Research Article
BibTex RIS Cite

Cinsiyet, Uzamsal Beceri, Mantıksal Düşünme Becerisi ve Çözüm Tercihleri Arasındaki İlişkinin İncelenmesi

Year 2017, Volume: 7 Issue: 1, 116 - 131, 30.06.2017
https://doi.org/10.17984/adyuebd.310833

Abstract

Bu araştırma sınıf öğretmeni adaylarının matematik problemlerini çözme tercihleri ile görsel ve analitik becerileri arasındaki ilişkinin incelenmesini amaçlamaktadır. Bu kapsamda 107 öğretmen adayına Matematik İşlem Testi (MİT), Zihinden Döndürme Tesit (ZDT) ve Mantıksal Düşünme Grup Testi (MDGT) uygulanmıştır. Elde edilen sonuçlar, Sınıf öğretmeni adaylarının ZDT ve MDGT testlerine ilişkin performansları görsel ve analitik beceri düzeylerinin orta düzeyde olduğunu göstermektedir. Adayların MİT testinde aldıkları puanlar matematik problemlerini çözme tercihlerine göre orta düzeyin üzerinde oldukları belirlenmiştir. Cinsiyet değişkenine göre kız ve erkek adayların problem çözme tercihleri arasında anlamlı bir farklılık olmadığı belirlenmiştir. Ancak, cinsiyet değişkenine göre kız ve erkek adayların ZDT performanslarında erkeklerin lehine anlamlı bir farklılık olduğu belirlenmiştir. Bununla beraber, cinsiyet değişkenine göre adayların MDGT ortalama puanları arasında anlamlı bir farklılık olmadığı tespit edilmiştir. cinsiyet, görsel ve analitik becerilerin adayların problem çözme tercihleri arasındaki anlamlı bir  ilişki olmadığı tespit edilmiştir. Bu durum, adayların görsel ve analitik becerileri ile görsel ve analitik problem çözme tercihleri arasında anlamlı bir ilişki olmadığını göstermektedir.

References

  • Aksu, M., Berberoğlu, G., & Paykoç, F. (1990). Can the GALT test be used in a Different Cultural Setting? Research Report.
  • Altun, M. (2008). Eğitim Fakülteleri ve İlköğretim Öğretmenleri için Matematik Öğretimi. İstanbul: Alfa Yayınları.
  • Bitner, B.L. (1991). Formal operational reasoning modes: Predictors of critical thinking abilities and grades assigned by teachers in science and mathematics for students in grades nine through twelve. Journal of Research in Science Teaching, 28, 265- 274.
  • Booth, R. D., & Thomas, M. O. (1999). Visualization in mathematics learning: Arithmetic problem-solving and student difficulties. The Journal of Mathematical Behavior, 18(2), 169–190.
  • Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving. Educational Studies in Mathematics, 28, 177-194.
  • Chinnappan, M. (1998). Schemas and mental models in geometry problem solving. Educational Studies in Mathematics, 36, 201–217.
  • Guay, R.B. & McDaniel, E. D. 1(977). The Relationship between Mathematics Achievement and Spatial Abilities among Elementary School Children. Journal for Research in Mathematics Education, 8(3), 211-215.
  • Gür, H. & Korkmaz, E. (2003). İlköğretim 7. sınıf öğrencilerin problem ortaya atma becerilerinin belirlenmesi. 7. Matematik Sempozyumu Sergi ve Şenlikleri. 8 Aralık 2011 tarihinde http://www.matder.org.tr/ adresinden alınmıştır.
  • Barratt, P. E. (1953). Imagery and thinking. Australian Journal of Psychology, 5, 154–164.
  • Bremigan, E. G. (2005). An analysis of diagram modification and construction in students’ solutions to applied calculus problems. Journal of Research in Mathematics Education, 36(3), 248-277.
  • Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving. Educational Studies in Mathematics, 28, 177–194.
  • Fennema, E. & Tartre, L.A. (1985). The Use of Spatial Visualization in Mathematics by Girls and Boys. Journal for Research in Mathematics Education, 16(3) 184-206.
  • Joan Ferrini-Mundy, J. (1987). Spatial Training for Calculus Students: Sex Differences in Achievement and in Visualization Ability. Journal for Research in Mathematics Education, 18(2), 126-140.
  • Hacıömeroğlu, G. (2011). Matematiksel Problem Çözmeye İlişkin İnanç Ölçeği’nin Türkçe’ye Uyarlama Çalışması. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 17, 119-132.
  • Haciomeroglu, E. S. (2016). Object-spatial visualization and verbal cognitive styles, and their relation to cognitive abilities and mathematical performance. Educational Sciences: Theory & Practice, 16(3), 987-1003.
  • Haciomeroglu, E.S. & Chicken, E. (2012). Visual thinking and gender differences in high school calculus. International Journal of Mathematical Education in Science and Technology, 43(3), 303–313.
  • Haciomeroglu, E. S., Chicken, E., & Dixon, J. (2013). Relationships between gender, cognitive ability, preference, and calculus performance. Mathematical Thinking and Learning, 15, 175-189.
  • Hacıömeroğlu, G. & Hacıömeroğlu, E.S. (2013). Matematik İşlem Testi’nin Türkçe’ye Uyarlama Çalışması ve Öğretmen Adaylarının Matematik Problemlerini Çözme Tercihleri. Kursamsal Eğitim ve Bilim, 6(2), 196-203.
  • Hacıömeroğlu, E.S., Hacıömeroğlu, G., Bukova-Güzel, E., & Kula, S. (2014). Türev ve İntegral Problemlerinin Çözümünde Görsel, Analitik ve Harmonik Çözüm Tercihleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 22, 108-119.
  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684-689.
  • Jencks, S. M., & Peck, D. M. (1972). Mental imagery in mathematics. Arithmetic Teacher, 19, 642–644.
  • Kıncal, R. Y., & Deniz Yazgan, A. (2010). Investigating the formal operational thinking skills of 7th and 8th grade primary school students according to some variables. Elementary Education Online, 9(2), 723-733.
  • Köybaşı, F., Uğurlu, C.T, & Usta, H. G. (2016). Öğretmenlerin Örgütsel Güven Düzeylerine İlişkin Lojistik Yordayıcılık. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 36(2), 301-321.
  • Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in School Children. In J. Kilpatrick & I. Wirszup (Eds.), Chicago: The University of Chicago Press.
  • Karasar, N. (2010). Bilimsel Araştırma Yöntemi (21. baskı). Ankara: Nobel Yayın Dağıtım.
  • Köybaşı, F., Uğurlu, C.T. & Usta, H.G. (2016). Öğretmenlerin Örgütsel Güven Düzeylerine İlişkin Lojistik Yordayıcılık. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 36(2), 301-321.
  • Lean, G., & Clements, M. A. K. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12, 267–299.
  • Moses, B. E. (1980). The relationship between visual thinking tasks and problem- solving performance. Paper presented at the Annual Meeting of the American Education Research Association, Boston, MA.
  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn vandenberg and kuse mental rotations test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58.
  • Presmeg, N. C. (1985). The role of visually mediated processes in high school mathematics: A classroom investigation. Unpublished Ph.D. dissertation, University of Cambridge.
  • Presmeg, N. C. (1986a). Visualization and mathematical giftedness. Educational Studies in Mathematics, 17, 297–311.
  • Presmeg, N. C. (1986b). Visualization in high school mathematics. For the Learning of Mathematics, 6(3), 42–46.
  • Roadrangka, V. (1991). The construction of a Group Assessment of Logical Thinking (GALT). Kasetsant Journal: Social Sciences, 12(2), 148-154.
  • Roadrangka V., Yeany, R.H. & Padilla M.J. (1982). Group test of logical thinking. University of Georgia, Athens, GA.
  • Sağlam, Y., & Bülbül, A. (2012). Üniversite öğrencilerinin görsel ve analitik stratejileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 398-409.

  • Samuels, J. (2010). The use of technology in calculus instruction (Doctoral dissertation). Columbia University.
  • Suwarsono, S. (1982). Visual imagery in the mathematical thinking of seventh grade students. Unpublished Ph.D. dissertation, Monash University, Australia.
  • Tartre, L. A. (1990). Spatial Orientation Skill and Mathematical Problem Solving Journal for Research in Mathematics Education, 21(3), 216-229.
  • Tuna, A., Biber, A. Ç. & İncikapı, L. (2013). An Analysis of Mathematics Teacher Candidates’ Logical Thinking Levels: Case Of Turkey. Journal of Educational Instructional Studies, 3(1), 83-91.
  • Turgut, M., & Yenilmez, K. (2012). Matematik Öğretmeni Adaylarının Uzamsal Görselleştirme Becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Turgut, M., & Yılmaz, S. (2012). Relationships among pre–service primary mathematics teachers’ gender, academic success and spatial ability. International Journal of Instruction, 5(2), 5-20.
  • Turgut, M. (2015). Individual differences in the mental rotation skills of Turkish prospective teachers. Issues in the Undergraduate Mathematics of School Teachers: The Journal (Volume 5: Teacher Attributes), Online: http://www.k- 12prep.math.ttu.edu/journal/5.attributes/volume.shtml
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609-637.
  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496–506.

  • Van Garderen, D., & Montague, M. (2003). Visual‐spatial representation, mathematical problem solving, and students of varying abilities. Learning Disabilities Research & Practice, 18(4), 246–254.

  • Vandenberg, S.G. & Kuse, A.R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.
  • Yenilmez, K. & Turğut, M. (2012). Matematik Öğretmeni Adaylarının Uzamsal Görselleştirme Becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Yıldız, B. (2009). Üç Boyutlu Sanal Ortam ve Somut Materyal Kullanımının Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkileri. Yayınlanmamış Yüksek Lisans Tezi. Hacettepe Üniversitesi, Ankara.

Examining the Relationship between Gender, Spatial Ability, Logical Reasoning Ability, and Preferred Mode of Processing

Year 2017, Volume: 7 Issue: 1, 116 - 131, 30.06.2017
https://doi.org/10.17984/adyuebd.310833

Abstract




















The present study
investigated the relationships between gender, spatial ability, logical
reasoning ability, and preferred mode of processing. Data were collected from
107 prospective elementary teachers at a public university in Turkey. The
results revealed that gender was unrelated to preference for visual or
analytic processing suggesting that gender did not determine prospective
teachers’ preferred mode of processing. Moreover, Spatial ability was
correlated with preference but the strength of the correlation was weak,
indicating that prospective teachers develop a preference, which can be
different from their ability, for processing mathematical information. Males
outperformed females on the spatial ability test; however, there were no
significant differences between the two sexes in preference and logical
reasoning ability. We believe that there is a need for research examining why
people differ in preference and how this affects their mathematical
performance. Longitudinal studies with large sample may shed light on factors
underlying differences in prospective teachers’ preference and performance.

References

  • Aksu, M., Berberoğlu, G., & Paykoç, F. (1990). Can the GALT test be used in a Different Cultural Setting? Research Report.
  • Altun, M. (2008). Eğitim Fakülteleri ve İlköğretim Öğretmenleri için Matematik Öğretimi. İstanbul: Alfa Yayınları.
  • Bitner, B.L. (1991). Formal operational reasoning modes: Predictors of critical thinking abilities and grades assigned by teachers in science and mathematics for students in grades nine through twelve. Journal of Research in Science Teaching, 28, 265- 274.
  • Booth, R. D., & Thomas, M. O. (1999). Visualization in mathematics learning: Arithmetic problem-solving and student difficulties. The Journal of Mathematical Behavior, 18(2), 169–190.
  • Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving. Educational Studies in Mathematics, 28, 177-194.
  • Chinnappan, M. (1998). Schemas and mental models in geometry problem solving. Educational Studies in Mathematics, 36, 201–217.
  • Guay, R.B. & McDaniel, E. D. 1(977). The Relationship between Mathematics Achievement and Spatial Abilities among Elementary School Children. Journal for Research in Mathematics Education, 8(3), 211-215.
  • Gür, H. & Korkmaz, E. (2003). İlköğretim 7. sınıf öğrencilerin problem ortaya atma becerilerinin belirlenmesi. 7. Matematik Sempozyumu Sergi ve Şenlikleri. 8 Aralık 2011 tarihinde http://www.matder.org.tr/ adresinden alınmıştır.
  • Barratt, P. E. (1953). Imagery and thinking. Australian Journal of Psychology, 5, 154–164.
  • Bremigan, E. G. (2005). An analysis of diagram modification and construction in students’ solutions to applied calculus problems. Journal of Research in Mathematics Education, 36(3), 248-277.
  • Campbell, K. J., Collis, K. F., & Watson, J. M. (1995). Visual processing during mathematical problem solving. Educational Studies in Mathematics, 28, 177–194.
  • Fennema, E. & Tartre, L.A. (1985). The Use of Spatial Visualization in Mathematics by Girls and Boys. Journal for Research in Mathematics Education, 16(3) 184-206.
  • Joan Ferrini-Mundy, J. (1987). Spatial Training for Calculus Students: Sex Differences in Achievement and in Visualization Ability. Journal for Research in Mathematics Education, 18(2), 126-140.
  • Hacıömeroğlu, G. (2011). Matematiksel Problem Çözmeye İlişkin İnanç Ölçeği’nin Türkçe’ye Uyarlama Çalışması. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 17, 119-132.
  • Haciomeroglu, E. S. (2016). Object-spatial visualization and verbal cognitive styles, and their relation to cognitive abilities and mathematical performance. Educational Sciences: Theory & Practice, 16(3), 987-1003.
  • Haciomeroglu, E.S. & Chicken, E. (2012). Visual thinking and gender differences in high school calculus. International Journal of Mathematical Education in Science and Technology, 43(3), 303–313.
  • Haciomeroglu, E. S., Chicken, E., & Dixon, J. (2013). Relationships between gender, cognitive ability, preference, and calculus performance. Mathematical Thinking and Learning, 15, 175-189.
  • Hacıömeroğlu, G. & Hacıömeroğlu, E.S. (2013). Matematik İşlem Testi’nin Türkçe’ye Uyarlama Çalışması ve Öğretmen Adaylarının Matematik Problemlerini Çözme Tercihleri. Kursamsal Eğitim ve Bilim, 6(2), 196-203.
  • Hacıömeroğlu, E.S., Hacıömeroğlu, G., Bukova-Güzel, E., & Kula, S. (2014). Türev ve İntegral Problemlerinin Çözümünde Görsel, Analitik ve Harmonik Çözüm Tercihleri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 22, 108-119.
  • Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91, 684-689.
  • Jencks, S. M., & Peck, D. M. (1972). Mental imagery in mathematics. Arithmetic Teacher, 19, 642–644.
  • Kıncal, R. Y., & Deniz Yazgan, A. (2010). Investigating the formal operational thinking skills of 7th and 8th grade primary school students according to some variables. Elementary Education Online, 9(2), 723-733.
  • Köybaşı, F., Uğurlu, C.T, & Usta, H. G. (2016). Öğretmenlerin Örgütsel Güven Düzeylerine İlişkin Lojistik Yordayıcılık. Gazi Üniversitesi Gazi Eğitim Fakültesi Dergisi, 36(2), 301-321.
  • Krutetskii, V. A. (1976). The Psychology of Mathematical Abilities in School Children. In J. Kilpatrick & I. Wirszup (Eds.), Chicago: The University of Chicago Press.
  • Karasar, N. (2010). Bilimsel Araştırma Yöntemi (21. baskı). Ankara: Nobel Yayın Dağıtım.
  • Köybaşı, F., Uğurlu, C.T. & Usta, H.G. (2016). Öğretmenlerin Örgütsel Güven Düzeylerine İlişkin Lojistik Yordayıcılık. Gazi Üniversitesi Eğitim Fakültesi Dergisi, 36(2), 301-321.
  • Lean, G., & Clements, M. A. K. (1981). Spatial ability, visual imagery, and mathematical performance. Educational Studies in Mathematics, 12, 267–299.
  • Moses, B. E. (1980). The relationship between visual thinking tasks and problem- solving performance. Paper presented at the Annual Meeting of the American Education Research Association, Boston, MA.
  • Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn vandenberg and kuse mental rotations test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58.
  • Presmeg, N. C. (1985). The role of visually mediated processes in high school mathematics: A classroom investigation. Unpublished Ph.D. dissertation, University of Cambridge.
  • Presmeg, N. C. (1986a). Visualization and mathematical giftedness. Educational Studies in Mathematics, 17, 297–311.
  • Presmeg, N. C. (1986b). Visualization in high school mathematics. For the Learning of Mathematics, 6(3), 42–46.
  • Roadrangka, V. (1991). The construction of a Group Assessment of Logical Thinking (GALT). Kasetsant Journal: Social Sciences, 12(2), 148-154.
  • Roadrangka V., Yeany, R.H. & Padilla M.J. (1982). Group test of logical thinking. University of Georgia, Athens, GA.
  • Sağlam, Y., & Bülbül, A. (2012). Üniversite öğrencilerinin görsel ve analitik stratejileri. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 43, 398-409.

  • Samuels, J. (2010). The use of technology in calculus instruction (Doctoral dissertation). Columbia University.
  • Suwarsono, S. (1982). Visual imagery in the mathematical thinking of seventh grade students. Unpublished Ph.D. dissertation, Monash University, Australia.
  • Tartre, L. A. (1990). Spatial Orientation Skill and Mathematical Problem Solving Journal for Research in Mathematics Education, 21(3), 216-229.
  • Tuna, A., Biber, A. Ç. & İncikapı, L. (2013). An Analysis of Mathematics Teacher Candidates’ Logical Thinking Levels: Case Of Turkey. Journal of Educational Instructional Studies, 3(1), 83-91.
  • Turgut, M., & Yenilmez, K. (2012). Matematik Öğretmeni Adaylarının Uzamsal Görselleştirme Becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Turgut, M., & Yılmaz, S. (2012). Relationships among pre–service primary mathematics teachers’ gender, academic success and spatial ability. International Journal of Instruction, 5(2), 5-20.
  • Turgut, M. (2015). Individual differences in the mental rotation skills of Turkish prospective teachers. Issues in the Undergraduate Mathematics of School Teachers: The Journal (Volume 5: Teacher Attributes), Online: http://www.k- 12prep.math.ttu.edu/journal/5.attributes/volume.shtml
  • Ubuz, B. (2007). Interpreting a graph and constructing its derivative graph: Stability and change in students’ conceptions. International Journal of Mathematical Education in Science and Technology, 38(5), 609-637.
  • Van Garderen, D. (2006). Spatial visualization, visual imagery, and mathematical problem solving of students with varying abilities. Journal of Learning Disabilities, 39(6), 496–506.

  • Van Garderen, D., & Montague, M. (2003). Visual‐spatial representation, mathematical problem solving, and students of varying abilities. Learning Disabilities Research & Practice, 18(4), 246–254.

  • Vandenberg, S.G. & Kuse, A.R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual and Motor Skills, 47, 599–604.
  • Yenilmez, K. & Turğut, M. (2012). Matematik Öğretmeni Adaylarının Uzamsal Görselleştirme Becerileri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 243-252.
  • Yıldız, B. (2009). Üç Boyutlu Sanal Ortam ve Somut Materyal Kullanımının Uzamsal Görselleştirme ve Zihinsel Döndürme Becerilerine Etkileri. Yayınlanmamış Yüksek Lisans Tezi. Hacettepe Üniversitesi, Ankara.
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Articles
Authors

Güney Hacıömeroğlu

Erhan Selçuk Hacıömeroğlu

Publication Date June 30, 2017
Acceptance Date June 29, 2016
Published in Issue Year 2017 Volume: 7 Issue: 1

Cite

APA Hacıömeroğlu, G., & Hacıömeroğlu, E. S. (2017). Examining the Relationship between Gender, Spatial Ability, Logical Reasoning Ability, and Preferred Mode of Processing. Adıyaman University Journal of Educational Sciences, 7(1), 116-131. https://doi.org/10.17984/adyuebd.310833

                                                                                                                                                                                                                                                      
by-nc-nd.png?resize=300%2C105&ssl=1 This work is licensed under CC BY-NC-ND 4.0