Research Article
BibTex RIS Cite

Examination of the 2024 Türkiye Science Curriculum in terms of Engineering Integration

Year 2025, Volume: 15 Issue: 2, 714 - 766, 31.12.2025
https://doi.org/10.17984/adyuebd.1739968

Abstract

This study aims to examine the 2024 Science Curriculum in terms of engineering integration. Analyzing the curriculum, in terms of engineering integration is expected to facilitate the integration of engineering into science education for teachers, researchers, and other practitioners. In this qualitative case study, the 2024 Science Curriculum was treated as a document and the current situation was attempted to be revealed using document analysis methods. In the curriculum's objectives, content, implementation, and evaluation components were examined in detail; statements related to the engineering discipline and the engineering design process were identified and the codes created were categorized. The findings were interpreted by visualizing the status according to the curriculum's components, grade levels, subject areas and units. Engineering integration was found in all components of the curriculum. However, in the curriculum's purpose and content components, engineering integration is limited to the grade level, subject, and stages of the design process. The emphasis on engineering integration is greater in the curriculum's implementation or assessment component, and is present in every subject, unit, and grade level, particularly in the subject of physics. Engineering integration is reflected in the curriculum more through the design creation and assessment stages. The curriculum emphasizes the interdisciplinary nature of engineering for engineering integration. Compared to the relevant literature, in order to strengthen engineering integration in the curriculum, it is necessary to reflect it in the same way in all components and all subjects at all grade levels and to implement all stages of the engineering design process.

References

  • Ak, B. S. & Köse, M. (2024). 2024 Fen Bilimleri Dersi Öğretim Programı hakkında öğretmen görüşlerinin incelenmesi. Akademik Platform Eğitim ve Değişim Dergisi, 7(2), 132-169.
  • Akgündüz, D., Ertepınar, H., Ger, A. M., Kaplan Sayı, A. & Türk, Z. (2015). STEM eğitimi çalıştay raporu: Türkiye STEM eğitimi üzerine kapsamlı bir değerlendirme. İstanbul Aydın Üniversitesi, STEM Merkezi.
  • Anwar, S., Menekse, M., Guzey, S. & Bryan, L. A. (2022). The effectiveness of an integrated STEM curriculum unit on middle school students’ life science learning. Journal of Research in Science Teaching, 59(7), 1204–1234. https://doi.org/10.1002/tea.21756
  • Australian Curriculum, Assessment and Reporting Authority [ACARA]. (2021). Final report: Science. Australian Curriculum, Assessment and Reporting Authority.
  • Aydın Günbatar, S., Ekiz-Kiran, B. & Öztay, E. S. (2020). Pre-service chemistry teachers’ pedagogical content knowledge for integrated STEM development with LESMeR model. Chemistry Education Research and Practice, 21(4), 1063–1082. https://doi.org/10.1039/D0RP00074D
  • Bahadır, E. (2024). Ortaokul Fen Öğretim Programında yer alan kazanımların “Proje Tasarlama” değişkeni açısından incelenmesi doküman analizi. Giresun Üniversitesi Eğitim Fakültesi Dergisi, 1(1), 38-47.
  • Barak, M., Ginzburg, T. & Erduran, S. (2022). Nature of engineering: A cognitive and epistemic account with implications for engineering education. Science & Education, 33, 679-697. https://doi.org/10.1007/s11191-022-00402-7
  • Baran Jovanovic, B., Canbazoğlu Bilici, S., Mesutoğlu, C. & Ocak, C. (2016). Moving STEM beyond schools students perceptions about an out of school STEM education program. International Journal of Education in Mathematics, Science and Technology (IJEMST), 4(1), 9-19.
  • Barnett, J. & Hodson, D. (2001). Pedagogical context knowledge: Toward a fuller understanding of what good science teachers know. Science Education, 85(4), 426–453.
  • Bell, P., Lewenstein, B., Shouse, A. & Feder, M. (2009). Committee on learning science in informal environments. National Research Council.
  • Beşoluk, Ş., Demirhan, E., Orhan, U., Mısır, M. E. & Karahan, H. (2024). 2018 ve 2024 Fen Bilimleri öğretim programlarının yerellik bağlamında karşılaştırılması. ERPA2024 Kongresi Bildiri Kitabı, 103-115.
  • Bilir, U. (2025). Türkiye’de 2018 ve 2024 Yılları Fen Bilimleri Dersi öğretim programlarının temel ögeler açısından karşılaştırılması. Milli Eğitim Dergisi, 54(246), 793-836.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027
  • Brown, J. S., Collins, A. & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.
  • Brunsell, E. (2012). The engineering design process. In E. Brunsell (Ed.), Integrating engineering + science in your classroom (pp. 3–5). National Science Teachers Association.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
  • Cao, X., Lu, H., Wu, Q., & Hsu, Y. (2025). Systematic review and meta-analysis of the impact of STEM education on students learning outcomes. Frontiers in Psychology, 16, 1579474. |https://doi.org/10.3389/fpsyg.2025.1579474
  • Carlsen, W. S. (1998). Engineering design in the classroom: Is it good science education or is it revolting? Research in Science Education, 28(1), 51-63.
  • Carr, R. L., Bennett, L. D. & Strobel, J. (2012). Engineering in the K–12 STEM standards of the 50 U.S. states: An analysis of presence and extent. Journal of Engineering Education, 101(3), 539–564.
  • Chang, S. H., Yang, L. J., Chen, C. H., Shih, C. C., Shu, Y. & Chen, Y. T. (2024). STEM education in academic achievement: a meta-analysis of its moderating effects. Interactive Learning Environments, 32(6), 2401-2423. https://doi.org/10.1080/10494820.2022.2147956
  • Chen, B., Chen, J., Wang, M., Tsai, C. C. & Kirschner, P. A. (2025). The effects of integrated STEM education on K12 students’ achievements: A meta-analysis. Review of Educational Research, 00346543251318297. https://doi.org/10.3102/00346543251318297
  • Chen, X., Xie, H., Zou, D. & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 1-20. https://doi.org/10.1016/j.caeai.2020.100002
  • Cheng, M.F., Lo, YH. & Cheng, C.H. (2024). The impact of STEM curriculum on students’ engineering design abilities and attitudes toward STEM. International Journal of Technology Design Education, 34, 1805–1833. https://doi.org/10.1007/s10798-024-09883-9
  • Cira, N. J., Chung, A. M., Denisin, A. K., Rensi, S., Sanchez, G. N., Quake, S. R. & Riedel- Kruse, I. H. (2015). A biotic game design project for integrated life science and engineering education. PLoS biology, 13(3), e1002110. https://doi.org/10.1371/journal.pbio.1002110
  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471-486.
  • Culver, D. E. (2012). A qualitative assessment of preservice elementary teachers' formative perceptions regarding engineering and K–12 engineering education. (Unpublished doctoral dissertation, Iowa State University).
  • Cunningham, C. M. & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25(2), 197–210. https://doi.org/10.1007/s10972-014-9380-5
  • Cunningham, C. M. & Kelly, G. J. (2017). Framing engineering practices in elementary school classrooms. International Journal of Engineering Education, 33(1B), 295–307.
  • Cunningham, C. M. (2017). Engineering in elementary STEM education: Curriculum design, instruction, learning, and assessment. Teachers College.
  • Cunningham, C. M., Lachapelle, C. P., Brennan, R. T., Kelly, G. J., Tunis, C. S. A. & Gentry, C. A. (2020). The impact of engineering curriculum design principles on elementary students’ engineering and science learning. Journal of Research in Science Teaching, 57(3), 423-453. https://doi.org/10.1002/tea.21601
  • Çalık, M. & Sözbilir, M. (2014). İçerik analizinin parametreleri. Eğitim ve Bilim, 39(174), 33-38.
  • Çelebi, M. E. & Ekici, F. T. (2025). Türkiye Yüzyılı Maarif Modelinde Fen Bilimleri Öğretim Programında sürdürülebilirlik ve sürdürülebilir kalkınma hedefleri ile ilişkisi. Denizli İl Millî Eğitim Müdürlüğü Bilim ve Eğitim Dergisi, 1(1), 29-39.
  • Çiğdem Kepir, S. (2024). Lisansüstü tezlerdeki canlılar ve yaşam konu alanına yönelik STEM etkinliklerinin mühendislik entegrasyonu açısından incelenmesi [Yüksek lisans tezi]. Giresun Üniversitesi.
  • Dare, E. A., Ellis, J. A. & Roehrig, G. H. (2014). Driven by beliefs: Understanding challenges physical science teachers face when integrating engineering and physics. Journal of Pre-College Engineering Education Research (J PEER), 4(2), Article 5. https://doi.org/10.7771/2157-9288.1098
  • Demirci, M. & Yıldırım, H. İ. (2025). Fen Bilimleri ders kitapları ve öğretim programının 21. yüzyıl becerileri açısından incelenmesi. Journal of Computer and Education Research, 13(25), 156-180.
  • Demirel, Ö. (2014). Kuramdan uygulamaya eğitimde program geliştirme. Pegem Yayınları.
  • Demirtaş, Z. (2017). Eğitimde program değerlendirme yaklaşımlarına genel bir bakış. Sakarya University Journal of Education, 7(4), 756-768.
  • Department for Education [DFE]. (2013). Science programmes of study: Key stages 1 and 2 National curriculum in England, National Curriculum.
  • Department of Education & Training (Flemish). (2012). STEM framework for flemish schools principles and objectives. https://data-onderwijs.vlaanderen.be/documenten/bestanden/STEM-kader-Engels.pdf
  • Ekiz-Kıran, B. & Aydın-Günbatar, S. (2021). Analysis of engineering elements of K–12 science standards in seven countries engaged in STEM education reform. Science & Education, 30(4), 849–882.
  • English, L. D. & King, D. (2019). STEM integration in sixth grade: Designing and constructing paper bridges. International Journal of Science and Mathematics Education, 17(5), 863-884. https://doi.org/10.1007/s10763-018-9912-0
  • English, L. D. & King, D. T. (2017). Engineering education with fourth-grade students: Introducing design- based problem solving. International Journal of Engineering Education, 33(1), 346–360.
  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5–24.
  • Ercan, S. ve Şahin, F. (2015). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitiminin öğrencilerin akademik başarıları üzerine etkisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 9(1), 128-164.
  • Fan, S. C., Yu, K. C. & Lin, K. Y. A (2021). Framework for ımplementing an engineering-focused STEM curriculum. International Journal of Science and Mathematics Education, 19, 1523–1541. https://doi.org/10.1007/s10763-020-10129-y
  • Frykholm, J. & Glasson, G. (2005). Connecting science and mathematics instruction: pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127–141.
  • García-Carmona, A., Muñoz-Franco, G. & Cruz-Guzmán, M. (2025). Integration of engineering practices into primary science classrooms: What does educational research tell us? Science & Education. https://doi.org/10.1007/s11191-025-00616-5
  • Guzey, S. S., Harwell, M. R., Moreno, M., Peralta, Y. & Moore, T. J. (2016). The impact of design-based STEM integration curricula on student achievement in engineering, science, and mathematics. Journal of Science Education and Technology, 26(2), 207–222. https://doi.org/10.1007/s10956-016-9673-x
  • Guzey, S. S., Moore, T. J. & Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research (J PEER), 6(1), Article 2. https://doi.org/10.7771/2157-9288.1129
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi. [Doktora Tezi]. Gazi Üniversitesi.
  • Hacıoğlu, Y. (2021). The effect of STEM education on 21th century skills: Preservice science teachers’ evaluations. Journal of STEAM Education, 4(2), 140-167.
  • Hacıoğlu, Y. (2025). STE(A)M Eğitiminde yaratıcılık ve inovasyon. G. Uyanık (Ed.), Eğitim & Bilim 2025: STEAM Tabanlı Eğitimde Güncel Yaklaşımlar içinde (283-298). Efe Akademi.
  • Hacıoğlu, Y. & Gülhan, F. (2021). The effects of STEM education on the students’ critical thinking skills and STEM perceptions. Journal of Education in Science Environment and Health, 7(2), 139-155. https://doi.org/10.21891/jeseh.771331
  • Han, S., Capraro, R. & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 3(5), 1089-1113.
  • Han, S., Rosli, R., Capraro, M. M. & Capraro, R. M. (2016). The effect of science, technology, engineering and mathematics (STEM) project based learning (PBL) on students’ achievement in four mathematics topics. Journal of Turkish Science Education, 13(3), 3-29.
  • Hmelo, C. E., Holton, D. L. & Kolodner, J. L. (2000). Designing to learn about complex systems. Journal of the Learning Sciences, 9(3), 247–298.
  • Hong Kong Education Bureu. (2016). Promotion of STEM education unleashing potential in innovation. https://www.info.gov.hk/gia/general/201612/05/P2016120500376.htm
  • Householder, D. L. & Hailey, C. E. (Eds.). (2012). Incorporating engineering design challenges into STEM courses. National Center for Engineering and Technology Education.
  • Hudson, P., English, L. D. & Dawes, L. (2014). Curricula integration: Identifying and locating engineering education across the Australian curriculum. Curriculum Perspectives, 34(1), 43-50.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D. & Carberry, A. (2011). Infusing engineering design into high school STEM courses. National Center for Engineering and Technology Education.
  • Ireland Department of Education and Skills. (2017). STEM Education Policy Statement 2017–2026. https://www.education.ie/en/The-Education-System/STEM-Education-Policy/stem-education-policystatement-2017-2026-.pdf
  • Irmak, Z. & Çetin, D. (2024). 2018 ve 2024 Ortaokul Fen Bilimleri öğretim programlarının bilimsel muhakeme becerileri açısından karşılaştırılması. Anadolu Kültürel Araştırmalar Dergisi, 8(3), 45-60.
  • Jiang, Z., Tang, X., Tan, L., Su, R. & Wei, B. (2025). STEM identity and STEM career intention: a meta-analysis. International Journal of STEM Education, 12(1), Article 57. https://doi.org/10.1186/s40594-025-00578-8
  • Kıryak, Z., Ülger, T. K., Ülger, B. B., Bozkurt, I. & Çepni, S. (2024). 2018 ve 2024 İlk ve Ortaokul Fen Bilimleri ve Matematik dersleri öğretim programları öğrenme çıktılarının karşılaştırılması ve beceriler açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 19(44), 3054-3089.
  • Kwon, H., Capraro, R. M. & Capraro, M. M. (2021). When i believe, i can: Success STEMs from my perceptions. Canadian Journal of Science Mathematics Technology Education,21(1), 67-85. https://doi.org/10.1007/s42330-020-00132-4
  • Lindahl, B. (2007, April). A longitudinal study of students’ attitudes towards science and choice of career. Paper presented at Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.
  • Lou, S. J., Shih, R. C., Diez, C. R. & Tseng, K. H. (2011). The impact of problem based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology & Design Education, 21, 195–215.
  • Millî Eğitim Bakanlığı [MEB]. (2018). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Millî Eğitim Bakanlığı Temel Eğitim Genel Müdürlüğü.
  • Miller, E. & Krajcik, J. (2019). Promoting deep learning through project-based learning: a design problem. Disciplinary and Interdisciplinary Science Education Research, 1(7). https://doi.org/10.1186/s43031-019-0009-6
  • Millî Eğitim Bakanlığı [MEB]. (2005). Fen ve Teknoloji Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2018). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Millî Eğitim Bakanlığı, Temel Eğitim Genel Müdürlüğü.
  • Millî Eğitim Bakanlığı [MEB]. (2019). PISA 2018 Türkiye ön raporu (No:10). Millî Eğitim Bakanlığı, Eğitim Analiz ve Değerlendirme Raporları Serisi.
  • Millî Eğitim Bakanlığı [MEB]. (2020). Öğretim programlarını değerlendirme raporu. Millî Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı İzleme ve Değerlendirme Daire Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2013). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2017). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2024a). Öğretim programları ortak metni. Millî Eğitim Bakanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2024b). Türkiye Yüzyılı Maarif modeli Fen Bilimleri dersi öğretim programı (3,4,5,6,7 ve 8. sınıflar). Türkiye Yüzyılı Maarif Modeli. Millî Eğitim Bakanlığı.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A. & Smith, K. A. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-college Engineering Education Research, 4(1), 1–13. https://doi.org/10.7771/2157-9288.1069
  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students' understanding of engineering design. Journal of Engineering Education, 102(1), 141–178.
  • Moore, T. J., Tank, K. M., Glancy, A. W. & Kersten, J. A. (2015). NGSS and the landscape of engineering in K-12 state science standards. Journal of Research in Science Teaching, 52(3), 296–318. https://doi.org/10.1002/tea.21199
  • National Academies of Sciences, Engineering & Medicine [NASEM]. (2020). Building capacity for teaching engineering in K–12 education. Washington, DC: The National Academies Press.
  • National Academy of Engineering & National Research Council [NAE & NRC]. (2009). Engineering in K-12 education understanding the status and improving the prospects (L. Katehi, G. Pearson & M. Feder, Eds.). National Academies.
  • National Academy of Engineering & National Research Council [NAE & NRC]. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies.
  • National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education?. National Academies. National Research Council (2012). A Framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academic.
  • National Research Council, Division of Behavioral, Social Sciences, Board on Testing, Assessment, Board on Science Education & Committee on Highly Successful Schools or Programs for K-12 STEM Education. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies.
  • Next Generation Science Standards Lead States [NGSS]. (2013). Next generation science standards: for states, by states. The National Academies.
  • Nisbett, J. K. & Budynas, R. G. (2011). Shigley's mechanical engineering design (pp. 593-598). New York: McGraw-Hill.
  • Organisation for Economic Co-operation and Development [OECD]. (2023). Education at a Glance 2023. OECD.
  • Özkan, C. & Yaman, S. (2025). 2024 Fen Bilimleri Dersi Öğretim Programı öğrenme çıktılarının yenilenmiş bloom taksonomisine göre incelenmesi. Turkish Journal of Primary Education, 10(1), 1-16.
  • Peterman, K., Daugherty, J. L., Custer, R. L. & Ross, J. M. (2017). Analysing the integration of engi- neering in science lessons with the Engineering-Infused Lesson Rubric. International Journal of Science Education, 39(14), 1913–1931. https://doi.org/10.1080/09500693.2017.1359431
  • Pleasants, J. & Olson, J. K. (2019). What is engineering? Elaborating the nature of engineering for K-12 education. Science Education, 103(1), 145–166.
  • Roehrig, G. H., Dare, E. A., Ellis, J. A. & Ring-Whalen, E. (2021a). Beyond the basics: A detailed conceptual framework of integrated STEM. Disciplinary and Interdisciplinary Science Education Research, 3(1), Article 11. https://doi.org/10.1186/s43031-021-00041-y
  • Roehrig, G. H., Dare, E. A., Ring-Whalen, E. & Wieselmann, J. R. (2021b). Understanding coherence and integration in integrated curriculum. International Journal of STEM Education, 8, 1-21. https://doi.org/10.1186/s40594-020-00259-8
  • Roll, I. & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. https://doi.org/10.1007/s40593-016-0110-3
  • Schellinger, J., Jaber, L. Z. & Southerland, S. A. (2022). Harmonious or disjointed?: Epistemological framing and its role in an integrated science and engineering activity. Journal of Research in Science Teaching, 59(1), 30–57. https://doi.org/10.1002/tea.21720
  • Seren, S. & Veli, E. (2018). Comparison of the inclusion levels of STEM education in the changed Science Curriculum as of 2005. Journal Of STEAM Education Science, Technology, Engineering, Mathematics and Art Education Journal, June, (1), 24-47.
  • Sexton, S. S. (2023). Nature of science and nature of technology. In B. Akpan, B. Cavas & T. Kennedy, (eds), Contemporary issues in science and technology education (pp. 13–24). Springer. https://doi.org/10.1007/978-3-031-24259-5_2
  • Song, X. (2012). The effects of technological change on schooling and training human capital. Economics of Innovation and New Technology, 22(1), 23–45. https://doi.org/10.1080/10438599.2012.698844
  • Sung, E., Han, J. & Kelley, T. R. (2025). Enhancing STEM attitudes of rural high school students through engineering design-based learning. Journal of Technology Education, 36(2), 113-137.
  • Şimşek, H. (2009). Methodical problem ın the researches of educational history. Journal of Faculty of Educational Sciences, 42(1), 33-51.
  • Tati, T., Firman, H. & Riandi, R. (2017). The effect of STEM learning through the project of designing boat model toward student STEM Literacy. Journal of Physics: Conference Series. 895(1). http://dx.doi.org/10.1088/1742-6596/895/1/012157
  • Thibaut, L., Knipprath, H., Dehaene, W. & Depaepe, F. (2019). Teachers’ attitudes toward teaching integrated STEM: The impact of personal background characteristics and school context. International Journal of Science and Mathematics Education, 17(5), 987-1007.
  • Vale, C., Campbell, C., Speldewinde, C. & White, P. (2020). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Mathematics Education, 18(3), 463-483.
  • Wan, D. & Lee, Y. J. (2025). Engineering in grades 1–9 science education standards from China. Science & Education, 34(1), 199-226.
  • Wan, Z. H., So, W. M. W. & Zhan, Y. (2020). Developing and validating a scale of STEM Project based learning experience. Research in Science Education. https://doi.org/10.1007/s11165-020-09965-3
  • Wang, H. (2012). A new era of science education: Science teachers‘ perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration. [Doctoral dissertation, University of Minnesota]. Minesota: University of Minnesota.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. [Doctoral dissertation]. Tufts University.
  • White, D. & Delaney, S. (2021). Full STEAM ahead, but who has the map for integration? – A PRISMA systematic review on the incorporation of interdisciplinary learning into schools. International Journal on Math, Science and Technology Education, 9(2), 9–32. https://doi.org/10.31129/LUMAT.9.2.1387
  • Wulf, W. A. (1998). The image of engineering. Issues in Science and Technology, 15(2), 23–24. https://go.gale.com/ps/i.do?p=AONE&u=anon~94ff7b75&id=GALE%7CA54036592&v=2.1&it=r&sid=googleScholar&asid=39cd9b83
  • Yenilik ve Eğitim Teknolojileri Genel Müdürlüğü [YEĞİTEK]. (2018). STEM Eğitimi Öğretmen El Kitabı. YEĞİTEK Müdürlüğü. https://mus.meb.gov.tr/meb_iys_dosyalar/2018_03/14112534_STEM_EYitimi_YYretmen_El_kitabY.pdf
  • Yeter, I. H., Radloff, J. D. & Diordieva, C. (2022). Exploring the presence of engineering indices in the Singaporean high school physics standards: A content analysis. Paper presented at the ASEE 2022 Annual Conference, Minneapolis.
  • Yıldırım, A. & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Seçkin Yayınları.
  • Yüzbaşıoğlu, M. K. (2025). Sürdürülebilir Yaşam İçin Eğitim: 2024 Yılı Fen Bilimleri Dersi Öğretim Programının sürdürülebilir kalkınma açısından değerlendirmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (63), 928-946.
  • Zeng, Z., Yao, J., Gu, H. & Przybylski, R. (2018). A meta-analysis on the effects of STEM education on students’ abilities. Science Insights Education Frontiers, 1(1), 3-16. https://doi.org/10.15354/sief.18.re005
  • Zoldosova, K. & Prokop, P. (2006). Education in the field influences children’s ideas and interest toward science. Journal of Science Education and Technology, 15(3-4), 304-313.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.

2024 Yılı Türkiye Fen Bilimleri Dersi Öğretim Programının Mühendislik Entegrasyonu Açısından İncelenmesi

Year 2025, Volume: 15 Issue: 2, 714 - 766, 31.12.2025
https://doi.org/10.17984/adyuebd.1739968

Abstract

Bu araştırmanın amacı, 2024 Fen Bilimleri Dersi Öğretim Programı’nı mühendislik entegrasyonu açısından incelemektir. Programın mühendislik entegrasyonu açısından analiz edilmesi, öğretmenler, araştırmacılar ve diğer uygulayıcılar için fen eğitimine mühendisliğin entegrasyonunu kolaylaştıracağı düşünülmektedir. Bu nitel durum çalışmasında, 2024 Fen Bilimleri Dersi Öğretim Programı doküman analizi yöntemiyle mevcut durum ortaya konulmaya çalışılmıştır. Programın amaç, içerik, uygulama ve değerlendirme boyutları ile ilgili başlıkları ayrıntılı şekilde incelenmiş; mühendislik disiplini ve mühendislik tasarım sürecine ilişkin ifadeler belirlenmiş, oluşturulan kodlar kategorize edilmiştir. Elde edilen bulgular programın boyutlarına göre sınıf düzeyleri, konu alanlarına, ünitelere göre durumu görselleştirilerek yorumlanmıştır. 2024 Fen Bilimleri Dersi Öğretim Programının tüm boyutlarında mühendislik entegrasyonuna rastlanmıştır. Ancak programın amaç ve içerik boyutunda mühendislik entegrasyonunu gerek sınıf düzeyi gerek konu gerekse tasarım sürecinin aşamaları ile sınırlıdır. Buna karşın programın uygulama veya değerlendirme boyutunda mühendislik entegrasyon vurgusu daha fazladır. Bu vurgunun daha çok fizik konusu olmak üzere her konu, ünite ve sınıf düzeyinde olduğu dikkat çekmektedir. Mühendislik entegrasyonu programa daha çok tasarım oluşturma ve değerlendirme aşamalarıyla yansımıştır. Programda mühendislik entegrasyonu için mühendislik tasarım sürecinin yanında mühendisliğin disiplinlerarası doğasına vurgu yapılmıştır. İlgili literatür ile karşılaştırıldığında programda mühendislik entegrasyonunu güçlendirmek için tüm boyutlara, tüm sınıf düzeyindeki tüm konulara aynı şeklide yansıtılmasının ve mühendislik tasarım sürecinin tüm aşamalarını işletilmesi gerekmektedir.

Ethical Statement

Bu araştırma insan ya da hayvan deneklere müdahale içermemektedir. Araştırmada yalnızca Türkiye Milli Eğitim Bakanlığı tarafından herkese açık olarak yayınlanan Fen Bilimleri Dersi Öğretim Programı (2025)’ndan elde edilen veriler kullanılmıştır. 2547 sayılı Yükseköğretim Kanunu ve Yükseköğretim Kurulu’nun (YÖK) 2020 yılında yayımladığı “Etik Kurul İzni” konulu duyurusunda belirtilen açıklamalar doğrultusunda etik kurul onayı alınması gerekmemiştir.

References

  • Ak, B. S. & Köse, M. (2024). 2024 Fen Bilimleri Dersi Öğretim Programı hakkında öğretmen görüşlerinin incelenmesi. Akademik Platform Eğitim ve Değişim Dergisi, 7(2), 132-169.
  • Akgündüz, D., Ertepınar, H., Ger, A. M., Kaplan Sayı, A. & Türk, Z. (2015). STEM eğitimi çalıştay raporu: Türkiye STEM eğitimi üzerine kapsamlı bir değerlendirme. İstanbul Aydın Üniversitesi, STEM Merkezi.
  • Anwar, S., Menekse, M., Guzey, S. & Bryan, L. A. (2022). The effectiveness of an integrated STEM curriculum unit on middle school students’ life science learning. Journal of Research in Science Teaching, 59(7), 1204–1234. https://doi.org/10.1002/tea.21756
  • Australian Curriculum, Assessment and Reporting Authority [ACARA]. (2021). Final report: Science. Australian Curriculum, Assessment and Reporting Authority.
  • Aydın Günbatar, S., Ekiz-Kiran, B. & Öztay, E. S. (2020). Pre-service chemistry teachers’ pedagogical content knowledge for integrated STEM development with LESMeR model. Chemistry Education Research and Practice, 21(4), 1063–1082. https://doi.org/10.1039/D0RP00074D
  • Bahadır, E. (2024). Ortaokul Fen Öğretim Programında yer alan kazanımların “Proje Tasarlama” değişkeni açısından incelenmesi doküman analizi. Giresun Üniversitesi Eğitim Fakültesi Dergisi, 1(1), 38-47.
  • Barak, M., Ginzburg, T. & Erduran, S. (2022). Nature of engineering: A cognitive and epistemic account with implications for engineering education. Science & Education, 33, 679-697. https://doi.org/10.1007/s11191-022-00402-7
  • Baran Jovanovic, B., Canbazoğlu Bilici, S., Mesutoğlu, C. & Ocak, C. (2016). Moving STEM beyond schools students perceptions about an out of school STEM education program. International Journal of Education in Mathematics, Science and Technology (IJEMST), 4(1), 9-19.
  • Barnett, J. & Hodson, D. (2001). Pedagogical context knowledge: Toward a fuller understanding of what good science teachers know. Science Education, 85(4), 426–453.
  • Bell, P., Lewenstein, B., Shouse, A. & Feder, M. (2009). Committee on learning science in informal environments. National Research Council.
  • Beşoluk, Ş., Demirhan, E., Orhan, U., Mısır, M. E. & Karahan, H. (2024). 2018 ve 2024 Fen Bilimleri öğretim programlarının yerellik bağlamında karşılaştırılması. ERPA2024 Kongresi Bildiri Kitabı, 103-115.
  • Bilir, U. (2025). Türkiye’de 2018 ve 2024 Yılları Fen Bilimleri Dersi öğretim programlarının temel ögeler açısından karşılaştırılması. Milli Eğitim Dergisi, 54(246), 793-836.
  • Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27–40. https://doi.org/10.3316/QRJ0902027
  • Brown, J. S., Collins, A. & Duguid, P. (1989). Situated cognition and the culture of learning. Educational Researcher, 18(1), 32–42.
  • Brunsell, E. (2012). The engineering design process. In E. Brunsell (Ed.), Integrating engineering + science in your classroom (pp. 3–5). National Science Teachers Association.
  • Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. National Science Teachers Association.
  • Cao, X., Lu, H., Wu, Q., & Hsu, Y. (2025). Systematic review and meta-analysis of the impact of STEM education on students learning outcomes. Frontiers in Psychology, 16, 1579474. |https://doi.org/10.3389/fpsyg.2025.1579474
  • Carlsen, W. S. (1998). Engineering design in the classroom: Is it good science education or is it revolting? Research in Science Education, 28(1), 51-63.
  • Carr, R. L., Bennett, L. D. & Strobel, J. (2012). Engineering in the K–12 STEM standards of the 50 U.S. states: An analysis of presence and extent. Journal of Engineering Education, 101(3), 539–564.
  • Chang, S. H., Yang, L. J., Chen, C. H., Shih, C. C., Shu, Y. & Chen, Y. T. (2024). STEM education in academic achievement: a meta-analysis of its moderating effects. Interactive Learning Environments, 32(6), 2401-2423. https://doi.org/10.1080/10494820.2022.2147956
  • Chen, B., Chen, J., Wang, M., Tsai, C. C. & Kirschner, P. A. (2025). The effects of integrated STEM education on K12 students’ achievements: A meta-analysis. Review of Educational Research, 00346543251318297. https://doi.org/10.3102/00346543251318297
  • Chen, X., Xie, H., Zou, D. & Hwang, G. J. (2020). Application and theory gaps during the rise of artificial intelligence in education. Computers and Education: Artificial Intelligence, 1, 1-20. https://doi.org/10.1016/j.caeai.2020.100002
  • Cheng, M.F., Lo, YH. & Cheng, C.H. (2024). The impact of STEM curriculum on students’ engineering design abilities and attitudes toward STEM. International Journal of Technology Design Education, 34, 1805–1833. https://doi.org/10.1007/s10798-024-09883-9
  • Cira, N. J., Chung, A. M., Denisin, A. K., Rensi, S., Sanchez, G. N., Quake, S. R. & Riedel- Kruse, I. H. (2015). A biotic game design project for integrated life science and engineering education. PLoS biology, 13(3), e1002110. https://doi.org/10.1371/journal.pbio.1002110
  • Cleaves, A. (2005). The formation of science choices in secondary school. International Journal of Science Education, 27(4), 471-486.
  • Culver, D. E. (2012). A qualitative assessment of preservice elementary teachers' formative perceptions regarding engineering and K–12 engineering education. (Unpublished doctoral dissertation, Iowa State University).
  • Cunningham, C. M. & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25(2), 197–210. https://doi.org/10.1007/s10972-014-9380-5
  • Cunningham, C. M. & Kelly, G. J. (2017). Framing engineering practices in elementary school classrooms. International Journal of Engineering Education, 33(1B), 295–307.
  • Cunningham, C. M. (2017). Engineering in elementary STEM education: Curriculum design, instruction, learning, and assessment. Teachers College.
  • Cunningham, C. M., Lachapelle, C. P., Brennan, R. T., Kelly, G. J., Tunis, C. S. A. & Gentry, C. A. (2020). The impact of engineering curriculum design principles on elementary students’ engineering and science learning. Journal of Research in Science Teaching, 57(3), 423-453. https://doi.org/10.1002/tea.21601
  • Çalık, M. & Sözbilir, M. (2014). İçerik analizinin parametreleri. Eğitim ve Bilim, 39(174), 33-38.
  • Çelebi, M. E. & Ekici, F. T. (2025). Türkiye Yüzyılı Maarif Modelinde Fen Bilimleri Öğretim Programında sürdürülebilirlik ve sürdürülebilir kalkınma hedefleri ile ilişkisi. Denizli İl Millî Eğitim Müdürlüğü Bilim ve Eğitim Dergisi, 1(1), 29-39.
  • Çiğdem Kepir, S. (2024). Lisansüstü tezlerdeki canlılar ve yaşam konu alanına yönelik STEM etkinliklerinin mühendislik entegrasyonu açısından incelenmesi [Yüksek lisans tezi]. Giresun Üniversitesi.
  • Dare, E. A., Ellis, J. A. & Roehrig, G. H. (2014). Driven by beliefs: Understanding challenges physical science teachers face when integrating engineering and physics. Journal of Pre-College Engineering Education Research (J PEER), 4(2), Article 5. https://doi.org/10.7771/2157-9288.1098
  • Demirci, M. & Yıldırım, H. İ. (2025). Fen Bilimleri ders kitapları ve öğretim programının 21. yüzyıl becerileri açısından incelenmesi. Journal of Computer and Education Research, 13(25), 156-180.
  • Demirel, Ö. (2014). Kuramdan uygulamaya eğitimde program geliştirme. Pegem Yayınları.
  • Demirtaş, Z. (2017). Eğitimde program değerlendirme yaklaşımlarına genel bir bakış. Sakarya University Journal of Education, 7(4), 756-768.
  • Department for Education [DFE]. (2013). Science programmes of study: Key stages 1 and 2 National curriculum in England, National Curriculum.
  • Department of Education & Training (Flemish). (2012). STEM framework for flemish schools principles and objectives. https://data-onderwijs.vlaanderen.be/documenten/bestanden/STEM-kader-Engels.pdf
  • Ekiz-Kıran, B. & Aydın-Günbatar, S. (2021). Analysis of engineering elements of K–12 science standards in seven countries engaged in STEM education reform. Science & Education, 30(4), 849–882.
  • English, L. D. & King, D. (2019). STEM integration in sixth grade: Designing and constructing paper bridges. International Journal of Science and Mathematics Education, 17(5), 863-884. https://doi.org/10.1007/s10763-018-9912-0
  • English, L. D. & King, D. T. (2017). Engineering education with fourth-grade students: Introducing design- based problem solving. International Journal of Engineering Education, 33(1), 346–360.
  • English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(1), 5–24.
  • Ercan, S. ve Şahin, F. (2015). Fen eğitiminde mühendislik uygulamalarının kullanımı: Tasarım temelli fen eğitiminin öğrencilerin akademik başarıları üzerine etkisi. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi, 9(1), 128-164.
  • Fan, S. C., Yu, K. C. & Lin, K. Y. A (2021). Framework for ımplementing an engineering-focused STEM curriculum. International Journal of Science and Mathematics Education, 19, 1523–1541. https://doi.org/10.1007/s10763-020-10129-y
  • Frykholm, J. & Glasson, G. (2005). Connecting science and mathematics instruction: pedagogical context knowledge for teachers. School Science and Mathematics, 105(3), 127–141.
  • García-Carmona, A., Muñoz-Franco, G. & Cruz-Guzmán, M. (2025). Integration of engineering practices into primary science classrooms: What does educational research tell us? Science & Education. https://doi.org/10.1007/s11191-025-00616-5
  • Guzey, S. S., Harwell, M. R., Moreno, M., Peralta, Y. & Moore, T. J. (2016). The impact of design-based STEM integration curricula on student achievement in engineering, science, and mathematics. Journal of Science Education and Technology, 26(2), 207–222. https://doi.org/10.1007/s10956-016-9673-x
  • Guzey, S. S., Moore, T. J. & Harwell, M. (2016). Building up STEM: An analysis of teacher-developed engineering design-based STEM integration curricular materials. Journal of Pre-College Engineering Education Research (J PEER), 6(1), Article 2. https://doi.org/10.7771/2157-9288.1129
  • Hacıoğlu, Y. (2017). Fen, teknoloji, mühendislik ve matematik (STEM) eğitimi temelli etkinliklerin fen bilgisi öğretmen adaylarının eleştirel ve yaratıcı düşünme becerilerine etkisi. [Doktora Tezi]. Gazi Üniversitesi.
  • Hacıoğlu, Y. (2021). The effect of STEM education on 21th century skills: Preservice science teachers’ evaluations. Journal of STEAM Education, 4(2), 140-167.
  • Hacıoğlu, Y. (2025). STE(A)M Eğitiminde yaratıcılık ve inovasyon. G. Uyanık (Ed.), Eğitim & Bilim 2025: STEAM Tabanlı Eğitimde Güncel Yaklaşımlar içinde (283-298). Efe Akademi.
  • Hacıoğlu, Y. & Gülhan, F. (2021). The effects of STEM education on the students’ critical thinking skills and STEM perceptions. Journal of Education in Science Environment and Health, 7(2), 139-155. https://doi.org/10.21891/jeseh.771331
  • Han, S., Capraro, R. & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 3(5), 1089-1113.
  • Han, S., Rosli, R., Capraro, M. M. & Capraro, R. M. (2016). The effect of science, technology, engineering and mathematics (STEM) project based learning (PBL) on students’ achievement in four mathematics topics. Journal of Turkish Science Education, 13(3), 3-29.
  • Hmelo, C. E., Holton, D. L. & Kolodner, J. L. (2000). Designing to learn about complex systems. Journal of the Learning Sciences, 9(3), 247–298.
  • Hong Kong Education Bureu. (2016). Promotion of STEM education unleashing potential in innovation. https://www.info.gov.hk/gia/general/201612/05/P2016120500376.htm
  • Householder, D. L. & Hailey, C. E. (Eds.). (2012). Incorporating engineering design challenges into STEM courses. National Center for Engineering and Technology Education.
  • Hudson, P., English, L. D. & Dawes, L. (2014). Curricula integration: Identifying and locating engineering education across the Australian curriculum. Curriculum Perspectives, 34(1), 43-50.
  • Hynes, M., Portsmore, M., Dare, E., Milto, E., Rogers, C., Hammer, D. & Carberry, A. (2011). Infusing engineering design into high school STEM courses. National Center for Engineering and Technology Education.
  • Ireland Department of Education and Skills. (2017). STEM Education Policy Statement 2017–2026. https://www.education.ie/en/The-Education-System/STEM-Education-Policy/stem-education-policystatement-2017-2026-.pdf
  • Irmak, Z. & Çetin, D. (2024). 2018 ve 2024 Ortaokul Fen Bilimleri öğretim programlarının bilimsel muhakeme becerileri açısından karşılaştırılması. Anadolu Kültürel Araştırmalar Dergisi, 8(3), 45-60.
  • Jiang, Z., Tang, X., Tan, L., Su, R. & Wei, B. (2025). STEM identity and STEM career intention: a meta-analysis. International Journal of STEM Education, 12(1), Article 57. https://doi.org/10.1186/s40594-025-00578-8
  • Kıryak, Z., Ülger, T. K., Ülger, B. B., Bozkurt, I. & Çepni, S. (2024). 2018 ve 2024 İlk ve Ortaokul Fen Bilimleri ve Matematik dersleri öğretim programları öğrenme çıktılarının karşılaştırılması ve beceriler açısından incelenmesi. Bayburt Eğitim Fakültesi Dergisi, 19(44), 3054-3089.
  • Kwon, H., Capraro, R. M. & Capraro, M. M. (2021). When i believe, i can: Success STEMs from my perceptions. Canadian Journal of Science Mathematics Technology Education,21(1), 67-85. https://doi.org/10.1007/s42330-020-00132-4
  • Lindahl, B. (2007, April). A longitudinal study of students’ attitudes towards science and choice of career. Paper presented at Annual Meeting of the National Association for Research in Science Teaching, New Orleans, LA.
  • Lou, S. J., Shih, R. C., Diez, C. R. & Tseng, K. H. (2011). The impact of problem based learning strategies on STEM knowledge integration and attitudes: An exploratory study among female Taiwanese senior high school students. International Journal of Technology & Design Education, 21, 195–215.
  • Millî Eğitim Bakanlığı [MEB]. (2018). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Millî Eğitim Bakanlığı Temel Eğitim Genel Müdürlüğü.
  • Miller, E. & Krajcik, J. (2019). Promoting deep learning through project-based learning: a design problem. Disciplinary and Interdisciplinary Science Education Research, 1(7). https://doi.org/10.1186/s43031-019-0009-6
  • Millî Eğitim Bakanlığı [MEB]. (2005). Fen ve Teknoloji Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2018). Fen Bilimleri Dersi Öğretim Programı (İlkokul ve Ortaokul 3, 4, 5, 6, 7 ve 8. Sınıflar). Ankara: Millî Eğitim Bakanlığı, Temel Eğitim Genel Müdürlüğü.
  • Millî Eğitim Bakanlığı [MEB]. (2019). PISA 2018 Türkiye ön raporu (No:10). Millî Eğitim Bakanlığı, Eğitim Analiz ve Değerlendirme Raporları Serisi.
  • Millî Eğitim Bakanlığı [MEB]. (2020). Öğretim programlarını değerlendirme raporu. Millî Eğitim Bakanlığı Talim ve Terbiye Kurulu Başkanlığı İzleme ve Değerlendirme Daire Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2013). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2017). İlköğretim Kurumları Fen Bilimleri Dersi Öğretim Programı. Talim ve Terbiye Kurulu Başkanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2024a). Öğretim programları ortak metni. Millî Eğitim Bakanlığı.
  • Millî Eğitim Bakanlığı [MEB]. (2024b). Türkiye Yüzyılı Maarif modeli Fen Bilimleri dersi öğretim programı (3,4,5,6,7 ve 8. sınıflar). Türkiye Yüzyılı Maarif Modeli. Millî Eğitim Bakanlığı.
  • Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A. & Smith, K. A. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-college Engineering Education Research, 4(1), 1–13. https://doi.org/10.7771/2157-9288.1069
  • Moore, T. J., Miller, R. L., Lesh, R. A., Stohlmann, M. S. & Kim, Y. R. (2013). Modeling in engineering: The role of representational fluency in students' understanding of engineering design. Journal of Engineering Education, 102(1), 141–178.
  • Moore, T. J., Tank, K. M., Glancy, A. W. & Kersten, J. A. (2015). NGSS and the landscape of engineering in K-12 state science standards. Journal of Research in Science Teaching, 52(3), 296–318. https://doi.org/10.1002/tea.21199
  • National Academies of Sciences, Engineering & Medicine [NASEM]. (2020). Building capacity for teaching engineering in K–12 education. Washington, DC: The National Academies Press.
  • National Academy of Engineering & National Research Council [NAE & NRC]. (2009). Engineering in K-12 education understanding the status and improving the prospects (L. Katehi, G. Pearson & M. Feder, Eds.). National Academies.
  • National Academy of Engineering & National Research Council [NAE & NRC]. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. National Academies.
  • National Academy of Engineering [NAE]. (2010). Standards for K-12 engineering education?. National Academies. National Research Council (2012). A Framework for K-12 science education: practices, crosscutting concepts, and core ideas. The National Academic.
  • National Research Council, Division of Behavioral, Social Sciences, Board on Testing, Assessment, Board on Science Education & Committee on Highly Successful Schools or Programs for K-12 STEM Education. (2011). Successful K-12 STEM education: Identifying effective approaches in science, technology, engineering, and mathematics. National Academies.
  • Next Generation Science Standards Lead States [NGSS]. (2013). Next generation science standards: for states, by states. The National Academies.
  • Nisbett, J. K. & Budynas, R. G. (2011). Shigley's mechanical engineering design (pp. 593-598). New York: McGraw-Hill.
  • Organisation for Economic Co-operation and Development [OECD]. (2023). Education at a Glance 2023. OECD.
  • Özkan, C. & Yaman, S. (2025). 2024 Fen Bilimleri Dersi Öğretim Programı öğrenme çıktılarının yenilenmiş bloom taksonomisine göre incelenmesi. Turkish Journal of Primary Education, 10(1), 1-16.
  • Peterman, K., Daugherty, J. L., Custer, R. L. & Ross, J. M. (2017). Analysing the integration of engi- neering in science lessons with the Engineering-Infused Lesson Rubric. International Journal of Science Education, 39(14), 1913–1931. https://doi.org/10.1080/09500693.2017.1359431
  • Pleasants, J. & Olson, J. K. (2019). What is engineering? Elaborating the nature of engineering for K-12 education. Science Education, 103(1), 145–166.
  • Roehrig, G. H., Dare, E. A., Ellis, J. A. & Ring-Whalen, E. (2021a). Beyond the basics: A detailed conceptual framework of integrated STEM. Disciplinary and Interdisciplinary Science Education Research, 3(1), Article 11. https://doi.org/10.1186/s43031-021-00041-y
  • Roehrig, G. H., Dare, E. A., Ring-Whalen, E. & Wieselmann, J. R. (2021b). Understanding coherence and integration in integrated curriculum. International Journal of STEM Education, 8, 1-21. https://doi.org/10.1186/s40594-020-00259-8
  • Roll, I. & Wylie, R. (2016). Evolution and revolution in artificial intelligence in education. International Journal of Artificial Intelligence in Education, 26(2), 582–599. https://doi.org/10.1007/s40593-016-0110-3
  • Schellinger, J., Jaber, L. Z. & Southerland, S. A. (2022). Harmonious or disjointed?: Epistemological framing and its role in an integrated science and engineering activity. Journal of Research in Science Teaching, 59(1), 30–57. https://doi.org/10.1002/tea.21720
  • Seren, S. & Veli, E. (2018). Comparison of the inclusion levels of STEM education in the changed Science Curriculum as of 2005. Journal Of STEAM Education Science, Technology, Engineering, Mathematics and Art Education Journal, June, (1), 24-47.
  • Sexton, S. S. (2023). Nature of science and nature of technology. In B. Akpan, B. Cavas & T. Kennedy, (eds), Contemporary issues in science and technology education (pp. 13–24). Springer. https://doi.org/10.1007/978-3-031-24259-5_2
  • Song, X. (2012). The effects of technological change on schooling and training human capital. Economics of Innovation and New Technology, 22(1), 23–45. https://doi.org/10.1080/10438599.2012.698844
  • Sung, E., Han, J. & Kelley, T. R. (2025). Enhancing STEM attitudes of rural high school students through engineering design-based learning. Journal of Technology Education, 36(2), 113-137.
  • Şimşek, H. (2009). Methodical problem ın the researches of educational history. Journal of Faculty of Educational Sciences, 42(1), 33-51.
  • Tati, T., Firman, H. & Riandi, R. (2017). The effect of STEM learning through the project of designing boat model toward student STEM Literacy. Journal of Physics: Conference Series. 895(1). http://dx.doi.org/10.1088/1742-6596/895/1/012157
  • Thibaut, L., Knipprath, H., Dehaene, W. & Depaepe, F. (2019). Teachers’ attitudes toward teaching integrated STEM: The impact of personal background characteristics and school context. International Journal of Science and Mathematics Education, 17(5), 987-1007.
  • Vale, C., Campbell, C., Speldewinde, C. & White, P. (2020). Teaching across subject boundaries in STEM: Continuities in beliefs about learning and teaching. International Journal of Science and Mathematics Education, 18(3), 463-483.
  • Wan, D. & Lee, Y. J. (2025). Engineering in grades 1–9 science education standards from China. Science & Education, 34(1), 199-226.
  • Wan, Z. H., So, W. M. W. & Zhan, Y. (2020). Developing and validating a scale of STEM Project based learning experience. Research in Science Education. https://doi.org/10.1007/s11165-020-09965-3
  • Wang, H. (2012). A new era of science education: Science teachers‘ perceptions and classroom practices of science, technology, engineering, and mathematics (STEM) integration. [Doctoral dissertation, University of Minnesota]. Minesota: University of Minnesota.
  • Wendell, K. B. (2008). The theoretical and empirical basis for design-based science instruction for children. [Doctoral dissertation]. Tufts University.
  • White, D. & Delaney, S. (2021). Full STEAM ahead, but who has the map for integration? – A PRISMA systematic review on the incorporation of interdisciplinary learning into schools. International Journal on Math, Science and Technology Education, 9(2), 9–32. https://doi.org/10.31129/LUMAT.9.2.1387
  • Wulf, W. A. (1998). The image of engineering. Issues in Science and Technology, 15(2), 23–24. https://go.gale.com/ps/i.do?p=AONE&u=anon~94ff7b75&id=GALE%7CA54036592&v=2.1&it=r&sid=googleScholar&asid=39cd9b83
  • Yenilik ve Eğitim Teknolojileri Genel Müdürlüğü [YEĞİTEK]. (2018). STEM Eğitimi Öğretmen El Kitabı. YEĞİTEK Müdürlüğü. https://mus.meb.gov.tr/meb_iys_dosyalar/2018_03/14112534_STEM_EYitimi_YYretmen_El_kitabY.pdf
  • Yeter, I. H., Radloff, J. D. & Diordieva, C. (2022). Exploring the presence of engineering indices in the Singaporean high school physics standards: A content analysis. Paper presented at the ASEE 2022 Annual Conference, Minneapolis.
  • Yıldırım, A. & Şimşek, H. (2006). Sosyal bilimlerde nitel araştırma yöntemleri (6. Baskı). Seçkin Yayınları.
  • Yüzbaşıoğlu, M. K. (2025). Sürdürülebilir Yaşam İçin Eğitim: 2024 Yılı Fen Bilimleri Dersi Öğretim Programının sürdürülebilir kalkınma açısından değerlendirmesi. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (63), 928-946.
  • Zeng, Z., Yao, J., Gu, H. & Przybylski, R. (2018). A meta-analysis on the effects of STEM education on students’ abilities. Science Insights Education Frontiers, 1(1), 3-16. https://doi.org/10.15354/sief.18.re005
  • Zoldosova, K. & Prokop, P. (2006). Education in the field influences children’s ideas and interest toward science. Journal of Science Education and Technology, 15(3-4), 304-313.
  • Zollman, A. (2012). Learning for STEM literacy: STEM literacy for learning. School Science and Mathematics, 112(1), 12-19.
There are 116 citations in total.

Details

Primary Language English
Subjects Science Education, STEM Education
Journal Section Research Article
Authors

İlknur Taşdelen 0009-0005-5035-0070

Yasemin Hacıoğlu 0000-0002-1184-4204

Submission Date July 11, 2025
Acceptance Date November 28, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

APA Taşdelen, İ., & Hacıoğlu, Y. (2025). Examination of the 2024 Türkiye Science Curriculum in terms of Engineering Integration. Adıyaman University Journal of Educational Sciences, 15(2), 714-766. https://doi.org/10.17984/adyuebd.1739968

                                                                                                                                                                                                                                                      
by-nc-nd.png?resize=300%2C105&ssl=1 This work is licensed under CC BY-NC-ND 4.0