Derleme
BibTex RIS Kaynak Göster

Tarımsal Su Kaynaklarının Sürdürülebilir Yönetimi: Sınırlılıklar, Teknolojik Yenilikler ve Gelecek Perspektifleri

Yıl 2025, Sayı: 382, 22 - 36, 27.12.2025
https://doi.org/10.33724/zm.1787242

Öz

İnsanlık tarihinin en önemli dönüm noktalarından biri, tarıma dayalı düzenin kurulması ile yaşanmıştır. Yaklaşık 5000 yıl önce Mezopotamya topraklarında tarımsal sulama sayesinde çağın en büyük medeniyetleri ortaya çıkmıştır. Bu medeniyetler, zamanlarına göre olağanüstü sayılabilecek yetkinlikte ve organizasyonda hidrolik yapılar inşa etmelerine rağmen, sürdürülebilir sulama yönetimindeki yetersizlikler nedeniyle yok olmuşlardır. Yaklaşık 5000 yıl sonra “Yeşil Devrim” adıyla bilinen başka bir tarım devrimi daha yaşanmıştır. Bu son devrimin sonuçları, özellikle su ve toprak kaynaklarına olan olumsuz etkileriyle günümüzde yakından hissedilmektedir. Neyse ki, tarihin tekerrür etmesini önlemek amacıyla uluslararası toplum sürdürülebilirlik konusuna odaklanmış ve ses getiren toplantılara imza atmıştır. Bu süreçte özellikle sürdürülebilir sulama alanında büyük bir bilimsel bilgi birikimi oluşmuştur. Bu bilgi birikimiyle gelişen teknolojik fırsatlar, sürdürülebilir sulama yönetimi için bir araç olarak kullanılabildiği takdirde, bu zorlu hedefe ulaşmada çok önemli bir adım atılmış olacaktır. Bu bağlamda, çalışmada su kaynaklarının sürdürülebilir yönetiminin en önemli bileşeni olan tarımsal su yönetimine odaklanılmış; tarihsel kanıtlarla su kaynaklarının sürdürülebilir yönetiminin önemi, tuzluluk problemlerinin boyutu, Türkiye’nin ve dünyanın tatlı su varlığı, uluslararası toplumun sürdürülebilir su yönetimi konusundaki önemli toplantıları ve sürdürülebilir tarımsal su yönetiminde teknoloji fırsatları bütüncül bir çerçevede incelenmiştir.

Kaynakça

  • Ahrestani, Z., Sadeghzadeh, S., & Emrooz, H. B. M. (2023). An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC advances, 13(15), 10273-10307.
  • Albornoz, F., del Río, C., Carter, V., Escobar, R., & Vásquez, L. (2023). Fog water collection for local greenhouse vegetable production in the Atacama Desert. Sustainability, 15(22), 15720.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage systems, 19(3), 251-268.
  • Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4), 380-394.
  • Altieri, M. A., & Nicholls, C. I. (2017). Agroecology: a brief account of its origins and currents of thought in Latin America. Agroecology and sustainable food systems, 41(3-4), 231-237.
  • Anonymous (2018). Report of the Special Specialized Commission on Water Resources Management and Security (Su Kaynakları Yönetimi ve Güvenliği Özel İhtisas Komisyonu Raporu). Eleventh Development Plan (2019-2023). Retrieved from: https://www.sbb.gov.tr/wpcontent/uploads/2020/04/SuKaynaklariYonetimi_ve_GuvenligiOzelIhtisasKomisyonuRaporu.pdf
  • Atasever, Ü. H., Kesikoğlu, M. H., & Özkan, C. (2013). Evamapper: a novel matlab toolbox for evapotranspiration mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 23-26.
  • Bastiaanssen, W. G., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93.
  • Beysens, D., Marcos-Martin, M., Nikolayev, V., & Sibille, P. (2000). U.S. Patent No. 6,141,088. Washington, DC: U.S. Patent and Trademark Office.
  • Bhattarai, N., & Liu, T. (2019). LandMOD ET mapper: A new matlab-based graphical user interface (GUI) for automated implementation of SEBAL and METRIC models in thermal imagery. Environmental Modelling & Software, 118, 76-82.
  • Bielsa, J., & Cazcarro, I. (2014). Implementing integrated water resources management in the Ebro River Basin: from theory to facts. Sustainability, 7(1), 441-464.
  • Biswas, A. K. (2004). Integrated water resources management: a reassessment: a water forum contribution. Water international, 29(2), 248-256.
  • Burki, T. (2022). Food security and nutrition in the world. The Lancet Diabetes & Endocrinology, 10(9), 622.
  • Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., & Twomlow, S. (2018). Urgent action to combat climate change and its impacts (SDG 13): transforming agriculture and food systems. Current opinion in environmental sustainability, 34, 13-20.
  • Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97(2016), 2036.
  • Colls, A., Ash, N., & Ikkala, N. (2009). Ecosystem-based Adaptation: a natural response to climate change (Vol. 21). Gland, Switzerland: Iucn.
  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage systems, 19(3), 223-249.
  • Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745.
  • Devlet Su İşleri Genel Müdürlüğü (DSİ). (2019). DSİ 2019 Yılı Resmi Su Kaynakları İstatistikleri. Retrieved from: https://www.dsi.gov.tr/Sayfa/Detay/784
  • Devlet Su İşleri Genel Müdürlüğü (DSİ). (2022). DSİ 2022 Yılı Resmi Su Kaynakları İstatistikleri. Retrieved from: https://www.dsi.gov.tr/Sayfa/Detay/784
  • Falkenmark, M., Lundqvist, J., & Widstrand, C. (1989). Macro‐scale water scarcity requires micro‐scale approaches: Aspects of vulnerability in semi‐arid development. In Natural resources forum (Vol. 13, No. 4, pp. 258-267). Oxford, UK: Blackwell Publishing Ltd.
  • Falkenmark, M., Fox, P., Persson, G., & Rockström, J. (2001). Water harvesting for upgrading of rainfed agriculture.
  • Feng, A., Akther, N., Duan, X., Peng, S., Onggowarsito, C., Mao, S., Fu, Q., & Kolev, S. D. (2022). Recent development of atmospheric water harvesting materials: a review. ACS Materials Au, 2(5), 576-595.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52-62.
  • Food and Agriculture Organization of the United Nations (FAO). (2010). " Climate-Smart" Agriculture: Policies, Practices and Financing for Food Security, Adaption and Mitigation. Food and Agriculture Organization of the United Nations. Retrieved from: https://www.fao.org/4/i1881e/i1881e00.pdf
  • Fuglie, K., Gautam, M., Goyal, A., & Maloney, W. F. (2019). Harvesting prosperity: Technology and productivity growth in agriculture. World Bank Publications.
  • Garg, A., Munoth, P., & Goyal, R. (2016, December). Application of soil moisture sensor in agriculture. In Proceedings of Internation Conference on Hydraulic (pp. 8-10).
  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., ... & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341(6141), 33-34.
  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828-831.
  • Gezer, A., & Erdem, A. (2018). Su stresi, su kıtlığı ve su tasarrufu hakkında halkın farkındalığının belirlenmesi: Akdeniz Üniversitesi örnek çalışması. Doğal Afetler ve Çevre Dergisi, 4(2), 113-122.
  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies (pp. xviii+-526).
  • Gindel, I. (1965). Irrigation of plants with atmospheric water within the desert.
  • Gliessman, S. R. (2021). Package price agroecology: The ecology of sustainable food systems. CRC press.
  • Global Water Partnership (GWP). (2000). Integrated water resources management. Stockholm: GWP Secretariat.
  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
  • Hamouda, F., Puig-Sirera, A., Bonzi, L., Remorini, D., Massai, R., & Rallo, G. (2024). Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard. Agricultural Water Management, 305, 109138.
  • Hessels, T., van Opstal, J., Trambauer, P., Bastiaanssen, W. G. M., Faouzi, M., Mohamed, Y., & Er-Raji, A. (2017). pySEBAL Version 3.3. 7.
  • Hoff, H. (2011). Understanding the nexus. background paper for the bonn2011 nexus conference: the water, energy and food security nexus.
  • Hove, T., Derman, B., & Manzungu, E. (2016). Land, farming and IWRM: A case study of the middle Manyame Sub-catchment, Zimbabwe. Water Alternatives, 9(3), 531.
  • Jovanovic, N., & Israel, S. (2012). Critical review of methods for the estimation of actual evapotranspiration in hydrological models. Evapotranspiration-Remote Sensing and Modeling, 24.
  • Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., ... & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and society, 21(2).
  • Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., & Ozga-Zielinski, B. (2016). A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustainable Water Resources Management, 2(1), 71-86.
  • Khanna, S. A., Shrestha, K. L., Maskey, R. K., Lamsal, A., Pyakurel, K., Poudyal, M., ... & Shrestha, A. (2016).
  • Integrated water resource management (IWRM): a case study of Durlung Watershed, Bagmati Zone, Nepal. Hydro Nepal: Journal of Water, Energy and Environment, 18, 47-54.
  • Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., ... & Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., ... & Fessehaye, G. M. (2012). Fog as a fresh-water resource: overview and perspectives. Ambio, 41(3), 221-234.
  • Koncagül, E., Tran, M., & Connor, R. (2020). The United Nations world water development report 2020: Water and climate change, facts and figures.
  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... & Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature climate change, 4(12), 1068-1072.
  • Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M., & Fereres, E. (2013). AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 96, 227-237.
  • Loucks, D. P., & Van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. Springer.
  • Molden, D. (Ed.). (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture. London: Earthscan; Colombo: International Water Management Institute (IWMI).
  • Monteith, J. L. (1957). Dew. Quarterly Journal of the Royal Meteorological Society, 83(357), 322-341.
  • Morchid, A., El Alami, R., Raezah, A. A., & Sabbar, Y. (2024). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 15(3), 102509.
  • Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, 114(4), 358-371.
  • Neven, D. (2014). Developing sustainable food value chains guiding principles. Food and Agriculture Organization of the United Nations.
  • Owusu, G. (2020). Surface energy balance and crop coefficient estimation with R. Available from : https://rdrr.io/github/gowusu/sebkc/
  • Öztürk, A., & Çolak, M. S. (2024). A Quantitative and Qualitative Assessment of Turkey's Water Resources Potential. Journal of Agricultural Sciences, 30(1), 1-34.
  • Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural water management, 108, 39-51.
  • Pohl, G., & Nachtigall, W. (2015). Biomimetics for Architecture & Design: Nature-Analogies-Technology. Springer.
  • Postel, S. L. (2000). Water and world population growth. Journal‐American Water Works Association, 92(4), 131-138.
  • Prakash, C., Singh, L. P., Gupta, A., & Lohan, S. K. (2023). Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation. Sensors and Actuators A: Physical, 362, 114605.
  • Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465.
  • Ramírez-Cuesta, J. M., Allen, R. G., Intrigliolo, D. S., Kilic, A., Robison, C. W., Trezza, R., ... & Lorite, I. J. (2020). METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environmental Modelling & Software, 131, 104770.
  • Ringler, C., Bhaduri, A., & Lawford, R. (2013). The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency?. Current Opinion in Environmental Sustainability, 5(6), 617-624.
  • Rockström, J., & Falkenmark, M. (2015). Agriculture: Increase water harvesting in Africa. Nature, 519(7543), 283-285. Sánchez, N., González-Zamora, Á., Piles, M., & Martínez-Fernández, J. (2016). A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: A case of study over the Iberian Peninsula. Remote Sensing, 8(4), 287.
  • Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), 4037-4049.
  • Seyar, M. H., & Ahamed, T. (2024). Optimization of soil-based irrigation scheduling through the integration of machine learning, remote sensing, and soil moisture sensor technology. In IoT and AI in Agriculture: Smart Automation Systems for increasing Agricultural Productivity to Achieve SDGs and Society 5.0 (pp. 275-299).
  • Singapore: Springer Nature Singapore.
  • Shiklomanov, I. A. (1991). The world’s water resources. In Proceedings of the international symposium to commemorate (Vol. 25, pp. 93-126). Unesco.
  • Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., & Scanlon, B. R. (2015). A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19(3), 1521-1545.
  • Silva, C. D. O. F., de Castro Teixeira, A. H., & Manzione, R. L. (2019). Agriwater: An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental modelling & software, 120, 104497.
  • Steduto, P., Faurès, J. M., Hoogeveen, J., Winpenny, J., & Burke, J. (2012). Coping with water scarcity: an action framework for agriculture and food security. Rome: Food and Agriculture Organization of the United Nations.
  • Sukhadeve, V., & Roy, S. (2016). Advance agro farm design with smart farming, irrigation and rainwater harvesting using internet of things. International Journal of Advanced Engineering and Management, 1(1), 33-45.
  • Şahin, B. (2016). Küresel bir sorun: Su kıtlığı ve sanal su ticareti (Master's thesis, Hitit University (Turkey)). Ministry of Agriculture and Forestry of the Republic of Turkey. (2025). Ulusal Su Planı (2025–2035). Retrieved from: https://www.tarimorman.gov.tr/Sayfalar/GormeEngellilerDetay.aspx?Liste=Haber&OgeId=6706
  • Thorp, K. R., Marek, G. W., DeJonge, K. C., Evett, S. R., & Lascano, R. J. (2019). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, 119, 214-227.
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264.
  • Tomaszkiewicz, M., Abou Najm, M., Zurayk, R., & El-Fadel, M. (2017). Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agricultural and Forest Meteorology, 232, 411-421.
  • Tu, Y., Wang, R., Zhang, Y., & Wang, J. (2018). Progress and expectation of atmospheric water harvesting. Joule, 2(8), 1452-1475.
  • Türkiye İstatistik Kurumu (TÜIK). (2019). Retrieved from: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1
  • United Nations Development Programme (UNDP). (2006). Human Development Report 2006 Beyond Scarcity: Power, poverty, and the global water crisis. Retrieved from: https://hdr.undp.org/content/human-development-report-2006
  • United Nations (UN) Food Systems Summit (2021). National Pathways for Food Systems Transformation: Türkiye. United Nations Food Systems Hub. Retrieved from: https://www.unfoodsystemshub.org/docs/unfoodsystemslibraries/national-pathways/turkey/2021-12-22-en-designed-edition-booklet-national-pathway-of-turkiye.pdf?sfvrsn=d7706371_1
  • United Nations (UN)-Water. (2007) Coping with water scarcity: challenge of the twenty-first century. World water day 22 March 2007 United Nations – Food and Agricultural Organization. Retrieved from: https://openknowledge.fao.org/server/api/core/bitstreams/f1100f37-2a84-4abb-a661-90ff7aa0b648/content
  • United Nations (UN)- Water. (2012). Managing water under uncertainty and risk, the united nations world water development report 4, un water reports, world water assessment programme. Paris, France. Retrieved from: https://www.unwater.org/publications/un-world-water-development-report-2012
  • United Nations (UN)-Water. (2021). Progress on change in water-use efficiency: Global status and acceleration needs for SDG indicator 6.4. 1, 2021. Food & Agriculture Org. Retrieved from: https://www.unwater.org/sites/default/files/app/uploads/2021/08/SDG6_Indicator_Report_641_Progress-on-Water-Use-Efficiency_2021_ENGLISH_pages-1.pdf
  • United Nations (UN)-Water (2024). Progress on implementation of Integrated Water Resources Management. Mid-term status of SDG Indicator 6.5.1 and acceleration needs, with a special focus on Climate Change. Retrieved from: https://www.unwater.org/sites/default/files/202408/SDG6_Indicator_Report_651_Progress-on-Implementation-of-IWRM_2024_EN_0.pdf
  • USİAD (Ulusal Sanayici ve İş adamları Derneği), (2007). Su Raporu, Ulusal Su Politikası İhtiyacımız. Ed. Dursun Yıldız, ADA Strateji, Ankara, 162ss.
  • USİAD (Ulusal Sanayici ve İş adamları Derneği), (2010). Su Kaynakları Bakanlığı Kuruluş Kanunu Tasarı Taslağı Önerisi. Ada Strateji, Ankara, 124ss.
  • Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865.
  • Vignola, R., Locatelli, B., Martinez, C., & Imbach, P. (2009). Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists?. Mitigation and adaptation strategies for global change, 14(8), 691-696.
  • Wahlgren, R. V. (2001). Atmospheric water vapour processor designs for potable water production: a review. Water Research, 35(1), 1-22.
  • Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice. A review. Agronomy for sustainable development, 29(4), 503-515.
  • World Bank. (2015). Future of Food: Shaping a Climate-Smart Global Food System. Retrieved from: https://openknowledge.worldbank.org/entities/publication/2e4c746c-7d72-57a6-a064-39ebb0f2ad5b
  • Yang, Y., Hu, J., Porter, D., Marek, T., Heflin, K., & Kong, H. (2020). Deep reinforcement learning-based irrigation scheduling. Transactions of the ASABE, 63(3), 549-556.
  • Yu, L., Gao, W., Shamshiri, R. R., Tao, S., Ren, Y., Zhang, Y., & Su, G. (2021). Review of research progress on soil moisture sensor technology. International Journal of Agricultural and Biological Engineering, 14(4), 32-42.
  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and electronics in agriculture, 36(2-3), 113-132.
  • Zhao, H., Di, L., Guo, L., Zhang, C., & Lin, L. (2023). An automated data-driven irrigation scheduling approach using model simulated soil moisture and evapotranspiration. Sustainability, 15(17), 12908.
  • Zibold, F. I. 1905, The role of the underground dew in water supply of Feodosia
  • Zyoud, S., & Zyoud, A. H. (2025). Revealing global trends on nature-based solutions: Mapping and visualizing research landscapes. Nature-Based Solutions, 7, 100229.

Sustainable Water Resources Management in Agriculture: Challenges, Technological Innovations, and Future Perspective

Yıl 2025, Sayı: 382, 22 - 36, 27.12.2025
https://doi.org/10.33724/zm.1787242

Öz

One of the most significant turning points in human history was the establishment of an agriculture-based society. Approximately 5000 years ago, thanks to agricultural irrigation, the greatest civilizations of their time emerged in Mesopotamia. Despite constructing hydraulic structures of remarkable sophistication and organization for their era, these civilizations eventually collapsed due to inadequacies in sustainable irrigation management. Nearly 5,000 years later, another agricultural revolution, known as the “Green Revolution,” took place. The consequences of this latter revolution are still strongly felt today, particularly through its adverse impacts on soil and water resources. Fortunately, in order to prevent history from repeating itself, the international community has focused on sustainability and held landmark conferences. During this process, a substantial body of scientific knowledge on sustainable irrigation has been developed. If the technological opportunities that have arisen from this knowledge can be effectively utilized as tools for sustainable irrigation management, a critical step will be taken toward achieving this challenging goal. In this context, the study focuses on agricultural water management as the most crucial component of sustainable water resources management; it examines, within a comprehensive framework, the historical evidence for the importance of sustainable water governance, the extent of salinity problems, the freshwater resources of Türkiye and the world, the major international conferences on sustainable water management, and the technological opportunities in sustainable agricultural water management.

Kaynakça

  • Ahrestani, Z., Sadeghzadeh, S., & Emrooz, H. B. M. (2023). An overview of atmospheric water harvesting methods, the inevitable path of the future in water supply. RSC advances, 13(15), 10273-10307.
  • Albornoz, F., del Río, C., Carter, V., Escobar, R., & Vásquez, L. (2023). Fog water collection for local greenhouse vegetable production in the Atacama Desert. Sustainability, 15(22), 15720.
  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109.
  • Allen, R. G., Tasumi, M., Morse, A., & Trezza, R. (2005). A Landsat-based energy balance and evapotranspiration model in Western US water rights regulation and planning. Irrigation and Drainage systems, 19(3), 251-268.
  • Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of irrigation and drainage engineering, 133(4), 380-394.
  • Altieri, M. A., & Nicholls, C. I. (2017). Agroecology: a brief account of its origins and currents of thought in Latin America. Agroecology and sustainable food systems, 41(3-4), 231-237.
  • Anonymous (2018). Report of the Special Specialized Commission on Water Resources Management and Security (Su Kaynakları Yönetimi ve Güvenliği Özel İhtisas Komisyonu Raporu). Eleventh Development Plan (2019-2023). Retrieved from: https://www.sbb.gov.tr/wpcontent/uploads/2020/04/SuKaynaklariYonetimi_ve_GuvenligiOzelIhtisasKomisyonuRaporu.pdf
  • Atasever, Ü. H., Kesikoğlu, M. H., & Özkan, C. (2013). Evamapper: a novel matlab toolbox for evapotranspiration mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40, 23-26.
  • Bastiaanssen, W. G., Noordman, E. J. M., Pelgrum, H., Davids, G., Thoreson, B. P., & Allen, R. G. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of irrigation and drainage engineering, 131(1), 85-93.
  • Beysens, D., Marcos-Martin, M., Nikolayev, V., & Sibille, P. (2000). U.S. Patent No. 6,141,088. Washington, DC: U.S. Patent and Trademark Office.
  • Bhattarai, N., & Liu, T. (2019). LandMOD ET mapper: A new matlab-based graphical user interface (GUI) for automated implementation of SEBAL and METRIC models in thermal imagery. Environmental Modelling & Software, 118, 76-82.
  • Bielsa, J., & Cazcarro, I. (2014). Implementing integrated water resources management in the Ebro River Basin: from theory to facts. Sustainability, 7(1), 441-464.
  • Biswas, A. K. (2004). Integrated water resources management: a reassessment: a water forum contribution. Water international, 29(2), 248-256.
  • Burki, T. (2022). Food security and nutrition in the world. The Lancet Diabetes & Endocrinology, 10(9), 622.
  • Campbell, B. M., Hansen, J., Rioux, J., Stirling, C. M., & Twomlow, S. (2018). Urgent action to combat climate change and its impacts (SDG 13): transforming agriculture and food systems. Current opinion in environmental sustainability, 34, 13-20.
  • Cohen-Shacham, E., Walters, G., Janzen, C., & Maginnis, S. (2016). Nature-based solutions to address global societal challenges. IUCN: Gland, Switzerland, 97(2016), 2036.
  • Colls, A., Ash, N., & Ikkala, N. (2009). Ecosystem-based Adaptation: a natural response to climate change (Vol. 21). Gland, Switzerland: Iucn.
  • Courault, D., Seguin, B., & Olioso, A. (2005). Review on estimation of evapotranspiration from remote sensing data: From empirical to numerical modeling approaches. Irrigation and Drainage systems, 19(3), 223-249.
  • Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart farming: Internet of Things (IoT)-based sustainable agriculture. Agriculture, 12(10), 1745.
  • Devlet Su İşleri Genel Müdürlüğü (DSİ). (2019). DSİ 2019 Yılı Resmi Su Kaynakları İstatistikleri. Retrieved from: https://www.dsi.gov.tr/Sayfa/Detay/784
  • Devlet Su İşleri Genel Müdürlüğü (DSİ). (2022). DSİ 2022 Yılı Resmi Su Kaynakları İstatistikleri. Retrieved from: https://www.dsi.gov.tr/Sayfa/Detay/784
  • Falkenmark, M., Lundqvist, J., & Widstrand, C. (1989). Macro‐scale water scarcity requires micro‐scale approaches: Aspects of vulnerability in semi‐arid development. In Natural resources forum (Vol. 13, No. 4, pp. 258-267). Oxford, UK: Blackwell Publishing Ltd.
  • Falkenmark, M., Fox, P., Persson, G., & Rockström, J. (2001). Water harvesting for upgrading of rainfed agriculture.
  • Feng, A., Akther, N., Duan, X., Peng, S., Onggowarsito, C., Mao, S., Fu, Q., & Kolev, S. D. (2022). Recent development of atmospheric water harvesting materials: a review. ACS Materials Au, 2(5), 576-595.
  • Fessehaye, M., Abdul-Wahab, S. A., Savage, M. J., Kohler, T., Gherezghiher, T., & Hurni, H. (2014). Fog-water collection for community use. Renewable and Sustainable Energy Reviews, 29, 52-62.
  • Food and Agriculture Organization of the United Nations (FAO). (2010). " Climate-Smart" Agriculture: Policies, Practices and Financing for Food Security, Adaption and Mitigation. Food and Agriculture Organization of the United Nations. Retrieved from: https://www.fao.org/4/i1881e/i1881e00.pdf
  • Fuglie, K., Gautam, M., Goyal, A., & Maloney, W. F. (2019). Harvesting prosperity: Technology and productivity growth in agriculture. World Bank Publications.
  • Garg, A., Munoth, P., & Goyal, R. (2016, December). Application of soil moisture sensor in agriculture. In Proceedings of Internation Conference on Hydraulic (pp. 8-10).
  • Garnett, T., Appleby, M. C., Balmford, A., Bateman, I. J., Benton, T. G., Bloomer, P., ... & Godfray, H. C. J. (2013). Sustainable intensification in agriculture: premises and policies. Science, 341(6141), 33-34.
  • Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327(5967), 828-831.
  • Gezer, A., & Erdem, A. (2018). Su stresi, su kıtlığı ve su tasarrufu hakkında halkın farkındalığının belirlenmesi: Akdeniz Üniversitesi örnek çalışması. Doğal Afetler ve Çevre Dergisi, 4(2), 113-122.
  • Ghassemi, F., Jakeman, A. J., & Nix, H. A. (1995). Salinisation of land and water resources: human causes, extent, management and case studies (pp. xviii+-526).
  • Gindel, I. (1965). Irrigation of plants with atmospheric water within the desert.
  • Gliessman, S. R. (2021). Package price agroecology: The ecology of sustainable food systems. CRC press.
  • Global Water Partnership (GWP). (2000). Integrated water resources management. Stockholm: GWP Secretariat.
  • Gubbi, J., Buyya, R., Marusic, S., & Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
  • Hamouda, F., Puig-Sirera, A., Bonzi, L., Remorini, D., Massai, R., & Rallo, G. (2024). Design and validation of a soil moisture-based wireless sensors network for the smart irrigation of a pear orchard. Agricultural Water Management, 305, 109138.
  • Hessels, T., van Opstal, J., Trambauer, P., Bastiaanssen, W. G. M., Faouzi, M., Mohamed, Y., & Er-Raji, A. (2017). pySEBAL Version 3.3. 7.
  • Hoff, H. (2011). Understanding the nexus. background paper for the bonn2011 nexus conference: the water, energy and food security nexus.
  • Hove, T., Derman, B., & Manzungu, E. (2016). Land, farming and IWRM: A case study of the middle Manyame Sub-catchment, Zimbabwe. Water Alternatives, 9(3), 531.
  • Jovanovic, N., & Israel, S. (2012). Critical review of methods for the estimation of actual evapotranspiration in hydrological models. Evapotranspiration-Remote Sensing and Modeling, 24.
  • Kabisch, N., Frantzeskaki, N., Pauleit, S., Naumann, S., Davis, M., Artmann, M., ... & Bonn, A. (2016). Nature-based solutions to climate change mitigation and adaptation in urban areas: perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecology and society, 21(2).
  • Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., & Ozga-Zielinski, B. (2016). A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustainable Water Resources Management, 2(1), 71-86.
  • Khanna, S. A., Shrestha, K. L., Maskey, R. K., Lamsal, A., Pyakurel, K., Poudyal, M., ... & Shrestha, A. (2016).
  • Integrated water resource management (IWRM): a case study of Durlung Watershed, Bagmati Zone, Nepal. Hydro Nepal: Journal of Water, Energy and Environment, 18, 47-54.
  • Kim, H., Yang, S., Rao, S. R., Narayanan, S., Kapustin, E. A., Furukawa, H., ... & Wang, E. N. (2017). Water harvesting from air with metal-organic frameworks powered by natural sunlight. Science, 356(6336), 430-434.
  • Klemm, O., Schemenauer, R. S., Lummerich, A., Cereceda, P., Marzol, V., Corell, D., ... & Fessehaye, G. M. (2012). Fog as a fresh-water resource: overview and perspectives. Ambio, 41(3), 221-234.
  • Koncagül, E., Tran, M., & Connor, R. (2020). The United Nations world water development report 2020: Water and climate change, facts and figures.
  • Lipper, L., Thornton, P., Campbell, B. M., Baedeker, T., Braimoh, A., Bwalya, M., ... & Torquebiau, E. F. (2014). Climate-smart agriculture for food security. Nature climate change, 4(12), 1068-1072.
  • Lorite, I. J., García-Vila, M., Santos, C., Ruiz-Ramos, M., & Fereres, E. (2013). AquaData and AquaGIS: two computer utilities for temporal and spatial simulations of water-limited yield with AquaCrop. Computers and Electronics in Agriculture, 96, 227-237.
  • Loucks, D. P., & Van Beek, E. (2017). Water resource systems planning and management: An introduction to methods, models, and applications. Springer.
  • Molden, D. (Ed.). (2007). Water for food, water for life: A comprehensive assessment of water management in agriculture. London: Earthscan; Colombo: International Water Management Institute (IWMI).
  • Monteith, J. L. (1957). Dew. Quarterly Journal of the Royal Meteorological Society, 83(357), 322-341.
  • Morchid, A., El Alami, R., Raezah, A. A., & Sabbar, Y. (2024). Applications of internet of things (IoT) and sensors technology to increase food security and agricultural Sustainability: Benefits and challenges. Ain Shams Engineering Journal, 15(3), 102509.
  • Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, 114(4), 358-371.
  • Neven, D. (2014). Developing sustainable food value chains guiding principles. Food and Agriculture Organization of the United Nations.
  • Owusu, G. (2020). Surface energy balance and crop coefficient estimation with R. Available from : https://rdrr.io/github/gowusu/sebkc/
  • Öztürk, A., & Çolak, M. S. (2024). A Quantitative and Qualitative Assessment of Turkey's Water Resources Potential. Journal of Agricultural Sciences, 30(1), 1-34.
  • Pereira, L. S., Cordery, I., & Iacovides, I. (2012). Improved indicators of water use performance and productivity for sustainable water conservation and saving. Agricultural water management, 108, 39-51.
  • Pohl, G., & Nachtigall, W. (2015). Biomimetics for Architecture & Design: Nature-Analogies-Technology. Springer.
  • Postel, S. L. (2000). Water and world population growth. Journal‐American Water Works Association, 92(4), 131-138.
  • Prakash, C., Singh, L. P., Gupta, A., & Lohan, S. K. (2023). Advancements in smart farming: A comprehensive review of IoT, wireless communication, sensors, and hardware for agricultural automation. Sensors and Actuators A: Physical, 362, 114605.
  • Pretty, J. (2008). Agricultural sustainability: concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447-465.
  • Ramírez-Cuesta, J. M., Allen, R. G., Intrigliolo, D. S., Kilic, A., Robison, C. W., Trezza, R., ... & Lorite, I. J. (2020). METRIC-GIS: An advanced energy balance model for computing crop evapotranspiration in a GIS environment. Environmental Modelling & Software, 131, 104770.
  • Ringler, C., Bhaduri, A., & Lawford, R. (2013). The nexus across water, energy, land and food (WELF): potential for improved resource use efficiency?. Current Opinion in Environmental Sustainability, 5(6), 617-624.
  • Rockström, J., & Falkenmark, M. (2015). Agriculture: Increase water harvesting in Africa. Nature, 519(7543), 283-285. Sánchez, N., González-Zamora, Á., Piles, M., & Martínez-Fernández, J. (2016). A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: A case of study over the Iberian Peninsula. Remote Sensing, 8(4), 287.
  • Senay, G. B., Leake, S., Nagler, P. L., Artan, G., Dickinson, J., Cordova, J. T., & Glenn, E. P. (2011). Estimating basin scale evapotranspiration (ET) by water balance and remote sensing methods. Hydrological Processes, 25(26), 4037-4049.
  • Seyar, M. H., & Ahamed, T. (2024). Optimization of soil-based irrigation scheduling through the integration of machine learning, remote sensing, and soil moisture sensor technology. In IoT and AI in Agriculture: Smart Automation Systems for increasing Agricultural Productivity to Achieve SDGs and Society 5.0 (pp. 275-299).
  • Singapore: Springer Nature Singapore.
  • Shiklomanov, I. A. (1991). The world’s water resources. In Proceedings of the international symposium to commemorate (Vol. 25, pp. 93-126). Unesco.
  • Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., & Scanlon, B. R. (2015). A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences, 19(3), 1521-1545.
  • Silva, C. D. O. F., de Castro Teixeira, A. H., & Manzione, R. L. (2019). Agriwater: An R package for spatial modelling of energy balance and actual evapotranspiration using satellite images and agrometeorological data. Environmental modelling & software, 120, 104497.
  • Steduto, P., Faurès, J. M., Hoogeveen, J., Winpenny, J., & Burke, J. (2012). Coping with water scarcity: an action framework for agriculture and food security. Rome: Food and Agriculture Organization of the United Nations.
  • Sukhadeve, V., & Roy, S. (2016). Advance agro farm design with smart farming, irrigation and rainwater harvesting using internet of things. International Journal of Advanced Engineering and Management, 1(1), 33-45.
  • Şahin, B. (2016). Küresel bir sorun: Su kıtlığı ve sanal su ticareti (Master's thesis, Hitit University (Turkey)). Ministry of Agriculture and Forestry of the Republic of Turkey. (2025). Ulusal Su Planı (2025–2035). Retrieved from: https://www.tarimorman.gov.tr/Sayfalar/GormeEngellilerDetay.aspx?Liste=Haber&OgeId=6706
  • Thorp, K. R., Marek, G. W., DeJonge, K. C., Evett, S. R., & Lascano, R. J. (2019). Novel methodology to evaluate and compare evapotranspiration algorithms in an agroecosystem model. Environmental Modelling & Software, 119, 214-227.
  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the national academy of sciences, 108(50), 20260-20264.
  • Tomaszkiewicz, M., Abou Najm, M., Zurayk, R., & El-Fadel, M. (2017). Dew as an adaptation measure to meet water demand in agriculture and reforestation. Agricultural and Forest Meteorology, 232, 411-421.
  • Tu, Y., Wang, R., Zhang, Y., & Wang, J. (2018). Progress and expectation of atmospheric water harvesting. Joule, 2(8), 1452-1475.
  • Türkiye İstatistik Kurumu (TÜIK). (2019). Retrieved from: https://data.tuik.gov.tr/Kategori/GetKategori?p=nufus-ve-demografi-109&dil=1
  • United Nations Development Programme (UNDP). (2006). Human Development Report 2006 Beyond Scarcity: Power, poverty, and the global water crisis. Retrieved from: https://hdr.undp.org/content/human-development-report-2006
  • United Nations (UN) Food Systems Summit (2021). National Pathways for Food Systems Transformation: Türkiye. United Nations Food Systems Hub. Retrieved from: https://www.unfoodsystemshub.org/docs/unfoodsystemslibraries/national-pathways/turkey/2021-12-22-en-designed-edition-booklet-national-pathway-of-turkiye.pdf?sfvrsn=d7706371_1
  • United Nations (UN)-Water. (2007) Coping with water scarcity: challenge of the twenty-first century. World water day 22 March 2007 United Nations – Food and Agricultural Organization. Retrieved from: https://openknowledge.fao.org/server/api/core/bitstreams/f1100f37-2a84-4abb-a661-90ff7aa0b648/content
  • United Nations (UN)- Water. (2012). Managing water under uncertainty and risk, the united nations world water development report 4, un water reports, world water assessment programme. Paris, France. Retrieved from: https://www.unwater.org/publications/un-world-water-development-report-2012
  • United Nations (UN)-Water. (2021). Progress on change in water-use efficiency: Global status and acceleration needs for SDG indicator 6.4. 1, 2021. Food & Agriculture Org. Retrieved from: https://www.unwater.org/sites/default/files/app/uploads/2021/08/SDG6_Indicator_Report_641_Progress-on-Water-Use-Efficiency_2021_ENGLISH_pages-1.pdf
  • United Nations (UN)-Water (2024). Progress on implementation of Integrated Water Resources Management. Mid-term status of SDG Indicator 6.5.1 and acceleration needs, with a special focus on Climate Change. Retrieved from: https://www.unwater.org/sites/default/files/202408/SDG6_Indicator_Report_651_Progress-on-Implementation-of-IWRM_2024_EN_0.pdf
  • USİAD (Ulusal Sanayici ve İş adamları Derneği), (2007). Su Raporu, Ulusal Su Politikası İhtiyacımız. Ed. Dursun Yıldız, ADA Strateji, Ankara, 162ss.
  • USİAD (Ulusal Sanayici ve İş adamları Derneği), (2010). Su Kaynakları Bakanlığı Kuruluş Kanunu Tasarı Taslağı Önerisi. Ada Strateji, Ankara, 124ss.
  • Velten, S., Leventon, J., Jager, N., & Newig, J. (2015). What is sustainable agriculture? A systematic review. Sustainability, 7(6), 7833-7865.
  • Vignola, R., Locatelli, B., Martinez, C., & Imbach, P. (2009). Ecosystem-based adaptation to climate change: what role for policy-makers, society and scientists?. Mitigation and adaptation strategies for global change, 14(8), 691-696.
  • Wahlgren, R. V. (2001). Atmospheric water vapour processor designs for potable water production: a review. Water Research, 35(1), 1-22.
  • Wezel, A., Bellon, S., Doré, T., Francis, C., Vallod, D., & David, C. (2009). Agroecology as a science, a movement and a practice. A review. Agronomy for sustainable development, 29(4), 503-515.
  • World Bank. (2015). Future of Food: Shaping a Climate-Smart Global Food System. Retrieved from: https://openknowledge.worldbank.org/entities/publication/2e4c746c-7d72-57a6-a064-39ebb0f2ad5b
  • Yang, Y., Hu, J., Porter, D., Marek, T., Heflin, K., & Kong, H. (2020). Deep reinforcement learning-based irrigation scheduling. Transactions of the ASABE, 63(3), 549-556.
  • Yu, L., Gao, W., Shamshiri, R. R., Tao, S., Ren, Y., Zhang, Y., & Su, G. (2021). Review of research progress on soil moisture sensor technology. International Journal of Agricultural and Biological Engineering, 14(4), 32-42.
  • Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and electronics in agriculture, 36(2-3), 113-132.
  • Zhao, H., Di, L., Guo, L., Zhang, C., & Lin, L. (2023). An automated data-driven irrigation scheduling approach using model simulated soil moisture and evapotranspiration. Sustainability, 15(17), 12908.
  • Zibold, F. I. 1905, The role of the underground dew in water supply of Feodosia
  • Zyoud, S., & Zyoud, A. H. (2025). Revealing global trends on nature-based solutions: Mapping and visualizing research landscapes. Nature-Based Solutions, 7, 100229.
Toplam 99 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Derleme
Yazarlar

Gülüzar Duygu Semiz 0000-0003-2070-0496

Müslüme Sevba Çolak 0000-0003-4752-6491

Elifnaz Torun 0000-0003-1712-3819

Sertan Avcı 0000-0003-2872-0563

Gönderilme Tarihi 19 Eylül 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 382

Kaynak Göster

APA Semiz, G. D., Çolak, M. S., Torun, E., Avcı, S. (2025). Sustainable Water Resources Management in Agriculture: Challenges, Technological Innovations, and Future Perspective. Ziraat Mühendisliği(382), 22-36. https://doi.org/10.33724/zm.1787242