Monoallelic expression of Pax5: a paradigm for the haploinsufficiency of mammalian Pax genes? Biological chemistry. 1999 Jun;380(6):601-11.
  • 59. Cobaleda C, Schebesta A, Delogu A, Busslinger M. Pax5: the guardian of B cell identity and function. Nature immunology. 2007 May;8(5):463-70.
  • 60. Iacobucci I, Lonetti A, Paoloni F, et al. The PAX5 gene is frequently rearranged in BCR-ABL1-positive acute lymphoblastic leukemia but is not associated with outcome. A report on behalf of the GIMEMA Acute Leukemia Working Party. Haematologica. 2010 Oct;95(10):1683-90.
  • 61. Heltemes-Harris LM, Willette MJ, Ramsey LB, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. The Journal of experimental medicine. 2011 Jun 6;208(6):1135-49.
  • 62. Miller CB, Mullighan CG, Su X, et al. Pax5 Haploinsufficiency cooperates with BCR-ABL1 to induce acute lymphoblastic leukemia. ASH Annu Meeting; 2008. p. 112-293.
  • 63. Familiades J, Bousquet M, Lafage-Pochitaloff M, et al. PAX5 mutations occur frequently in adult B-cell progenitor acute lymphoblastic leukemia and PAX5 haploinsufficiency is associated with BCR-ABL1 and TCF3-PBX1 fusion genes: a GRAALL study. Leukemia. 2009 Nov;23(11):1989-98.
  • 64. Shang Z, Zhao Y, Zhou K, Xu Y, Huang W. PAX5 alteration-associated gene-expression signatures in B-cell acute lymphoblastic leukemia. International journal of hematology. 2013 May;97(5):599-603.
  • 65. Shah S, Schrader KA, Waanders E, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nature genetics. 2013 Oct;45(10):1226-31.
  • 66. Fazio G, Daniele G, Cazzaniga V, et al. Three novel fusion transcripts of the paired box 5 gene in B-cell precursor acute lymphoblastic leukemia. Haematologica. 2015 Jan;100(1):e14-7.
  • 67. Denk D, Nebral K, Bradtke J, et al. PAX5-AUTS2: a recurrent fusion gene in childhood B-cell precursor acute lymphoblastic leukemia. Leukemia research. 2012 Aug;36(8):e178-81.
  • 68. Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunological reviews. 2014 Sep;261(1):102-15.
  • 69. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Molecular cancer research : MCR. 2009 Dec;7(12):1893-901.
  • 70. Hagman J, Gutch MJ, Lin H, Grosschedl R. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains. The EMBO journal. 1995 Jun 15;14(12):2907-16.
  • 71. Hagman J, Ramirez J, Lukin K. B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1. Current topics in microbiology and immunology. 2012;356:17-38.
  • 72. Heltemes-Harris LM, Willette MJ, Ramsey LB, et al. Ebf1 or Pax5 haploinsufficiency synergizes with STAT5 activation to initiate acute lymphoblastic leukemia. The Journal of experimental medicine. 2011 Jun 6;208(6):1135-49.
  • 73. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Molecular cancer research : MCR. 2009 Dec;7(12):1893-901.
  • 74. Prasad MA, Ungerback J, Ahsberg J, et al. Ebf1 heterozygosity results in increased DNA damage in pro-B cells and their synergistic transformation by Pax5 haploinsufficiency. Blood. 2015 Jun 25;125(26):4052-9.
  • 75. Gyory I, Boller S, Nechanitzky R, et al. Transcription factor Ebf1 regulates differentiation stage-specific signaling, proliferation, and survival of B cells. Genes & development. 2012 Apr 1;26(7):668-82.
  • 76. Iyer NG, Ozdag H, Caldas C. p300/CBP and cancer. Oncogene. 2004 May 24;23(24):4225-31.
  • 77. Blobel GA. CREB-binding protein and p300: molecular integrators of hematopoietic transcription. Blood. 2000 Feb 1;95(3):745-55.
  • 78. Cho EC, Mitton B, Sakamoto KM. CREB and leukemogenesis. Critical reviews in oncogenesis. 2011;16(1-2):37-46.
  • 79. Mullighan CG, Zhang J, Kasper LH, et al. CREBBP mutations in relapsed acute lymphoblastic leukaemia. Nature. 2011 Mar 10;471(7337):235-9.
  • 80. Malinowska-Ozdowy K, Frech C, Schonegger A, et al. KRAS and CREBBP mutations: a relapse-linked malicious liaison in childhood high hyperdiploid acute lymphoblastic leukemia. Leukemia. 2015 Aug;29(8):1656-67.
  • 81. Inthal A, Zeitlhofer P, Zeginigg M, et al. CREBBP HAT domain mutations prevail in relapse cases of high hyperdiploid childhood acute lymphoblastic leukemia. Leukemia. 2012 Aug;26(8):1797-803.82. Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nature communications. 2015;6:6604.83. Huether R, Dong L, Chen X, et al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature communications. 2014;5:3630.84. Zhang Z, Burch PE, Cooney AJ, et al. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome research. 2004 Apr;14(4):580-90.
  • 85. Tao Y, Williams-Skipp C, Scheinman RI. Mapping of glucocorticoid receptor DNA binding domain surfaces contributing to transrepression of NF-kappa B and induction of apoptosis. The Journal of biological chemistry. 2001 Jan 26;276(4):2329-32.
  • 86. Hecht K, Carlstedt-Duke J, Stierna P, Gustafsson J, Bronnegard M, Wikstrom AC. Evidence that the beta-isoform of the human glucocorticoid receptor does not act as a physiologically significant repressor. The Journal of biological chemistry. 1997 Oct 17;272(42):26659-64.
  • 87. Hayashi R, Wada H, Ito K, Adcock IM. Effects of glucocorticoids on gene transcription. European journal of pharmacology. 2004 Oct 1;500(1-3):51-62.
  • 88. Prima V, Depoix C, Masselot B, Formstecher P, Lefebvre P. Alteration of the glucocorticoid receptor subcellular localization by non steroidal compounds. The Journal of steroid biochemistry and molecular biology. 2000 Jan-Feb;72(1-2):1-12.
  • 89. Longui CA, Vottero A, Adamson PC, et al. Low glucocorticoid receptor alpha/beta ratio in T-cell lymphoblastic leukemia. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2000 Oct;32(10):401-6.
  • 90. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America. 1994 Jan 18;91(2):752-6.
  • 91. Haarman EG, Kaspers GJ, Pieters R, Rottier MM, Veerman AJ. Glucocorticoid receptor alpha, beta and gamma expression vs in vitro glucocorticod resistance in childhood leukemia. Leukemia. 2004 Mar;18(3):530-7.
  • 92. Bhadri VA, Trahair TN, Lock RB. Glucocorticoid resistance in paediatric acute lymphoblastic leukaemia. Journal of paediatrics and child health. 2012 Aug;48(8):634-40.
  • 93. Ho GA, Odenwald E, Reiter A, Sauter S, Riehm H. Lack of correlation between glucocorticoid receptor levels, response to prednisone monotherapy and relapse-free survival in childhood leukemia. Proc Am Soc Clin Oncol. 1991;18(3):530-7.
  • 94. Haarman EG, Kaspers GJ, Pieters R, et al. In vitro glucocorticoid resistance in childhood leukemia correlates with receptor affinity determined at 37 degrees C, but not with affinity determined at room temperature. Leukemia. 2002 Sep;16(9):1882-4.
  • 95. Longui CA, Vottero A, Adamson PC, et al. Low glucocorticoid receptor alpha/beta ratio in T-cell lymphoblastic leukemia. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme. 2000 Oct;32(10):401-6.
  • 96. Labuda M, Gahier A, Gagne V, Moghrabi A, Sinnett D, Krajinovic M. Polymorphisms in glucocorticoid receptor gene and the outcome of childhood acute lymphoblastic leukemia (ALL). Leukemia research. 2010 Apr;34(4):492-7.
  • 97. Tissing WJ, Meijerink JP, Brinkhof B, et al. Glucocorticoid-induced glucocorticoid-receptor expression and promoter usage is not linked to glucocorticoid resistance in childhood ALL. Blood. 2006 Aug 1;108(3):1045-9.
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Derleme / Review
Yazarlar

Dilara Fatma Akın Balı

Yayımlanma Tarihi 15 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 50 Sayı: 2

Kaynak Göster

APA Akın Balı, D. F. (2019). Pediatrik öncü B-ALL’ye Moleküler Yaklaşım. Zeynep Kamil Tıp Bülteni, 50(2), 91-101. https://doi.org/10.16948/zktipb.425982
AMA Akın Balı DF. Pediatrik öncü B-ALL’ye Moleküler Yaklaşım. Zeynep Kamil Tıp Bülteni. Haziran 2019;50(2):91-101. doi:10.16948/zktipb.425982
Chicago Akın Balı, Dilara Fatma. “Pediatrik öncü B-ALL’ye Moleküler Yaklaşım”. Zeynep Kamil Tıp Bülteni 50, sy. 2 (Haziran 2019): 91-101. https://doi.org/10.16948/zktipb.425982.
EndNote Akın Balı DF (01 Haziran 2019) Pediatrik öncü B-ALL’ye Moleküler Yaklaşım. Zeynep Kamil Tıp Bülteni 50 2 91–101.
IEEE D. F. Akın Balı, “Pediatrik öncü B-ALL’ye Moleküler Yaklaşım”, Zeynep Kamil Tıp Bülteni, c. 50, sy. 2, ss. 91–101, 2019, doi: 10.16948/zktipb.425982.
ISNAD Akın Balı, Dilara Fatma. “Pediatrik öncü B-ALL’ye Moleküler Yaklaşım”. Zeynep Kamil Tıp Bülteni 50/2 (Haziran 2019), 91-101. https://doi.org/10.16948/zktipb.425982.
JAMA Akın Balı DF. Pediatrik öncü B-ALL’ye Moleküler Yaklaşım. Zeynep Kamil Tıp Bülteni. 2019;50:91–101.
MLA Akın Balı, Dilara Fatma. “Pediatrik öncü B-ALL’ye Moleküler Yaklaşım”. Zeynep Kamil Tıp Bülteni, c. 50, sy. 2, 2019, ss. 91-101, doi:10.16948/zktipb.425982.
Vancouver Akın Balı DF. Pediatrik öncü B-ALL’ye Moleküler Yaklaşım. Zeynep Kamil Tıp Bülteni. 2019;50(2):91-101.