Research Article
BibTex RIS Cite

A New Kibria-Lukman-Type Estimator for Poisson Regression Models

Year 2024, , 199 - 212, 31.12.2024
https://doi.org/10.26650/acin.1558583

Abstract

One of the most important models for the analysis of count data is the Poisson Regression Model (PRM). The parameter estimates of the PRM are obtained by the Maximum Likelihood Estimator (MLE). However, MLE is adversely affected in the presence of multicollinearity, which is known as the approximately linear relationship between the explanatory variables. Many shrinkage estimators have been proposed to reduce the effects of multicollinearity in PRMs. As an alternative to other biased estimators that are already in use in PRMs, we presented a novel estimator in this paper that is based on the Kibria-Lukman estimator. The superiority of the proposed new biased estimator over existing biased estimators is given by the asymptotic matrix mean square error. Furthermore, two separate Monte Carlo simulation studies are conducted to investigate the performance of the proposed biased estimators. Finally, real data is used to examine the superiority of the proposed estimator.

References

  • Akay, K. U., Ertan, E., & Erkoç, A. (2023). A New biased estimator and variations based on the Kibria Lukman Estimator. Istanbul Journal of Mathematics, 1(2), 74-85. google scholar
  • Akay, K. U., & Ertan, E., (2022). A new Liu-type estimator in Poisson regression models. Hacet JMath Stat, 51 (5), 1484-1503. google scholar
  • Aladeitan, B. B., Adebimpe, O., Lukman, A. F., Oludoun, O., & Abiodun, O. E. (2021). Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation. F1000Research, 10. google scholar
  • Alanaz, M. M., & Algamal, Z. Y., (2018). Proposed methods in estimating the ridge regression parameter in Poisson regression model. Electronic Journal of Applied Statistical Analysis, 11(2), 506-515. google scholar
  • Algamal, Z. Y. (2018). Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review. Al-Qadisiyah Journal for Administrative and Economic Sciences, 20(1), 37-43. google scholar
  • Alheety, M. I., Qasim, M., Mânsson, K., & Kibria, B. G. (2021). Modified almost unbiased two-parameter estimator for the Poisson regression model with an application to accident data. SORT, 121-142. google scholar
  • Alkhateeb, A., & Algamal, Z. (2020). Jackknifed Liu-type estimator in Poisson regression model. Journal of The Iranian Statistical Society, 19(1), 21-37. google scholar
  • Amin, M., Akram, M. N., & Amanullah, M. (2022). On the James-Stein estimator for the Poisson regression model. Communications in Statistics-Simulation and Computation, 51(10), 5596-5608. google scholar
  • Amin, M., Akram, M. N., & Kibria, B. G. (2021). A new adjusted Liu estimator for the Poisson regression model. Concurrency and Computation: Practice and Experience, 33(20), e6340. google scholar
  • Alrweili, H. (2024). Kibria-Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application. International Journal of Mathematics and Mathematical Sciences, 2024(1), 1053397. google scholar
  • Asar, Y., & Genç, A. (2018). A new two-parameter estimator for the poisson regression model. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 793-803. google scholar
  • Çetinkaya, M. K., & Kaçıranlar, S. (2019). Improved two-parameter estimators for the negative binomial and Poisson regression models. Journal of Statistical Computation and Simulation, 89(14), 2645-2660. google scholar
  • Dawoud, I., Abonazel, M. R., & Awwad, F. A. (2022). Generalized Kibria-Lukman estimator: Method, simulation, and application. Frontiers in Applied Mathematics and Statistics, 8, 880086. google scholar
  • Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer, New York, NY. google scholar
  • Ertan, E., & Akay, K. U. (2023). A new class of Poisson-ridge-type estimator. Scientific Reports, 13(1), 4968. google scholar
  • Farebrother, R.W. (1976). Further results on the mean square error of ridge regression. JR Stat Soc B, (28), 248-250. google scholar
  • Hardin, J. W., & Hilbe, J. M. (2018). Generalized linear models and extensions. Fourth edition. Stata press. google scholar
  • Hilbe, J. M. (2014). Modeling Count Data; Cambridge University Press: Cambridge. google scholar
  • Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. google scholar
  • Jadhav, N. H. (2022). A new linearized ridge Poisson estimator in the presence of multicollinearity. Journal of Applied Statistics, 49(8), 2016-2034. google scholar
  • Kibria, B. M. G., Mânsson, K., & Shukur, G. (2013). Some ridge regression estimators for the zero-inflated Poisson model. Journal of Applied Statistics, 40(4), 721-735. google scholar
  • Kibria B. M. G., Mânsson K., & Shukur, G. (2015). A simulation study of some biasing parameters for the ridge type estimation of Poisson regression. Commun Stat Simul Comput, 44(4), 943-957. google scholar
  • Kurnaz, F. S., & Akay, K. U. (2015). A new Liu-type estimator. Stat Papers, 56, 495-517. google scholar
  • Liu, K. (1993). A new class of biased estimate in linear regression. Commun Stat Theory Methods 22(2): 393-402. google scholar
  • Liu, K. (2003). Using Liu-type estimator to combat collinearity. Commun Stat Theory Methods 32(5):1009-1020. google scholar
  • Lukman, A. F., Adewuyi, E., Mânsson, K., & Kibria, B. G. (2021). A new estimator for the multicollinear Poisson regression model: simulation and application. Scientific Reports, 11(1), 3732. google scholar
  • Lukman, A. F., Aladeitan, B., Ayinde, K., & Abonazel, M. R. (2022). Modified ridge-type for the Poisson regression model: simulation and application. Journal of Applied Statistics, 49(8), 2124-2136. google scholar
  • Lukman, A. F., Allohibi, J., Jegede, S. L., Adewuyi, E. T., Oke, S., & Alharbi, A. A. (2023). Kibria-Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics, 11(23), 4795. google scholar
  • Mânsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481. google scholar
  • Mânsson, K., Kibria, B. G., Sjolander, P., & Shukur, G. (2012). Improved Liu estimators for the Poisson regression model. International Journal of Statistics and Probability, 1(1), 2-6. google scholar
  • Mânsson, K., & Kibria, B. G. (2020). Estimating the Unrestricted and Restricted Liu Estimators for the Poisson Regression Model: Method and Application. Computational Economics, 1-16. google scholar
  • McDonald, G. C., & Galarneau, D. I. (1975) A Monte Carlo evaluation of some ridge-type estimators. JAm Stat Assoc, 70(350), 407-416. google scholar
  • Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences, Wiley, New York. google scholar
  • Özkale, M. R., & Kaçıranlar, S. (2007). The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods, 36, 2707-2725. google scholar
  • Qasim, M., Kibria, B. M. G., Mânsson, K., & Sjölander, P. (2020a). A new Poisson-Liu Regression Estimator: method and application. Journal of Applied Statistics, 47(12), 2258-2271. google scholar
  • Qasim, M., Mânsson, K., Amin, M., Kibria, B. G., & Sjölander, P. (2020b). Biased adjusted Poisson ridge estimators-method and application. Iranian Journal of Science and Technology, Transactions A: Science, 44(6), 1775-1789. google scholar
  • Rashad, N. K., & Algamal, Z. Y. (2019). A New Ridge Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science, 43(6), 2921-2928. google scholar
  • Theobald, C.M. (1974) Generalizations of mean square error applied to ridge regression. JR Stat So B 36: 103-106. google scholar
  • Türkan, S., & Özel, G. (2016). A new modified Jackknifed estimator for the Poisson regression model. Journal of Applied Statistics, 43(10), 1892-1905. google scholar
Year 2024, , 199 - 212, 31.12.2024
https://doi.org/10.26650/acin.1558583

Abstract

References

  • Akay, K. U., Ertan, E., & Erkoç, A. (2023). A New biased estimator and variations based on the Kibria Lukman Estimator. Istanbul Journal of Mathematics, 1(2), 74-85. google scholar
  • Akay, K. U., & Ertan, E., (2022). A new Liu-type estimator in Poisson regression models. Hacet JMath Stat, 51 (5), 1484-1503. google scholar
  • Aladeitan, B. B., Adebimpe, O., Lukman, A. F., Oludoun, O., & Abiodun, O. E. (2021). Modified Kibria-Lukman (MKL) estimator for the Poisson Regression Model: application and simulation. F1000Research, 10. google scholar
  • Alanaz, M. M., & Algamal, Z. Y., (2018). Proposed methods in estimating the ridge regression parameter in Poisson regression model. Electronic Journal of Applied Statistical Analysis, 11(2), 506-515. google scholar
  • Algamal, Z. Y. (2018). Biased estimators in Poisson regression model in the presence of multicollinearity: A subject review. Al-Qadisiyah Journal for Administrative and Economic Sciences, 20(1), 37-43. google scholar
  • Alheety, M. I., Qasim, M., Mânsson, K., & Kibria, B. G. (2021). Modified almost unbiased two-parameter estimator for the Poisson regression model with an application to accident data. SORT, 121-142. google scholar
  • Alkhateeb, A., & Algamal, Z. (2020). Jackknifed Liu-type estimator in Poisson regression model. Journal of The Iranian Statistical Society, 19(1), 21-37. google scholar
  • Amin, M., Akram, M. N., & Amanullah, M. (2022). On the James-Stein estimator for the Poisson regression model. Communications in Statistics-Simulation and Computation, 51(10), 5596-5608. google scholar
  • Amin, M., Akram, M. N., & Kibria, B. G. (2021). A new adjusted Liu estimator for the Poisson regression model. Concurrency and Computation: Practice and Experience, 33(20), e6340. google scholar
  • Alrweili, H. (2024). Kibria-Lukman Hybrid Estimator for Handling Multicollinearity in Poisson Regression Model: Method and Application. International Journal of Mathematics and Mathematical Sciences, 2024(1), 1053397. google scholar
  • Asar, Y., & Genç, A. (2018). A new two-parameter estimator for the poisson regression model. Iranian Journal of Science and Technology, Transactions A: Science, 42(2), 793-803. google scholar
  • Çetinkaya, M. K., & Kaçıranlar, S. (2019). Improved two-parameter estimators for the negative binomial and Poisson regression models. Journal of Statistical Computation and Simulation, 89(14), 2645-2660. google scholar
  • Dawoud, I., Abonazel, M. R., & Awwad, F. A. (2022). Generalized Kibria-Lukman estimator: Method, simulation, and application. Frontiers in Applied Mathematics and Statistics, 8, 880086. google scholar
  • Dunn, P. K., & Smyth, G. K. (2018). Generalized Linear Models With Examples in R. Springer, New York, NY. google scholar
  • Ertan, E., & Akay, K. U. (2023). A new class of Poisson-ridge-type estimator. Scientific Reports, 13(1), 4968. google scholar
  • Farebrother, R.W. (1976). Further results on the mean square error of ridge regression. JR Stat Soc B, (28), 248-250. google scholar
  • Hardin, J. W., & Hilbe, J. M. (2018). Generalized linear models and extensions. Fourth edition. Stata press. google scholar
  • Hilbe, J. M. (2014). Modeling Count Data; Cambridge University Press: Cambridge. google scholar
  • Hoerl, A.E., & Kennard, R.W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics, 12(1), 55-67. google scholar
  • Jadhav, N. H. (2022). A new linearized ridge Poisson estimator in the presence of multicollinearity. Journal of Applied Statistics, 49(8), 2016-2034. google scholar
  • Kibria, B. M. G., Mânsson, K., & Shukur, G. (2013). Some ridge regression estimators for the zero-inflated Poisson model. Journal of Applied Statistics, 40(4), 721-735. google scholar
  • Kibria B. M. G., Mânsson K., & Shukur, G. (2015). A simulation study of some biasing parameters for the ridge type estimation of Poisson regression. Commun Stat Simul Comput, 44(4), 943-957. google scholar
  • Kurnaz, F. S., & Akay, K. U. (2015). A new Liu-type estimator. Stat Papers, 56, 495-517. google scholar
  • Liu, K. (1993). A new class of biased estimate in linear regression. Commun Stat Theory Methods 22(2): 393-402. google scholar
  • Liu, K. (2003). Using Liu-type estimator to combat collinearity. Commun Stat Theory Methods 32(5):1009-1020. google scholar
  • Lukman, A. F., Adewuyi, E., Mânsson, K., & Kibria, B. G. (2021). A new estimator for the multicollinear Poisson regression model: simulation and application. Scientific Reports, 11(1), 3732. google scholar
  • Lukman, A. F., Aladeitan, B., Ayinde, K., & Abonazel, M. R. (2022). Modified ridge-type for the Poisson regression model: simulation and application. Journal of Applied Statistics, 49(8), 2124-2136. google scholar
  • Lukman, A. F., Allohibi, J., Jegede, S. L., Adewuyi, E. T., Oke, S., & Alharbi, A. A. (2023). Kibria-Lukman-Type Estimator for Regularization and Variable Selection with Application to Cancer Data. Mathematics, 11(23), 4795. google scholar
  • Mânsson, K., & Shukur, G. (2011). A Poisson ridge regression estimator. Economic Modelling, 28(4), 1475-1481. google scholar
  • Mânsson, K., Kibria, B. G., Sjolander, P., & Shukur, G. (2012). Improved Liu estimators for the Poisson regression model. International Journal of Statistics and Probability, 1(1), 2-6. google scholar
  • Mânsson, K., & Kibria, B. G. (2020). Estimating the Unrestricted and Restricted Liu Estimators for the Poisson Regression Model: Method and Application. Computational Economics, 1-16. google scholar
  • McDonald, G. C., & Galarneau, D. I. (1975) A Monte Carlo evaluation of some ridge-type estimators. JAm Stat Assoc, 70(350), 407-416. google scholar
  • Myers, R. H., Montgomery, D. C., Vining, G. G., & Robinson, T. J. (2012). Generalized linear models: with applications in engineering and the sciences, Wiley, New York. google scholar
  • Özkale, M. R., & Kaçıranlar, S. (2007). The restricted and unrestricted two-parameter estimators. Commun Stat Theory Methods, 36, 2707-2725. google scholar
  • Qasim, M., Kibria, B. M. G., Mânsson, K., & Sjölander, P. (2020a). A new Poisson-Liu Regression Estimator: method and application. Journal of Applied Statistics, 47(12), 2258-2271. google scholar
  • Qasim, M., Mânsson, K., Amin, M., Kibria, B. G., & Sjölander, P. (2020b). Biased adjusted Poisson ridge estimators-method and application. Iranian Journal of Science and Technology, Transactions A: Science, 44(6), 1775-1789. google scholar
  • Rashad, N. K., & Algamal, Z. Y. (2019). A New Ridge Estimator for the Poisson Regression Model. Iranian Journal of Science and Technology, Transactions A: Science, 43(6), 2921-2928. google scholar
  • Theobald, C.M. (1974) Generalizations of mean square error applied to ridge regression. JR Stat So B 36: 103-106. google scholar
  • Türkan, S., & Özel, G. (2016). A new modified Jackknifed estimator for the Poisson regression model. Journal of Applied Statistics, 43(10), 1892-1905. google scholar
There are 39 citations in total.

Details

Primary Language English
Subjects Statistical Data Science
Journal Section Research Article
Authors

Cemal Çiçek 0000-0002-4855-9386

Kadri Ulaş Akay 0000-0002-8668-2879

Publication Date December 31, 2024
Submission Date September 30, 2024
Acceptance Date December 9, 2024
Published in Issue Year 2024

Cite

APA Çiçek, C., & Akay, K. U. (2024). A New Kibria-Lukman-Type Estimator for Poisson Regression Models. Acta Infologica, 8(2), 199-212. https://doi.org/10.26650/acin.1558583
AMA Çiçek C, Akay KU. A New Kibria-Lukman-Type Estimator for Poisson Regression Models. ACIN. December 2024;8(2):199-212. doi:10.26650/acin.1558583
Chicago Çiçek, Cemal, and Kadri Ulaş Akay. “A New Kibria-Lukman-Type Estimator for Poisson Regression Models”. Acta Infologica 8, no. 2 (December 2024): 199-212. https://doi.org/10.26650/acin.1558583.
EndNote Çiçek C, Akay KU (December 1, 2024) A New Kibria-Lukman-Type Estimator for Poisson Regression Models. Acta Infologica 8 2 199–212.
IEEE C. Çiçek and K. U. Akay, “A New Kibria-Lukman-Type Estimator for Poisson Regression Models”, ACIN, vol. 8, no. 2, pp. 199–212, 2024, doi: 10.26650/acin.1558583.
ISNAD Çiçek, Cemal - Akay, Kadri Ulaş. “A New Kibria-Lukman-Type Estimator for Poisson Regression Models”. Acta Infologica 8/2 (December 2024), 199-212. https://doi.org/10.26650/acin.1558583.
JAMA Çiçek C, Akay KU. A New Kibria-Lukman-Type Estimator for Poisson Regression Models. ACIN. 2024;8:199–212.
MLA Çiçek, Cemal and Kadri Ulaş Akay. “A New Kibria-Lukman-Type Estimator for Poisson Regression Models”. Acta Infologica, vol. 8, no. 2, 2024, pp. 199-12, doi:10.26650/acin.1558583.
Vancouver Çiçek C, Akay KU. A New Kibria-Lukman-Type Estimator for Poisson Regression Models. ACIN. 2024;8(2):199-212.