Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of The Possibilities of Using NIRS Reflection Technique for Detecting Soil Series Using Legacy Soil Data

Yıl 2021, , 25 - 40, 01.04.2021
https://doi.org/10.33724/zm.718134

Öz

Determining and mapping of the soil series with their phases in the detailed soil survey studies is a time consuming and required highly specialization. Therefore, the aim of this study is to determine the usefulness of NIRS reflection technique in the discriminating of soil series in field due to this technique nowadays has been used in the determination of some soil properties. The reflection values of 531 soil samples taken on a horizon basis to present soil series and major phases of the Çukurova Region were obtained. Statistical analysis was performed using the PLSR method CV (Cross Validation) and model estimation method. As a result of cross-validation, R2 values between the reflection values and calibration of the soil sample 531 in the whole data set for clay; 0.47 for clay; 0.44 for silt; 0.36 for sand; 0.32 for organic matter; 0.21 for lime was found. In the validation set; clay R2 0.44; silt R2 0.41; sand R2 0.29, organic material R2 0.26; lime R2 was found to be 0.18. It is concluded that NIRS technology was found to fail due to low correlation values in the identification and mapping of soil series and lack of healthy relationships between reflection values and soils.

Kaynakça

  • Anonim 2016 Birleşmiş Milletler Ekonomik ve Sosyal İşler Dairesi Nüfus bölümü www.worldometers.info
  • Anonim,2018,https://kadirnar.com/post/cross-validationcapraz-dogrulama-nedir-veri-on-isleme/49
  • Ben-Dor, E., and Banin, A. (1990). Near-infrared reflectance analysis of carbonate concentration in soils. Appl. Spectrosc. 44, 1064–1069.
  • Ben-Dor, E., and Banin, A. (1995). Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Sci. 159, 259–270
  • Bilgili, V., van Es, H., Akbash, F., Durak, A. and Hively, W. (2010) Visible-Near Infrared Reflectance Spectroscopy for Assessment of Soil Properties in a Semi-Arid Area of Turkey.
  • Bogrekcı, I. and Lee, W.S. Transactions of the ASAE 49, (2006). 4, pp: 1175-1180
  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., and Reinsch, T. G. (2006). Global soil characterization withVNIRdiffuse reflectance spectroscopy. Geoderma 132, 273–290.
  • CAMO Inc. The Unscrambler user manual. CAMO Inc, Corvallis, OR. 1998.
  • Chang, C-W., Laird, D. 2002. Near-Infrared Reflectance Spectroscopy Analysis of Soil C and N. Soil Science, 167, 2, 110-116. Demattê, José Alexandre M. (2002). Characterization and discrimination of soils by their reflected electromagnetic energy. Pesquisa Agropecuária Brasileira, 37(10), 1445-1458.
  • Dinç. U., Schitchting E., Sarı. M., Şenol, S., Kapur, S., Sayın. M., Derici, R., Çavuşgil, V., Gök, M., Aydın, M., Ekinci, H., Ağca, N. 1995 “Çukurova Bölgesi Toprakları” 2.Baskı syf. 172. ADANA
  • Günal, H., Erşahin, S., Akbaş, F. ve Budak, M., 2007. Toprak Biliminde Kızılötesi Spektrometrenin Potansiyel Kullanımı. Ondokuz Mayıs Üniv. Ziraat Fakültesi Dergisi, 22(2):219-226 Samsun
  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in visible and near-infrared. Trans. Am. Geophys. Union 58, 553. Islam, K., Singh, B., and McBratney, A. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. J. Soil Res. 41, 1101–1114.
  • Kılıç, E., Köseoğlu F. ve Yılmaz, H., 1998. Enstrümental Analiz İlkeleri Bilim Yayıncılık, Kızılay, Ankara.
  • Kuang, B. and Mouazen, A. M. (2011), Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science, 62: 629-636. doi:10.1111/j.1365-2389.2011.01358.x
  • Mouazen, A. M., Karoui, R., De Baerdemaeker, J., and Ramon, H. (2005). Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J. Near Infrared Spectrosc. 13, 231–240.
  • Mouazen, A.M., R. Karoui, J. De Baerdemaeker, H. Ramon. 2006. Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra. Soil Sci. Soc. of Am. J. 70:1295-1302.
  • Norris, K.H. 1988. History, present state and future prospects f01 near-infrared spectroscopy. p. 3-9. In C.S. Creaser and A.M.CDavies (ed.) Analytical application of spectroscopy. R. Soc. Chem.London.
  • Özbek H, U. Dinç, S. Kapur, N.Güzel, 1974. Çukurova Üniversitesi Yerleşim Sahası Topraklarının Detaylı Etüd ve Haritalanması, Ankara Üniversitesi Basımevi. ANKARA (s.149)
  • Pasquini, C., 2003. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. Vol. 14:2, 198-219.
  • PANalytical, B.V, Boulder, Colorado, USA, Analytical Spectral, Devices, 2018 https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range
  • Rossel V, D.J.J. Walvoort, A.B. McBratney, L.J. Janik, J.O. Skjemstad, Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, Volume 131, Issues 1–2, (2006), Pages 59-75, ISSN 0016-7061.
  • Rossel V, R. A., and McBratney, A. B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In ‘‘Digital Soil Mapping with Limited Data’’ (Mc Bratney A. B. Hartemink AE and L. Mendonc¸a-Santos, Eds.), Developments in Soil Science Series, Elsevier Science, Amsterdam
  • Stenberg B., Raphael A. Viscarra Rossel, Abdul Mounem Mouazen, and Johanna Wetterlind, Visible and Near Infrared Spectroscopy in Soil Science. In Donald L. Sparks, editor: Advances in Agronomy, Vol. 107, Burlington: Academic Press, 2010, pp. 163-215. Whalley, W. R., Leedsharrison, P. B., and Bowman, G. E. (1991). Estimation of soil-moisture status using near-infrared reflectance. Hydrol. Process. 5, 321–327.
  • Zelikman. E, Carmina. E. 2013.The spectral response characteristics of the soils and their possible estimation by using partial least square regression (PLSR) analysis, Internatıonal Journal of Geomatıcs and Geoscıences Volume 3, No 3, 2013

Toprak Serilerinin Ayırt Edilmesinde NIRS Yansıma Tekniğinin Kullanım Olanaklarının Araştırılması

Yıl 2021, , 25 - 40, 01.04.2021
https://doi.org/10.33724/zm.718134

Öz

Detaylı toprak etüt ve haritalama çalışmalarının toprak serileri ve fazlarının belirlenip haritalanması aşaması uzmanlık gerektiren ve zaman alan bir aşamadır. Bu nedenle, çalışmada toprak özelliklerinin belirlenmesinde son yıllarda kullanılmaya başlanılan NIRS yansıma tekniğinin toprak serilerini ayırt etmede kullanılabilirliğinin belirlenmesi amaçlanmıştır. Çukurova Bölgesi’nde haritalanmış toprak serileri ve önemli fazlarından burgu ile horizon esasına göre alınan 531 toprak örneğine ait yansıma değerleri elde edilmiştir. İstatistiksel analizler PLSR yöntemi CV (Çapraz Doğrulama) ve model tahmin yöntemi kullanılarak elde edilmiştir. Çapraz doğrulama sonucu kil için tüm veri setindeki 531 toprak örneğinin yansıma değerleri ile kalibrasyon arasındaki R2 değerleri; kil için 0,47; silt için 0,44; kum için 0,36; organik madde için 0,32; kireç için 0,21 bulunmuştur. Validasyon setinde ise sırasıyla; kil R2 0.44; silt R2 0.41; kum R2 0.29, organik madde R2 0.26; kireç R2 0.18 olarak bulunmuştur. NIRS teknolojisinin, toprak serilerinin tanımlanması ve haritalanması aşamasında düşük korelasyon değerleri vermesi ve yansıma değerleri ile topraklar arasında sağlıklı ilişkiler bulunamaması nedeniyle başarısız olduğu görülmüştür.

Kaynakça

  • Anonim 2016 Birleşmiş Milletler Ekonomik ve Sosyal İşler Dairesi Nüfus bölümü www.worldometers.info
  • Anonim,2018,https://kadirnar.com/post/cross-validationcapraz-dogrulama-nedir-veri-on-isleme/49
  • Ben-Dor, E., and Banin, A. (1990). Near-infrared reflectance analysis of carbonate concentration in soils. Appl. Spectrosc. 44, 1064–1069.
  • Ben-Dor, E., and Banin, A. (1995). Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils. Soil Sci. 159, 259–270
  • Bilgili, V., van Es, H., Akbash, F., Durak, A. and Hively, W. (2010) Visible-Near Infrared Reflectance Spectroscopy for Assessment of Soil Properties in a Semi-Arid Area of Turkey.
  • Bogrekcı, I. and Lee, W.S. Transactions of the ASAE 49, (2006). 4, pp: 1175-1180
  • Brown, D. J., Shepherd, K. D., Walsh, M. G., Mays, M. D., and Reinsch, T. G. (2006). Global soil characterization withVNIRdiffuse reflectance spectroscopy. Geoderma 132, 273–290.
  • CAMO Inc. The Unscrambler user manual. CAMO Inc, Corvallis, OR. 1998.
  • Chang, C-W., Laird, D. 2002. Near-Infrared Reflectance Spectroscopy Analysis of Soil C and N. Soil Science, 167, 2, 110-116. Demattê, José Alexandre M. (2002). Characterization and discrimination of soils by their reflected electromagnetic energy. Pesquisa Agropecuária Brasileira, 37(10), 1445-1458.
  • Dinç. U., Schitchting E., Sarı. M., Şenol, S., Kapur, S., Sayın. M., Derici, R., Çavuşgil, V., Gök, M., Aydın, M., Ekinci, H., Ağca, N. 1995 “Çukurova Bölgesi Toprakları” 2.Baskı syf. 172. ADANA
  • Günal, H., Erşahin, S., Akbaş, F. ve Budak, M., 2007. Toprak Biliminde Kızılötesi Spektrometrenin Potansiyel Kullanımı. Ondokuz Mayıs Üniv. Ziraat Fakültesi Dergisi, 22(2):219-226 Samsun
  • Hunt, G. R. (1977). Spectral signatures of particulate minerals in visible and near-infrared. Trans. Am. Geophys. Union 58, 553. Islam, K., Singh, B., and McBratney, A. (2003). Simultaneous estimation of several soil properties by ultra-violet, visible, and near-infrared reflectance spectroscopy. Aust. J. Soil Res. 41, 1101–1114.
  • Kılıç, E., Köseoğlu F. ve Yılmaz, H., 1998. Enstrümental Analiz İlkeleri Bilim Yayıncılık, Kızılay, Ankara.
  • Kuang, B. and Mouazen, A. M. (2011), Calibration of visible and near infrared spectroscopy for soil analysis at the field scale on three European farms. European Journal of Soil Science, 62: 629-636. doi:10.1111/j.1365-2389.2011.01358.x
  • Mouazen, A. M., Karoui, R., De Baerdemaeker, J., and Ramon, H. (2005). Classification of soil texture classes by using soil visual near infrared spectroscopy and factorial discriminant analysis techniques. J. Near Infrared Spectrosc. 13, 231–240.
  • Mouazen, A.M., R. Karoui, J. De Baerdemaeker, H. Ramon. 2006. Characterization of Soil Water Content Using Measured Visible and Near Infrared Spectra. Soil Sci. Soc. of Am. J. 70:1295-1302.
  • Norris, K.H. 1988. History, present state and future prospects f01 near-infrared spectroscopy. p. 3-9. In C.S. Creaser and A.M.CDavies (ed.) Analytical application of spectroscopy. R. Soc. Chem.London.
  • Özbek H, U. Dinç, S. Kapur, N.Güzel, 1974. Çukurova Üniversitesi Yerleşim Sahası Topraklarının Detaylı Etüd ve Haritalanması, Ankara Üniversitesi Basımevi. ANKARA (s.149)
  • Pasquini, C., 2003. Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. Vol. 14:2, 198-219.
  • PANalytical, B.V, Boulder, Colorado, USA, Analytical Spectral, Devices, 2018 https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range
  • Rossel V, D.J.J. Walvoort, A.B. McBratney, L.J. Janik, J.O. Skjemstad, Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties, Geoderma, Volume 131, Issues 1–2, (2006), Pages 59-75, ISSN 0016-7061.
  • Rossel V, R. A., and McBratney, A. B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In ‘‘Digital Soil Mapping with Limited Data’’ (Mc Bratney A. B. Hartemink AE and L. Mendonc¸a-Santos, Eds.), Developments in Soil Science Series, Elsevier Science, Amsterdam
  • Stenberg B., Raphael A. Viscarra Rossel, Abdul Mounem Mouazen, and Johanna Wetterlind, Visible and Near Infrared Spectroscopy in Soil Science. In Donald L. Sparks, editor: Advances in Agronomy, Vol. 107, Burlington: Academic Press, 2010, pp. 163-215. Whalley, W. R., Leedsharrison, P. B., and Bowman, G. E. (1991). Estimation of soil-moisture status using near-infrared reflectance. Hydrol. Process. 5, 321–327.
  • Zelikman. E, Carmina. E. 2013.The spectral response characteristics of the soils and their possible estimation by using partial least square regression (PLSR) analysis, Internatıonal Journal of Geomatıcs and Geoscıences Volume 3, No 3, 2013
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Toprak Bilimi ve Ekolojisi
Bölüm Makaleler
Yazarlar

Yavuz Şahin Turgut 0000-0002-6112-2621

Suat Şenol 0000-0002-6112-2621

Yayımlanma Tarihi 1 Nisan 2021
Gönderilme Tarihi 11 Nisan 2020
Kabul Tarihi 20 Haziran 2020
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Turgut, Y. Ş., & Şenol, S. (2021). Toprak Serilerinin Ayırt Edilmesinde NIRS Yansıma Tekniğinin Kullanım Olanaklarının Araştırılması. Ziraat Mühendisliği(371), 25-40. https://doi.org/10.33724/zm.718134