Research Article
BibTex RIS Cite

Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit

Year 2023, , 202 - 210, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382905

Abstract

Hawthorn (Crataegus) fruit, which is traditionally used as a folk medicine, has been commonly used in pharmaceuticals due to its positive neuro- and cardio-selective effects in recent years. Drying is a practical approach for the long-term storage of hawthorn fruits due to their high annual abundance. This study aimed to compare the effects of oven-drying and freeze-drying methods on the quality, bioactivity, volatiles, and surface structure of hawthorn fruits. Total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity (IC50) were used to compare the bioactive properties of the fresh and dried fruits. The volatiles of fresh and dried hawthorn fruits were determined by GC-MS. The TPC and TFC of freeze-dried fruit extracts were markedly higher than those of fresh and oven-dried fruit extracts (p<0.05). The IC50 value of the freeze-dried fruit extract was 480 µg/mL, considerably lower than the fresh (530 µg/mL) and oven-dried fruit extracts (500 µg/mL) (p<0.05). Freeze-drying preserved hawthorn fruit color with the highest L* value and the lowest a* and b* color values. Many volatile compounds were identified as esters, aldehydes, hydrocarbon, terpene, etc., and their concentration decreased significantly with oven-drying, in contrast to freeze-drying. Scanning electron microscopy showed that the microstructure of freeze-dried samples was relatively homogenous and more uniform while oven-dried samples were unevenly broken pieces. Consequently, freeze-drying was determined as the best method for the dehydration of hawthorn fruits in terms of the bioactive content and natural color of fruits, and volatile preservation.

References

  • [1] Ağlar, E., Sümbül, A., Karakaya, O., Ozturk, B. (2020). Determination of the quality characteristics of naturally growing hawthorn in Suşehri. Acta Scientiarum Polonorum-Hortorum Cultus, 19(1), 61-70.
  • [2] Popović-Djordjević, J.B., Fotirić Akšić, M., Katanić Stanković, J.S., Pantelić, N.Đ., Mihailović, V. (2022). Wild-Growing Species in the Service of Medicine: Environmental Challenges and Sustainable Production. In: Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions, Edited by Aftab, T. Springer, Cham. Switzerland AG, p.49.
  • [3] Jurikova, T., Sochor, J., Rop, O., Mlcek, J., Balla, S., Szekeres, L., Adam, V., Kizek, R. (2012). Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida bunge) fruits. Molecules, 17(12), 14490-14509.
  • [4] Rüzgar, H., Yazıcı, Ş. Alıç meyvesinden sanayiye uygun alıç püresi üretimi. Gıda, 47(3), 447-456.
  • [5] Aral, S. Beşe, A.V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577-584.
  • [6] Gümüşay, Ö.A., Yalçın, M.Y. (2019). Effects of freeze-drying process on antioxidant and some physical properties of cherry laurel and kiwi fruits. Akademik Gıda, 17(1), 9-15.
  • [7] Unal, H.G. Sacilik, K. (2011). Drying characteristics of hawthorn fruits in a convective hot‐air dryer. Journal of Food Processing and Preservation, 35(2), 272-279.
  • [8] Bushra, S., Farooq, A., Muhammad, A., Nazamid, S. (2012). Effect of drying techniques on the total phenolic contents and antioxidant activity of selected fruits. Journal of Medicinal Plants Research, 6(1), 161-167.
  • [9] Keskin Çavdar, H., Yıldırım, Z.İ., Fadıloğlu, S. (2021). Evaluation of the effect of geographical origin and extraction solvents on bioactive and antioxidative properties of Inula viscosa L. grown in Turkey by chemometric approach. European Food Research and Technology, 1-9.
  • [10] Roesler, R., Malta, L.G., Carrasco, L.C., Pastore, G. (2006). Evaluation of the antioxidant properties of the Brazilian cerrado fruit Annona crassiflora (araticum). Journal of Food Science, 71(2), C102-C107.
  • [11] Bhardwaj, R., Pareek, S., Domínguez-Avila, J.A., Gonzalez-Aguilar, G.A., Valero, D., Serrano, M. (2022). An exogenous pre-storage melatonin alleviates chilling injury in some mango fruit cultivars, by acting on the enzymatic and non-enzymatic antioxidant system. Antioxidants, 11(2), 384.
  • [12] Salazar, N.A., Alvarez, C., Orrego, C. E. (2018). Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technology, 36(2), 192-204.
  • [13] Dursun, A., Çalışkan, O., Güler, Z., Bayazit, S., Türkmen, D., Gündüz, K. (2021). Effect of harvest maturity on volatile compounds profiling and eating quality of hawthorn (Crataegus azarolus l.) fruit. Scientia Horticulturae, 288, 110398.
  • [14] Zhao, Y., Wang, Y., Wang, J., Wu, Z., Sun, Z., Tian, T., Niu, H., Jing, L., Fang, Z., Yang, J. Characterization of volatile constituents of Chinese hawthorn (Crataegus spp.) fruit juices. in Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume II. 2015. Springer.
  • [15] Feng, S., Bi, J., Yi, J., Li, X., Li, J., Ma, Y. (2022). Cell wall polysaccharides and mono−/disaccharides as chemical determinants for the texture and hygroscopicity of freeze-dried fruit and vegetable cubes. Food Chemistry, 395, 133574.
  • [16] Izli, N., Yıldız, G., Ünal, H., Işık, E., Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of goldenberry (Physalis peruviana L.). International Journal of Food Science & Technology, 49(1), 9-17.
  • [17] Puente, L., Vega-Gálvez, A., Ah-Hen, K.S., Rodríguez, A., Pasten, A., Poblete, J., Pardo-Orellana, C., Muñoz, M. (2020). Refractance window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT- Food Science and Technology, 131, 109772.
  • [18] Baeghbali, V., Ngadi, M., Niakousari, M. (2020). Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science & Emerging Technologies, 63, 102313.
  • [19] Asami, D.K., Hong, Y.-J., Barrett, D.M., Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241.
  • [20] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K., Tan, S., Lianto, F., Yong, M. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172.
  • [21] Garcìa, L.M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., Guidi, L. (2021). Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. Leaves. Horticulturae, 7(1), 10.
  • [22] Abd Rahman, N.F., Shamsudin, R., Ismail, A., Shah, N.N.A.K., Varith, J. (2018). Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innovative Food Science & Emerging Technologies, 50, 217-225.
  • [23] Hirsch, A.R., Förch, K., Neidhart, S., Wolf, G., Carle, R. (2008). Effects of thermal treatments and storage on pectin methylesterase and peroxidase activity in freshly squeezed orange juice. Journal of Agricultural and Food Chemistry, 56(14), 5691-5699.
  • [24] Kumar, D., Ladaniya, M., Gurjar, M., Kumar, S. (2022). Impact of drying methods on natural antioxidants, phenols and flavanones of immature dropped Citrus sinensis L. Osbeck fruits. Scientific Reports, 12(1), 1-12.
  • [25] Ribarova, F., Atanassova, M., Marinova, D., Ribarova, F., Atanassova, M. (2005). Total phenolics and flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40, 255-260.
  • [26] Shekhar, T.C., Anju, G. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1(4), 244-249.
  • [27] Horvat, R., Chapman Jr, G., Payne, J. (1991). Identification of volatile compounds from ripe mayhaw fruit (Crataegus opaca, C. aestivalis, and C. rufula). Journal of Food Quality, 14(4), 307-312.
  • [28] Nunes, J.C., Lago, M.G., Castelo-Branco, V.N., Oliveira, F.R., Torres, A.G., Perrone, D., Monteiro, M. (2016). Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chemistry, 197, 881-890.
  • [29] Elavarasan, K. Shamasundar, B.A. (2016). Effect of oven drying and freeze drying on the antioxidant and functional properties of protein hydrolysates derived from freshwater fish (Cirrhinus mrigala) using papain enzyme. Journal of Food Science and Technology, 53(2), 1303-1311.
  • [30] Alirezalu, A., Ahmadi, N., Salehi, P., Sonboli, A., Alirezalu, K., Mousavi Khaneghah, A., Barba, F.J., Munekata, P.E., Lorenzo, J.M. (2020). Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods, 9(4), 436.

Dondurarak ve Fırında Kurutmanın Alıç (Crataegus tanacetifolia) Meyvesinin Uçucu Maddeleri, Biyoaktif ve Yapısal Özellikleri Üzerine Etkisi

Year 2023, , 202 - 210, 30.10.2023
https://doi.org/10.24323/akademik-gida.1382905

Abstract

Geleneksel olarak bir halk ilacı olarak kullanılan alıç (Crataegus) günümüzde pozitif nöro- ve kardiyo-selektif etkileri nedeniyle farmasötiklerde yaygın olarak kullanılmaktadır. Kurutma alıç meyvesinin yıllık bol miktarda olması nedeniyle uzun süreli depolama için uygun bir yaklaşımdır. Bu çalışmanın amacı, fırında kurutma ve dondurarak kurutmanın alıç meyvelerinin kalitesi, biyoaktivitesi, uçucu bileşenleri ve yüzey yapısı üzerindeki etkilerini karşılaştırmaktır. Taze ve kurutulmuş meyvelerin biyoaktif özelliklerini karşılaştırmak için toplam fenolik içeriği (TPC), toplam flavonoid içeriği (TFC) ve antioksidan aktiviteleri (IC50) kullanılmıştır. Taze ve kurutulmuş alıçların uçucu madde içeriği GC-MS kullanılarak incelenmiştir. Dondurularak kurutulmuş meyve özütlerinin TPC ve TFC değerleri, taze ve fırında kurutulmuş meyvelerinkinden belirgin şekilde daha yüksek bulunmuştur (p<0.05). Dondurularak kurutulmuş meyve özütünün IC50 değeri 480 µg/mL olup, taze (530 µg/mL) ve fırında kurutulmuş (500 µg/mL) meyve özütünden oldukça düşük bulunmuştur (p<0.05). Dondurarak kurutma en yüksek L* değeri ve en düşük a* ve b* değerleri ile alıç rengini koruyabilmiştir. Birçok uçucu bileşik ester, aldehit, hidrokarbon, terpen vb. olarak tanımlanmış ve bunların konsantrasyonu, dondurarak kurutmanın aksine fırında kurutma yöntemiyle önemli ölçüde azalmıştır. Taramalı elektron mikroskobu, dondurularak kurutulmuş numunelerin mikro yapısının nispeten homojen ve daha düzgün olduğunu, fırında kurutulmuş numunelerin ise düzensiz kırılmış parçalar olduğunu gösterdi. Sonuç olarak, alıçta biyoaktif içerik, doğal renk ve uçucu koruma açısından en iyi dehidrasyon yöntemi dondurarak kurutma olmuştur.

References

  • [1] Ağlar, E., Sümbül, A., Karakaya, O., Ozturk, B. (2020). Determination of the quality characteristics of naturally growing hawthorn in Suşehri. Acta Scientiarum Polonorum-Hortorum Cultus, 19(1), 61-70.
  • [2] Popović-Djordjević, J.B., Fotirić Akšić, M., Katanić Stanković, J.S., Pantelić, N.Đ., Mihailović, V. (2022). Wild-Growing Species in the Service of Medicine: Environmental Challenges and Sustainable Production. In: Environmental Challenges and Medicinal Plants. Environmental Challenges and Solutions, Edited by Aftab, T. Springer, Cham. Switzerland AG, p.49.
  • [3] Jurikova, T., Sochor, J., Rop, O., Mlcek, J., Balla, S., Szekeres, L., Adam, V., Kizek, R. (2012). Polyphenolic profile and biological activity of Chinese hawthorn (Crataegus pinnatifida bunge) fruits. Molecules, 17(12), 14490-14509.
  • [4] Rüzgar, H., Yazıcı, Ş. Alıç meyvesinden sanayiye uygun alıç püresi üretimi. Gıda, 47(3), 447-456.
  • [5] Aral, S. Beşe, A.V. (2016). Convective drying of hawthorn fruit (Crataegus spp.): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity. Food Chemistry, 210, 577-584.
  • [6] Gümüşay, Ö.A., Yalçın, M.Y. (2019). Effects of freeze-drying process on antioxidant and some physical properties of cherry laurel and kiwi fruits. Akademik Gıda, 17(1), 9-15.
  • [7] Unal, H.G. Sacilik, K. (2011). Drying characteristics of hawthorn fruits in a convective hot‐air dryer. Journal of Food Processing and Preservation, 35(2), 272-279.
  • [8] Bushra, S., Farooq, A., Muhammad, A., Nazamid, S. (2012). Effect of drying techniques on the total phenolic contents and antioxidant activity of selected fruits. Journal of Medicinal Plants Research, 6(1), 161-167.
  • [9] Keskin Çavdar, H., Yıldırım, Z.İ., Fadıloğlu, S. (2021). Evaluation of the effect of geographical origin and extraction solvents on bioactive and antioxidative properties of Inula viscosa L. grown in Turkey by chemometric approach. European Food Research and Technology, 1-9.
  • [10] Roesler, R., Malta, L.G., Carrasco, L.C., Pastore, G. (2006). Evaluation of the antioxidant properties of the Brazilian cerrado fruit Annona crassiflora (araticum). Journal of Food Science, 71(2), C102-C107.
  • [11] Bhardwaj, R., Pareek, S., Domínguez-Avila, J.A., Gonzalez-Aguilar, G.A., Valero, D., Serrano, M. (2022). An exogenous pre-storage melatonin alleviates chilling injury in some mango fruit cultivars, by acting on the enzymatic and non-enzymatic antioxidant system. Antioxidants, 11(2), 384.
  • [12] Salazar, N.A., Alvarez, C., Orrego, C. E. (2018). Optimization of freezing parameters for freeze-drying mango (Mangifera indica L.) slices. Drying Technology, 36(2), 192-204.
  • [13] Dursun, A., Çalışkan, O., Güler, Z., Bayazit, S., Türkmen, D., Gündüz, K. (2021). Effect of harvest maturity on volatile compounds profiling and eating quality of hawthorn (Crataegus azarolus l.) fruit. Scientia Horticulturae, 288, 110398.
  • [14] Zhao, Y., Wang, Y., Wang, J., Wu, Z., Sun, Z., Tian, T., Niu, H., Jing, L., Fang, Z., Yang, J. Characterization of volatile constituents of Chinese hawthorn (Crataegus spp.) fruit juices. in Advances in Applied Biotechnology: Proceedings of the 2nd International Conference on Applied Biotechnology (ICAB 2014)-Volume II. 2015. Springer.
  • [15] Feng, S., Bi, J., Yi, J., Li, X., Li, J., Ma, Y. (2022). Cell wall polysaccharides and mono−/disaccharides as chemical determinants for the texture and hygroscopicity of freeze-dried fruit and vegetable cubes. Food Chemistry, 395, 133574.
  • [16] Izli, N., Yıldız, G., Ünal, H., Işık, E., Uylaşer, V. (2014). Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of goldenberry (Physalis peruviana L.). International Journal of Food Science & Technology, 49(1), 9-17.
  • [17] Puente, L., Vega-Gálvez, A., Ah-Hen, K.S., Rodríguez, A., Pasten, A., Poblete, J., Pardo-Orellana, C., Muñoz, M. (2020). Refractance window drying of goldenberry (Physalis peruviana L.) pulp: A comparison of quality characteristics with respect to other drying techniques. LWT- Food Science and Technology, 131, 109772.
  • [18] Baeghbali, V., Ngadi, M., Niakousari, M. (2020). Effects of ultrasound and infrared assisted conductive hydro-drying, freeze-drying and oven drying on physicochemical properties of okra slices. Innovative Food Science & Emerging Technologies, 63, 102313.
  • [19] Asami, D.K., Hong, Y.-J., Barrett, D.M., Mitchell, A.E. (2003). Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. Journal of Agricultural and Food Chemistry, 51(5), 1237-1241.
  • [20] Chan, E.W.C., Lim, Y.Y., Wong, S.K., Lim, K., Tan, S., Lianto, F., Yong, M. (2009). Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chemistry, 113(1), 166-172.
  • [21] Garcìa, L.M., Ceccanti, C., Negro, C., De Bellis, L., Incrocci, L., Pardossi, A., Guidi, L. (2021). Effect of drying methods on phenolic compounds and antioxidant activity of Urtica dioica L. Leaves. Horticulturae, 7(1), 10.
  • [22] Abd Rahman, N.F., Shamsudin, R., Ismail, A., Shah, N.N.A.K., Varith, J. (2018). Effects of drying methods on total phenolic contents and antioxidant capacity of the pomelo (Citrus grandis (L.) Osbeck) peels. Innovative Food Science & Emerging Technologies, 50, 217-225.
  • [23] Hirsch, A.R., Förch, K., Neidhart, S., Wolf, G., Carle, R. (2008). Effects of thermal treatments and storage on pectin methylesterase and peroxidase activity in freshly squeezed orange juice. Journal of Agricultural and Food Chemistry, 56(14), 5691-5699.
  • [24] Kumar, D., Ladaniya, M., Gurjar, M., Kumar, S. (2022). Impact of drying methods on natural antioxidants, phenols and flavanones of immature dropped Citrus sinensis L. Osbeck fruits. Scientific Reports, 12(1), 1-12.
  • [25] Ribarova, F., Atanassova, M., Marinova, D., Ribarova, F., Atanassova, M. (2005). Total phenolics and flavonoids in Bulgarian fruits and vegetables. Journal of the University of Chemical Technology and Metallurgy, 40, 255-260.
  • [26] Shekhar, T.C., Anju, G. (2014). Antioxidant activity by DPPH radical scavenging method of Ageratum conyzoides Linn. leaves. American Journal of Ethnomedicine, 1(4), 244-249.
  • [27] Horvat, R., Chapman Jr, G., Payne, J. (1991). Identification of volatile compounds from ripe mayhaw fruit (Crataegus opaca, C. aestivalis, and C. rufula). Journal of Food Quality, 14(4), 307-312.
  • [28] Nunes, J.C., Lago, M.G., Castelo-Branco, V.N., Oliveira, F.R., Torres, A.G., Perrone, D., Monteiro, M. (2016). Effect of drying method on volatile compounds, phenolic profile and antioxidant capacity of guava powders. Food Chemistry, 197, 881-890.
  • [29] Elavarasan, K. Shamasundar, B.A. (2016). Effect of oven drying and freeze drying on the antioxidant and functional properties of protein hydrolysates derived from freshwater fish (Cirrhinus mrigala) using papain enzyme. Journal of Food Science and Technology, 53(2), 1303-1311.
  • [30] Alirezalu, A., Ahmadi, N., Salehi, P., Sonboli, A., Alirezalu, K., Mousavi Khaneghah, A., Barba, F.J., Munekata, P.E., Lorenzo, J.M. (2020). Physicochemical characterization, antioxidant activity, and phenolic compounds of hawthorn (Crataegus spp.) fruits species for potential use in food applications. Foods, 9(4), 436.
There are 30 citations in total.

Details

Primary Language English
Subjects Food Engineering
Journal Section Research Papers
Authors

Hasene Keskin Çavdar 0000-0001-5230-5904

Eda Adal 0000-0003-1258-806X

Publication Date October 30, 2023
Submission Date March 24, 2023
Published in Issue Year 2023

Cite

APA Keskin Çavdar, H., & Adal, E. (2023). Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit. Akademik Gıda, 21(3), 202-210. https://doi.org/10.24323/akademik-gida.1382905
AMA Keskin Çavdar H, Adal E. Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit. Akademik Gıda. October 2023;21(3):202-210. doi:10.24323/akademik-gida.1382905
Chicago Keskin Çavdar, Hasene, and Eda Adal. “Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus Tanacetifolia) Fruit”. Akademik Gıda 21, no. 3 (October 2023): 202-10. https://doi.org/10.24323/akademik-gida.1382905.
EndNote Keskin Çavdar H, Adal E (October 1, 2023) Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit. Akademik Gıda 21 3 202–210.
IEEE H. Keskin Çavdar and E. Adal, “Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit”, Akademik Gıda, vol. 21, no. 3, pp. 202–210, 2023, doi: 10.24323/akademik-gida.1382905.
ISNAD Keskin Çavdar, Hasene - Adal, Eda. “Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus Tanacetifolia) Fruit”. Akademik Gıda 21/3 (October 2023), 202-210. https://doi.org/10.24323/akademik-gida.1382905.
JAMA Keskin Çavdar H, Adal E. Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit. Akademik Gıda. 2023;21:202–210.
MLA Keskin Çavdar, Hasene and Eda Adal. “Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus Tanacetifolia) Fruit”. Akademik Gıda, vol. 21, no. 3, 2023, pp. 202-10, doi:10.24323/akademik-gida.1382905.
Vancouver Keskin Çavdar H, Adal E. Effect of Freeze-Drying and Oven-Drying on Volatiles, Bioactive and Structural Properties of Hawthorn (Crataegus tanacetifolia) Fruit. Akademik Gıda. 2023;21(3):202-10.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).