Araştırma Makalesi
BibTex RIS Kaynak Göster

In vitro Responses of the Lotus corniculatus cv. 'AC Langille' to NaCl-induced Salt Stress

Yıl 2024, Sayı: 380, 25 - 35, 21.12.2024
https://doi.org/10.33724/zm.1496192

Öz

Lotus corniculatus L. is a legume plant that has a very important economic value for ecology and agriculture and is also used as a forage plant worldwide due to its high nutritional value. The tolerance of L. corniculatus to salt stress is lower than of other Lotus species (such as Lotus tenuis). Since breeding studies focused on high nutritional value and feed efficiency while developing new commercial varieties, tolerance to limiting environmental factors such as salt stress remained low in these varieties. However, studies on determining the tolerance of these commercial varieties to salt stress have been limited to date. This study was conducted under in vitro conditions with 4 replications, according to a completely randomized trial design, in order to examine the effect of different salt stress levels on germination and initial seedling growth period in 'AC Langille', a commercial variety of L. corniculatus. For this purpose, the seeds of L. corniculatus were planted in Murashige and Skoog/Gamborg (MG) medium containing NaCl at three different concentrations (0, 40, and 80 mM). Germination and growth parameters were calculated. According to the research results, it was determined that the applied NaCl concentrations had a statistically significant effect on germination (except mean germination time) and growth parameters, and negatively affected both germination (except mean germination time) and growth. It has been observed that salt stress affects the root more negatively than the shoot. It was observed that 80 mM NaCl concentration reduced the seedling vigor index by 41.27%.

Kaynakça

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  • Al-Enezi, N. A., Al-Bahrany, A. M., & Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5), 415-424.
  • Antonelli, C. J., Calzadilla, P. I., Campestre, M. P., Escaray, F. J., & Ruiz, O. A. (2021). Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging–saline stress. Plant Biology, 23, 363-374. https://doi.org/10.1111/plb.13216
  • Aydinşakir, K., Büyüktaş, D., Nazmi, D., & Karaca, C. (2015). Impact of salinity stress on growing, seedling development and water consumption of peanut (Arachis hypogaea cv. NC-7). Akdeniz University Journal of the Faculty of Agriculture, 28, 77-84.
  • Azarafshan, M., & Abbaspour, N. (2014). Growth and physiological parameters under salinity stress in Lotus corniculatus. Iranian Journal of Plant Physiology, 4(2), 991-997.
  • Bao, A. K., Wang, Y. W., Xi, J. J., Liu, C., Zhang, J. L., & Wang, S. M. (2014). Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology, 41, 203-214. https://doi.org/10.3389/fpls.2015.00581
  • Beyaz, R. (2021). Comparison of Biochemical responses of common vetch (Vicia sativa L.) seedling organs to salinity. Legume Research, 44, 641-645. https://doi.org/10.18805/LR-595
  • Beyaz, R., Kaya, G., Cocu, S., & Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4), 477-481. https://doi.org/10.1590/S0103-90162011000400013
  • Beyaz, R., Sancak, C., & Yildiz, M. (2018). Morphological and biochemical responses of sainfoin (Onobrychis viciifolia Scop.) ecotypes to salinity. Legume Research, 41, 253-258. https://doi.org/10.18805/LR-353
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4), 879-889. https://doi.org/10.33462/jotaf.1226444
  • Beyaz, R., & Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv. 'Leo'. Journal of Tekirdağ Agricultural Faculty, 21(1), 24-34.
  • Bhattarai, S., Biswas, D., Fu, Y. B., & Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa. Agronomy, 10(577), 1-15. https://doi.org/10.3390/agronomy10040577
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., & Mieloch, M. (2022). The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy, 12(244), 1-14. https://doi.org/10.3390/agronomy12020244
  • Büyükyıldız, S., Yıldırım, M., & Kurt, A. N. (2023). The effect of salt stress on the germination and seedling growth parameters in birdsfoot trefoil (Lotus corniculatus L.). Black Sea Journal of Agriculture, 6(2), 126-133. https://doi.org/10.47115/bsagriculture.1173277
  • Cokkızgın, A. (2012). Salinity Stress in Common Bean (Phaseolus vulgaris L.) Seed Germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 177-182. https://doi.org/10.15835/nbha4017493
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy, 10(859), 1-15. https://doi.org/10.3390/agronomy10060859
  • Diaz, P., Monza, J., & Márquez, A. (2005). Drought and saline stress. In: Márquez, A. (Ed.), Lotus japonicus Handbook. Springer, Netherlands, pp. 39–55.
  • Dogan, M. (2020). Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. and their physio-morphological and biochemical responses. Physiology and Molecular Biology of Plants, 26(4), 803-816. https://doi.org/10.1007/s12298-020-00798-y
  • Ellis, R. H., & Roberts, E. H. (1980). Towards a rational basis for testing seed quality. Seed Production, 605-635.
  • Emek, Y. (2018). Effects of Salinity on the Morphology of the 'Bursa Siyahı', Fig (Ficus carica L.) cultivar In vitro Conditions. Journal of Agriculture and Nature of KahramanMaraş Sütçü İmam University, 21(3), 292-296. https://doi.org/10.18016/ksudobil.298973
  • Escaray, F. J., Antonelli, C. J., Carrasco, P., & Ruiz, O. A. (2019). Interspecific hybridization improves the performance of Lotus spp. under saline stress. Plant Science 283, 202–210. https://doi.org/10.1016/j.plantsci.2019.02.016
  • Escaray, F. J., Passeri, V., Babuin, F. M., Marco, F., Carrasco, P., Damiani, F., Pieckenstain, F. L., Paolocci, F., & Ruiz, O. A. (2014). Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biology, 14,40, 1-18. http://www.biomedcentral.com/1471-2229/14/40
  • Galloway, A., Cables, J., Parsons, D., Lane, P., & Hall, E. (2010). Growth and development of Lotus and Trifolium species under saline and waterlogging conditions. In: Proceedings of the Food Security from Sustainable Agriculture: 15th Agronomy Conference, November 15-18, Lincoln, New Zealand, pp: 1518.
  • Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., & Rengasamy, P. (2021). Chapter One- Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191. https://doi.org/10.1016/bs.agron.2021.03.001
  • Hunt, S. R., MacAdam, J. W., & Reeve, J. R. (2015). Establishment of birdsfoot trefoil (Lotus corniculatus) pastures on organic dairy farms in the Mountain West USA. Organic Agriculture, 5, 63-77. https://doi.org/10.1007/s13165-014-0091-1
  • International Seed Testing Association [ISTA]. (2003). International rules for seed testing. Bassersdorf, Switzerland.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Science and Technology, 31(3), 715-725. https://doi.org/10.15258/sst.2003.31.3.20
  • Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177.
  • Papadopoulos, Y. A., Choo, T. M., Christie, B. R., Thomas, W. G., McKenzie, D. B., Bélanger, G., Sutherland, K., McRae, K. B., & Fillmore, S. A. E. (1998). AC Langille birdsfoot trefoil. Canadian Journal of Plant Science, 77, 653-654.
  • Sanchez, D. H., Pieckenstain, F. L., Szymanski, J., Erban, A., Bromke, M., Hannah, M. A., Kraemer, U., Kopka, J., & Udvardi, M. K. (2011). Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. Plos One 6(2), 1-11. https://doi.org/10.1371/journal.pone.0017094
  • Sári, D., Ferroudj, A., Abdalla, N., El-Ramady, H., Dobránszki, J., & Prokisch, J. (2023). Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions. Agronomy, 13: 1-27. https://doi.org/10.3390/agronomy13112695
  • Savic, J., Nikolić, R., Banjac, N., Zdravković-Korać, S., Stupar, S., Cingel, A., Ćosić, T., Raspor, M., Smigocki, A., Ninković, S. (2019). Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 243(2019), 1-10. https://doi.org/10.1016/j.jplph.2019.153055
  • Shokat, S., & Großkinsky, D. K. (2019). Tackling Salinity in Sustainable Agriculture-What Developing Countries May Learn from Approaches of the Developed World. Sustainability, 11, 1-19. https://doi.org/10.3390/su11174558
  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical Methods, 6th ed.Ames, Iowa: Iowa State University Press. p 693.
  • Teakle, N. L., Flowers, T. J., Real, D., & Colmer, T. D. (2007). Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl– from the xylem. Journal of Experimental Botany, 58(8), 2169-2180. https://doi.org/10.1093/jxb/erm102
  • Teakle, N. L., Real, D., & Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil, 289, 369-383. https://doi.org/10.1007/s11104-006-9146-8
  • Ulfat, M., & Sarwar, G. (2016). Salinity-induced changes in mineral composition and oxidative metabolism of forage legume Lotus corniculatus L. South African Journal of Botany, 105, 170-177. https://doi.org/10.1016/j.sajb.2016.02.204
  • Wang, X., Gao, Z., Yin, C., & Wang, P. (2021). Evaluation of physiological and biochemical responses of Lotus corniculatus L. under salinity stress. Agronomy Journal, 113(4), 2721-2733. https://doi.org/10.1002/agj2.20777
  • Yang, X., Chen, W., & Zhang, H. (2020). Enhancing salt tolerance in Lotus corniculatus through genetic engineering: Recent progress and future perspectives. Plant Biotechnology Reports, 14(3), 271-289. https://doi.org/10.1007/s11816-020-00615-4
  • Zhang, Z., Li, C., & Wu, Y. (2018). Influence of salt stress on seed germination and seedling growth of Lotus species. Acta Physiologiae Plantarum, 40(7), 1-12. https://doi.org/10.1007/s11738-018-2691-x
  • Zhao, F., Ma, Q., & Guo, W. (2017). Physiological response of Lotus corniculatus to salinity stress and the role of exogenous antioxidants. Journal of Plant Research, 130(5), 875-885. https://doi.org/10.1007/s10265-017-0938-2

Lotus corniculatus cv. 'AC Langille'nin NaCl indüklü Tuz Stresine Karşı In vitro Tepkisi

Yıl 2024, Sayı: 380, 25 - 35, 21.12.2024
https://doi.org/10.33724/zm.1496192

Öz

Lotus corniculatus L. ekoloji ve tarım için oldukça önemli ekonomik değeri olan, dünya genelinde yüksek besin değeri nedeniyle yem bitkisi olarakta kullanılan bir baklagil bitkisidir. L. corniculatus’un tuz stresine olan toleransı diğer Lotus türlerine göre (Lotus tenuis gibi) düşüktür. Islah çalışmalarında yeni ticari çeşitler geliştirilirken yüksek besin değeri ve yem verimine odaklanıldığı için bu çeşitlerde tuz stresi gibi sınırlayıcı çevresel faktörlere karşı tolerans düşük kalmıştır. Bununla birlikte, günümüze kadar üretilen bu ticari çeşitlerin tuz stresine karşı toleransının belirlenmesi çalışmaları sınırlı kalmıştır. Bu çalışma farklı tuz stresi seviyelerinin L. corniculatus’un bir ticari çeşidi olan 'AC Langille'’de çimlenme ve erken fide gelişim dönemi üzerine olan etkisini incelemek amacıyla tamamen tesadüfü deneme desenine göre 4 tekerrürlü olarak in vitro şartlarda yürütülmüştür. Bu amaçla L. corniculatus’un tohumları üç farklı konsantrasyonda (0, 40 ve 80 mM) NaCl içeren Murashige ve Skoog/Gamborg (MG) ortamına ekilmiştir. Çimlenme ve büyüme parametreleri hesaplanmıştır. Araştırma sonuçlarına göre, uygulanan NaCl konsantrasyonlarının istatistiki açıdan çimlenme (ortalama çimlenme süresi hariç) ve büyüme parametreleri üzerine önemli derecede etkisinin olduğu, ve hem çimlenmeyi (ortalama çimlenme süresi hariç) hemde büyümeyi olumsuz etkilediği tespit edilmiştir. Tuz stresinin kökü sürgüne göre daha fazla olumsuz etkilediği gözlemlenmiştir. 80 mM NaCl konsantarasyonun fide canlılık indeksini %41.27 oranında azalttığı görülmüştür.

Kaynakça

  • Abdul-Baki, A. A., & Anderson, J. D. (1973). Vigor determination in soybean seed by multiple criteria. Crop Science, 13(6), 630-633. https://doi.org/10.2135/cropsci1973.0011183X001300060013x
  • Al-Enezi, N. A., Al-Bahrany, A. M., & Al-Khayri, J. M. (2012). Effect of X-irradiation on date palm seed germination and seedling growth. Emirates Journal of Food and Agriculture, 24(5), 415-424.
  • Antonelli, C. J., Calzadilla, P. I., Campestre, M. P., Escaray, F. J., & Ruiz, O. A. (2021). Contrasting response of two Lotus corniculatus L. accessions to combined waterlogging–saline stress. Plant Biology, 23, 363-374. https://doi.org/10.1111/plb.13216
  • Aydinşakir, K., Büyüktaş, D., Nazmi, D., & Karaca, C. (2015). Impact of salinity stress on growing, seedling development and water consumption of peanut (Arachis hypogaea cv. NC-7). Akdeniz University Journal of the Faculty of Agriculture, 28, 77-84.
  • Azarafshan, M., & Abbaspour, N. (2014). Growth and physiological parameters under salinity stress in Lotus corniculatus. Iranian Journal of Plant Physiology, 4(2), 991-997.
  • Bao, A. K., Wang, Y. W., Xi, J. J., Liu, C., Zhang, J. L., & Wang, S. M. (2014). Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1-1 enhances salt and drought tolerance in transgenic Lotus corniculatus by increasing cations accumulation. Functional Plant Biology, 41, 203-214. https://doi.org/10.3389/fpls.2015.00581
  • Beyaz, R. (2021). Comparison of Biochemical responses of common vetch (Vicia sativa L.) seedling organs to salinity. Legume Research, 44, 641-645. https://doi.org/10.18805/LR-595
  • Beyaz, R., Kaya, G., Cocu, S., & Sancak, C. (2011). Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Scientia Agricola, 68(4), 477-481. https://doi.org/10.1590/S0103-90162011000400013
  • Beyaz, R., Sancak, C., & Yildiz, M. (2018). Morphological and biochemical responses of sainfoin (Onobrychis viciifolia Scop.) ecotypes to salinity. Legume Research, 41, 253-258. https://doi.org/10.18805/LR-353
  • Beyaz, R. (2023). Germination and seedling properties of Lotus corniculatus L. under simulated drought stress. Journal of Tekirdag Agricultural Faculty, 20(4), 879-889. https://doi.org/10.33462/jotaf.1226444
  • Beyaz, R., & Kazankaya, A. (2024). Effect of NaCl-induced salt stress on germination and initial seedling growth of Lotus corniculatus L. cv. 'Leo'. Journal of Tekirdağ Agricultural Faculty, 21(1), 24-34.
  • Bhattarai, S., Biswas, D., Fu, Y. B., & Biligetu, B. (2020). Morphological, physiological, and genetic responses to salt stress in alfalfa. Agronomy, 10(577), 1-15. https://doi.org/10.3390/agronomy10040577
  • Bres, W., Kleiber, T., Markiewicz, B., Mieloszyk, E., & Mieloch, M. (2022). The Effect of NaCl Stress on the Response of Lettuce (Lactuca sativa L.). Agronomy, 12(244), 1-14. https://doi.org/10.3390/agronomy12020244
  • Büyükyıldız, S., Yıldırım, M., & Kurt, A. N. (2023). The effect of salt stress on the germination and seedling growth parameters in birdsfoot trefoil (Lotus corniculatus L.). Black Sea Journal of Agriculture, 6(2), 126-133. https://doi.org/10.47115/bsagriculture.1173277
  • Cokkızgın, A. (2012). Salinity Stress in Common Bean (Phaseolus vulgaris L.) Seed Germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40(1), 177-182. https://doi.org/10.15835/nbha4017493
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy, 10(859), 1-15. https://doi.org/10.3390/agronomy10060859
  • Diaz, P., Monza, J., & Márquez, A. (2005). Drought and saline stress. In: Márquez, A. (Ed.), Lotus japonicus Handbook. Springer, Netherlands, pp. 39–55.
  • Dogan, M. (2020). Effect of salt stress on in vitro organogenesis from nodal explant of Limnophila aromatica (Lamk.) Merr. and Bacopa monnieri (L.) Wettst. and their physio-morphological and biochemical responses. Physiology and Molecular Biology of Plants, 26(4), 803-816. https://doi.org/10.1007/s12298-020-00798-y
  • Ellis, R. H., & Roberts, E. H. (1980). Towards a rational basis for testing seed quality. Seed Production, 605-635.
  • Emek, Y. (2018). Effects of Salinity on the Morphology of the 'Bursa Siyahı', Fig (Ficus carica L.) cultivar In vitro Conditions. Journal of Agriculture and Nature of KahramanMaraş Sütçü İmam University, 21(3), 292-296. https://doi.org/10.18016/ksudobil.298973
  • Escaray, F. J., Antonelli, C. J., Carrasco, P., & Ruiz, O. A. (2019). Interspecific hybridization improves the performance of Lotus spp. under saline stress. Plant Science 283, 202–210. https://doi.org/10.1016/j.plantsci.2019.02.016
  • Escaray, F. J., Passeri, V., Babuin, F. M., Marco, F., Carrasco, P., Damiani, F., Pieckenstain, F. L., Paolocci, F., & Ruiz, O. A. (2014). Lotus tenuis x L. corniculatus interspecific hybridization as a means to breed bloat-safe pastures and gain insight into the genetic control of proanthocyanidin biosynthesis in legumes. BMC Plant Biology, 14,40, 1-18. http://www.biomedcentral.com/1471-2229/14/40
  • Galloway, A., Cables, J., Parsons, D., Lane, P., & Hall, E. (2010). Growth and development of Lotus and Trifolium species under saline and waterlogging conditions. In: Proceedings of the Food Security from Sustainable Agriculture: 15th Agronomy Conference, November 15-18, Lincoln, New Zealand, pp: 1518.
  • Hopmans, J. W., Qureshi, A. S., Kisekka, I., Munns, R., Grattan, S. R., & Rengasamy, P. (2021). Chapter One- Critical knowledge gaps and research priorities in global soil salinity. Advances in Agronomy, 169, 1–191. https://doi.org/10.1016/bs.agron.2021.03.001
  • Hunt, S. R., MacAdam, J. W., & Reeve, J. R. (2015). Establishment of birdsfoot trefoil (Lotus corniculatus) pastures on organic dairy farms in the Mountain West USA. Organic Agriculture, 5, 63-77. https://doi.org/10.1007/s13165-014-0091-1
  • International Seed Testing Association [ISTA]. (2003). International rules for seed testing. Bassersdorf, Switzerland.
  • Khajeh-Hosseini, M., Powell, A. A., & Bingham, I. J. (2003). The interaction between salinity stress and seed vigor during germination of soybean seeds. Seed Science and Technology, 31(3), 715-725. https://doi.org/10.15258/sst.2003.31.3.20
  • Maguire, J. D. (1962). Speed of germination aid in selection and evaluation for seedling emergence and vigor. Crop Science, 2, 176-177.
  • Papadopoulos, Y. A., Choo, T. M., Christie, B. R., Thomas, W. G., McKenzie, D. B., Bélanger, G., Sutherland, K., McRae, K. B., & Fillmore, S. A. E. (1998). AC Langille birdsfoot trefoil. Canadian Journal of Plant Science, 77, 653-654.
  • Sanchez, D. H., Pieckenstain, F. L., Szymanski, J., Erban, A., Bromke, M., Hannah, M. A., Kraemer, U., Kopka, J., & Udvardi, M. K. (2011). Comparative functional genomics of salt stress in related model and cultivated plants identifies and overcomes limitations to translational genomics. Plos One 6(2), 1-11. https://doi.org/10.1371/journal.pone.0017094
  • Sári, D., Ferroudj, A., Abdalla, N., El-Ramady, H., Dobránszki, J., & Prokisch, J. (2023). Nano-Management Approaches for Salt Tolerance in Plants under Field and In Vitro Conditions. Agronomy, 13: 1-27. https://doi.org/10.3390/agronomy13112695
  • Savic, J., Nikolić, R., Banjac, N., Zdravković-Korać, S., Stupar, S., Cingel, A., Ćosić, T., Raspor, M., Smigocki, A., Ninković, S. (2019). Beneficial implications of sugar beet proteinase inhibitor BvSTI on plant architecture and salt stress tolerance in Lotus corniculatus L. Journal of Plant Physiology, 243(2019), 1-10. https://doi.org/10.1016/j.jplph.2019.153055
  • Shokat, S., & Großkinsky, D. K. (2019). Tackling Salinity in Sustainable Agriculture-What Developing Countries May Learn from Approaches of the Developed World. Sustainability, 11, 1-19. https://doi.org/10.3390/su11174558
  • Snedecor, G. W., & Cochran, W. G. (1967). Statistical Methods, 6th ed.Ames, Iowa: Iowa State University Press. p 693.
  • Teakle, N. L., Flowers, T. J., Real, D., & Colmer, T. D. (2007). Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl– from the xylem. Journal of Experimental Botany, 58(8), 2169-2180. https://doi.org/10.1093/jxb/erm102
  • Teakle, N. L., Real, D., & Colmer, T. D. (2006). Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil, 289, 369-383. https://doi.org/10.1007/s11104-006-9146-8
  • Ulfat, M., & Sarwar, G. (2016). Salinity-induced changes in mineral composition and oxidative metabolism of forage legume Lotus corniculatus L. South African Journal of Botany, 105, 170-177. https://doi.org/10.1016/j.sajb.2016.02.204
  • Wang, X., Gao, Z., Yin, C., & Wang, P. (2021). Evaluation of physiological and biochemical responses of Lotus corniculatus L. under salinity stress. Agronomy Journal, 113(4), 2721-2733. https://doi.org/10.1002/agj2.20777
  • Yang, X., Chen, W., & Zhang, H. (2020). Enhancing salt tolerance in Lotus corniculatus through genetic engineering: Recent progress and future perspectives. Plant Biotechnology Reports, 14(3), 271-289. https://doi.org/10.1007/s11816-020-00615-4
  • Zhang, Z., Li, C., & Wu, Y. (2018). Influence of salt stress on seed germination and seedling growth of Lotus species. Acta Physiologiae Plantarum, 40(7), 1-12. https://doi.org/10.1007/s11738-018-2691-x
  • Zhao, F., Ma, Q., & Guo, W. (2017). Physiological response of Lotus corniculatus to salinity stress and the role of exogenous antioxidants. Journal of Plant Research, 130(5), 875-885. https://doi.org/10.1007/s10265-017-0938-2
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ramazan Beyaz 0000-0003-4588-579X

Erken Görünüm Tarihi 19 Aralık 2024
Yayımlanma Tarihi 21 Aralık 2024
Gönderilme Tarihi 5 Haziran 2024
Kabul Tarihi 7 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 380

Kaynak Göster

APA Beyaz, R. (2024). In vitro Responses of the Lotus corniculatus cv. ’AC Langille’ to NaCl-induced Salt Stress. Ziraat Mühendisliği(380), 25-35. https://doi.org/10.33724/zm.1496192