Araştırma Makalesi
BibTex RIS Kaynak Göster

Yarı Kurak İklimlerde Arazi Kullanımına Bağlı Karbon Stoğu Dağılımı: Beypazarı Örneği

Yıl 2025, Sayı: 382, 37 - 50, 27.12.2025
https://doi.org/10.33724/zm.1778738

Öz

Bu çalışmada, Ankara ili Beypazarı ilçesinde farklı arazi kullanım türlerine (tarım, mera ve tepelik yamaç araziler) bağlı olarak toprak organik karbon (OC) ve inorganik karbon (İC) stokları belirlenmiş ve dağılımları değerlendirilmiştir. Araştırma kapsamında beş köyden (Kayabükü, Çantırlı, Fasıl, Kuyucak ve Kırbaşı) 405 yüzey toprak örneği (0-30 cm) alınarak temel fizikokimyasal özellikler (pH, EC, tekstür, organik madde, organik karbon, kireç) analiz edilmiştir. Bulgular, toprakların genel olarak alkalin pH’ya sahip, düşük organik madde içerikli ve yüksek kireçli olduğunu göstermiştir. Ortalama OC stok değerleri %0,79-%1,15 arasında değişmiş, İC stok değerleri ise yüksek düzeyde bulunmuştur. Arazi kullanımı bazında en yüksek OC stokları meralarda (146 ton/ha), ardından tarım (129 ton/ha) ve tepelik yamaç arazilerinde (111 ton/ha) belirlenmiştir. İC stokları ise tarım alanlarında (26 ton/ha) en yüksek değere ulaşmıştır. Korelasyon analizlerine göre kireç ile organik fraksiyonlar arasındaki ilişkilerin köylere göre farklılık gösterdiği saptanmıştır. Genel olarak, Beypazarı topraklarının OC stoklarının düşük seviyede olduğu, ancak arazi kullanımı ve bitki örtüsünün karbon dinamiklerinde belirleyici etken olduğu sonucuna varılmıştır. Bu bulgular, kurak ve yarı kurak iklim bölgelerinde toprak karbonunun korunması ve sürdürülebilir arazi yönetimi stratejilerinin geliştirilmesi açısından önemli veriler sunmaktadır.

Kaynakça

  • Anonim. (2025). The international "4 per 1000" Initiative .http://4p1000.org. Acces Date: 01.08.2025 Başaran, N., Akdogan Cinal, G. & Eroglu, E. (2024). Soil organic carbon exchange due to the change in land use. Environ Ecol Stat, 31, 725–748.
  • Batjes N.H. & Sombroek W.G. (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biol, 3, 161–173.
  • Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. European journal of soil science, 47(2), 151-163.
  • Baveye, P., Berthelin, J., Tessier, D. & Lemaire, G. (2018). The “4 per 1000” initiative: a credibility issue for the soil science community? Geoderma, 309,118-123.
  • Bellassen, V., Angers, D., Kowalczewski, T. & Olesen, A. (2022). Soil Carbon Is the Blind Spot of European National GHG Inventories. Nat. Clim. Chang., 12, 324–331.
  • Bouyoucos, G.J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434-438.
  • Dengiz, O., Saygın, F. & İmamoğlu, A. (2019). Yarı nemli karasal bir ekosistemde farklı arazi örtüleri ve toprak tipleri altında toprak organik karbon yoğunluğunun mekansal değişkenliği. Avrasya Toprak Bilimi Dergisi, 8b(1), 35-43.
  • Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S. & Chenu, C. (2024). Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls. Global Change Biology, 30(1), e16983.
  • Eswaran, H., Reich, P.R., Kimble, J. M. Beinroth, F. H. Padammabhan, E. & Moncharoen, P. (2000). Global Carbon Stocks. In: R. Lal, J. M. Kimble, H. Eswaran and B. A. Steward (Eds), Global Climate Change and Pedogenic Carbonates. Lewis Publishers, pp. 15-25, Boca Raton.
  • FAO. (2018). Soil Organic Carbon Mapping Cookbook. Food and Agriculture Organization of the United Nations: Rome, Italy.
  • Harper, R. J. & Tibbett, M. (2013). The hidden organic carbon in deep mineral soils. Plant and Soil, 368, 641-648. IPCC. (2023). Climate Change 2023. Synthesis Report. https:// report.ipcc.ch/ar6syr/headline.html
  • Kalaivanan, D., & Ravindran, C. (2012). Soil Carbon Sequestration: A Win-Win Strategy for Mitigation of Climate Change and Advanced Food Security. LAP Lambert Academic Publishing.
  • Korkanç, S.Y., Şahin, H., Özden, A.O. & Özkurt, B. (2018). Arazi kullanım dönüşümlerinin toprakların organik karbon depolanması ve bazı özellikleri üzerindeki etkileri: Niğde yöresi örneği. Türk Ormancılık Dergisi, 19(4), 362-367.
  • Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304 (5677), 1623-1627.
  • Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B, 376(1834), 20210084.
  • Lal, R., Negassa, W. & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79-86.
  • Laudicina, V.A., Scalenghe, R., Pisciotta, A., Parello, F. & Dazzi, C. (2013). Pedogenic carbonates and carbon pools in gypsiferous soils of a semiarid mediterranean environment in south Italy. Geoderma, 192, 31–38. McLean, E. O. 1982. Soil pH and lime requirement. In: A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of Soil Analysis, Agronomy No. 9, Part 2, 2nd ed., American Society of Agronomy, Madison, WI, pp. 199 – 224.
  • Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., et al. (2017). Soil Carbon 4 per Mille. Geoderma, 292, 59–86.
  • Mokany, K., Raison, R.J. & Prokushkin, A.S. (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84-96.
  • Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S. & Lal, R. (2022). Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture, 12(8), 1256.
  • Nelson, R. E. (1982). Carbonate and gypsum. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 181-197.
  • Nelson, D. W. & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: A. L. Page et al. (Eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. p. 539-579, ASA Monograph Number 9.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007). Predicting species’ distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102- 117.
  • Poeplau, C. & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189-201.
  • Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, D. (2018). Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long‐term experiments at Rothamsted Research, UK. Global Change Biology, 24(6), 2563-2584.
  • Powlson, D. S. Whitmore, A. P. & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European J. of Soil Science, 62(1), 42 – 55.
  • Sakin, E., Deliboran, A., Sakin, E. D. & Tutar, E. (2010). Carbon Stocks in Harran Plain Soils, Sanliurfa, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 151-156.
  • Schlesinger, W. H. (2000). Carbon sequestration in soils: some cautions amidst optimism. Agriculture, Ecosystems & Environment, 82(1-3), 121-127.
  • Şener, Y. (1997). Beypazarı tarihte ve bugün. 168, Beypazarı.
  • Şimşek Semercioğlu, T., Bayram, C. A., Büyük, G., Akça, E., et al. (2023). The effect of altitude on soil organic carbon content in semi-arid mediterranean climate. International Journal of Agriculture Environment and Food Sciences, 7(1), 192-196.
  • Tian, H., Zhang, J., Zheng, Y., Shi, J., Qin, J., Ren, X., & Bi, R. (2022). Prediction of soil organic carbon in mining areas. Catena, 215, 106311.
  • Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y. K., Mudge, P. L., Pereira, R. C., Kirschbaum, M. U. F., McNally, S. R., Beare, M. H. & Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture Ecosystems & Environment, 265, 432–443.
  • Yılmaz, M. & Dengiz, O. (2021). Bazı toprak özellikleri ile ilişkili olarak arazi kullanımı ve arazi örtüsünün toprak organik karbon stokuna etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 8(2), 154-167.
  • Zeri, M., S. Alvalá, R. C., Carneiro, R., Cunha-Zeri, G., Costa, J. M., Rossato Spatafora, L., Urbano, D., Vall-Llossera, M., & Marengo, J. (2018). Tools for communicating agricultural drought over the Brazilian semiarid using the soil moisture index. Water, 10(10), 1421.

Distribution of Carbon Stocks by Land Use in Semi Arid Climates: A Case Study of Beypazarı

Yıl 2025, Sayı: 382, 37 - 50, 27.12.2025
https://doi.org/10.33724/zm.1778738

Öz

In this study, soil organic carbon (SOC) and inorganic carbon (IC) stocks were determined and their distribution evaluated under different land use types (agriculture, pasture, and hilly slope lands) in Beypazarı district of Ankara province. A total of 405 surface soil samples (0-30 cm) were collected from five villages (Kayabükü, Çantırlı, Fasıl, Kuyucak, and Kırbaşı), and their basic physicochemical properties (pH, EC, texture, organic matter, organic carbon, lime) were analyzed. The findings revealed that the soils were generally alkaline, low in organic matter, and high in lime content. The average OC stock values ranged from below 1% and 2%, whereas IC stock values higher. Among land-use types, the highest OC stocks were recorded in pastures (146 ton/ha), followed by agricultural lands (129 ton/ha) and hilly slope areas (111 ton/ha). IC stocks reached their highest level in agricultural lands (26 ton/ha). Correlation analyses showed that relationships between lime and organic fractions varied across villages. Overall, the study concluded that OC stocks in Beypazarı soils were relatively low; however, land use and vegetation emerged as key determinants of carbon dynamics. These findings provide important insights for the conservation of soil carbon and the development of sustainable land management strategies in arid and semi-arid regions.

Kaynakça

  • Anonim. (2025). The international "4 per 1000" Initiative .http://4p1000.org. Acces Date: 01.08.2025 Başaran, N., Akdogan Cinal, G. & Eroglu, E. (2024). Soil organic carbon exchange due to the change in land use. Environ Ecol Stat, 31, 725–748.
  • Batjes N.H. & Sombroek W.G. (1997). Possibilities for carbon sequestration in tropical and subtropical soils. Global Change Biol, 3, 161–173.
  • Batjes, N.H. (1996). Total carbon and nitrogen in the soils of the world. European journal of soil science, 47(2), 151-163.
  • Baveye, P., Berthelin, J., Tessier, D. & Lemaire, G. (2018). The “4 per 1000” initiative: a credibility issue for the soil science community? Geoderma, 309,118-123.
  • Bellassen, V., Angers, D., Kowalczewski, T. & Olesen, A. (2022). Soil Carbon Is the Blind Spot of European National GHG Inventories. Nat. Clim. Chang., 12, 324–331.
  • Bouyoucos, G.J. (1951). A recalibration of the hydrometer method for making mechanical analysis of soils. Agronomy Journal, 43(9), 434-438.
  • Dengiz, O., Saygın, F. & İmamoğlu, A. (2019). Yarı nemli karasal bir ekosistemde farklı arazi örtüleri ve toprak tipleri altında toprak organik karbon yoğunluğunun mekansal değişkenliği. Avrasya Toprak Bilimi Dergisi, 8b(1), 35-43.
  • Don, A., Seidel, F., Leifeld, J., Kätterer, T., Martin, M., Pellerin, S. & Chenu, C. (2024). Carbon sequestration in soils and climate change mitigation—Definitions and pitfalls. Global Change Biology, 30(1), e16983.
  • Eswaran, H., Reich, P.R., Kimble, J. M. Beinroth, F. H. Padammabhan, E. & Moncharoen, P. (2000). Global Carbon Stocks. In: R. Lal, J. M. Kimble, H. Eswaran and B. A. Steward (Eds), Global Climate Change and Pedogenic Carbonates. Lewis Publishers, pp. 15-25, Boca Raton.
  • FAO. (2018). Soil Organic Carbon Mapping Cookbook. Food and Agriculture Organization of the United Nations: Rome, Italy.
  • Harper, R. J. & Tibbett, M. (2013). The hidden organic carbon in deep mineral soils. Plant and Soil, 368, 641-648. IPCC. (2023). Climate Change 2023. Synthesis Report. https:// report.ipcc.ch/ar6syr/headline.html
  • Kalaivanan, D., & Ravindran, C. (2012). Soil Carbon Sequestration: A Win-Win Strategy for Mitigation of Climate Change and Advanced Food Security. LAP Lambert Academic Publishing.
  • Korkanç, S.Y., Şahin, H., Özden, A.O. & Özkurt, B. (2018). Arazi kullanım dönüşümlerinin toprakların organik karbon depolanması ve bazı özellikleri üzerindeki etkileri: Niğde yöresi örneği. Türk Ormancılık Dergisi, 19(4), 362-367.
  • Lal, R. (2004). Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science, 304 (5677), 1623-1627.
  • Lal, R., Monger, C., Nave, L., & Smith, P. (2021). The role of soil in regulation of climate. Philosophical Transactions of the Royal Society B, 376(1834), 20210084.
  • Lal, R., Negassa, W. & Lorenz, K. (2015). Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15, 79-86.
  • Laudicina, V.A., Scalenghe, R., Pisciotta, A., Parello, F. & Dazzi, C. (2013). Pedogenic carbonates and carbon pools in gypsiferous soils of a semiarid mediterranean environment in south Italy. Geoderma, 192, 31–38. McLean, E. O. 1982. Soil pH and lime requirement. In: A. L. Page, R. H. Miller, and D. R. Keeney (Eds.), Methods of Soil Analysis, Agronomy No. 9, Part 2, 2nd ed., American Society of Agronomy, Madison, WI, pp. 199 – 224.
  • Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B.S., et al. (2017). Soil Carbon 4 per Mille. Geoderma, 292, 59–86.
  • Mokany, K., Raison, R.J. & Prokushkin, A.S. (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84-96.
  • Naorem, A., Jayaraman, S., Dalal, R. C., Patra, A., Rao, C. S. & Lal, R. (2022). Soil Inorganic Carbon as a Potential Sink in Carbon Storage in Dryland Soils—A Review. Agriculture, 12(8), 1256.
  • Nelson, R. E. (1982). Carbonate and gypsum. Methods of soil analysis: Part 2 Chemical and microbiological properties, 9, 181-197.
  • Nelson, D. W. & Sommers, L. E. (1982). Total carbon, organic carbon and organic matter. In: A. L. Page et al. (Eds.) Methods of soil analysis: Part 2. Chemical and microbiological properties. p. 539-579, ASA Monograph Number 9.
  • Pearson, R.G., Raxworthy, C.J., Nakamura, M. & Peterson, A.T. (2007). Predicting species’ distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102- 117.
  • Poeplau, C. & Don, A. (2013). Sensitivity of soil organic carbon stocks and fractions to different land-use changes across Europe. Geoderma, 192, 189-201.
  • Poulton, P., Johnston, J., Macdonald, A., White, R. & Powlson, D. (2018). Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long‐term experiments at Rothamsted Research, UK. Global Change Biology, 24(6), 2563-2584.
  • Powlson, D. S. Whitmore, A. P. & Goulding, K. W. T. (2011). Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. European J. of Soil Science, 62(1), 42 – 55.
  • Sakin, E., Deliboran, A., Sakin, E. D. & Tutar, E. (2010). Carbon Stocks in Harran Plain Soils, Sanliurfa, Turkey. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 151-156.
  • Schlesinger, W. H. (2000). Carbon sequestration in soils: some cautions amidst optimism. Agriculture, Ecosystems & Environment, 82(1-3), 121-127.
  • Şener, Y. (1997). Beypazarı tarihte ve bugün. 168, Beypazarı.
  • Şimşek Semercioğlu, T., Bayram, C. A., Büyük, G., Akça, E., et al. (2023). The effect of altitude on soil organic carbon content in semi-arid mediterranean climate. International Journal of Agriculture Environment and Food Sciences, 7(1), 192-196.
  • Tian, H., Zhang, J., Zheng, Y., Shi, J., Qin, J., Ren, X., & Bi, R. (2022). Prediction of soil organic carbon in mining areas. Catena, 215, 106311.
  • Whitehead, D., Schipper, L. A., Pronger, J., Moinet, G. Y. K., Mudge, P. L., Pereira, R. C., Kirschbaum, M. U. F., McNally, S. R., Beare, M. H. & Camps-Arbestain, M. (2018). Management practices to reduce losses or increase soil carbon stocks in temperate grazed grasslands: New Zealand as a case study. Agriculture Ecosystems & Environment, 265, 432–443.
  • Yılmaz, M. & Dengiz, O. (2021). Bazı toprak özellikleri ile ilişkili olarak arazi kullanımı ve arazi örtüsünün toprak organik karbon stokuna etkisi. Türkiye Tarımsal Araştırmalar Dergisi, 8(2), 154-167.
  • Zeri, M., S. Alvalá, R. C., Carneiro, R., Cunha-Zeri, G., Costa, J. M., Rossato Spatafora, L., Urbano, D., Vall-Llossera, M., & Marengo, J. (2018). Tools for communicating agricultural drought over the Brazilian semiarid using the soil moisture index. Water, 10(10), 1421.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimleri ve Bitki Besleme (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Sonay Sözüdoğru Ok 0000-0002-4629-7140

Muhittin Onur Akça 0000-0003-4540-9371

İlhami Bayramin 0000-0001-7342-0178

Gönderilme Tarihi 5 Eylül 2025
Kabul Tarihi 2 Aralık 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 382

Kaynak Göster

APA Sözüdoğru Ok, S., Akça, M. O., & Bayramin, İ. (2025). Yarı Kurak İklimlerde Arazi Kullanımına Bağlı Karbon Stoğu Dağılımı: Beypazarı Örneği. Ziraat Mühendisliği(382), 37-50. https://doi.org/10.33724/zm.1778738