Research Article
BibTex RIS Cite

Investigation of Drying of Apple Slices in Carbon Fiber Assisted Cabin Dryer at Different Temperatures: Drying Characteristics and Performance Evaluation

Year 2017, Volume: 15 Issue: 4, 355 - 367, 24.12.2017
https://doi.org/10.24323/akademik-gida.370103

Abstract

Drying behaviour of apple slices in carbon fiber assisted cabin
dryer

(CFACD
) was investigated, and performance
evaluation of the process was conducted. The compatibilities of fourteen
different thin layer drying models
to the
experimental data were examined. The highest corrected coefficient of
determination, the
lowest reduced chi-square and the
lowest root mean square error were chosen as the model compatibility criterion.
Both
"Two term " and "Lewis" models for 60°C and "Diffusion approach" model for 70 and 80°C
was determined as best models describing the drying behavior. Effective diffusion
coefficient (Deff) was found between
2.06x10-10 and 4.56x10-10 m2/s. For the temperature between
60-80°C, energy efficiency was in the range of
10.51-13.12% while exergy efficiency values were between 9.44-11.64%. The specific moisture removal rate of apple
slices in KFKK was found as
4.44*10-5±0.00, 4.85*10-5±0.00,
5.63*10-5±0.00 kg
removed water/kJ for the drying temperatures of 60, 70 and 80°C, respectively.

References

  • [1] Tarhan, S., Ergüneş, G., Güneş, M., Mutlu, A., 2009. Farklı Kurutma Koşullarının Amasya Elmasının Kuruma Süresi ve Kalitesi Üzerine Etkileri. Tarım Bilimleri Araştırma Dergisi 2(2): 1-6.
  • [2] TÜİK. Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18706 (08.01.2017).
  • [3] Doymaz, I., Tugrul, N., Pala, M., 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering 77(3): 559–565.
  • [4] Erbay, Z., Icier, F., 2010. A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition 50(5): 441-464.
  • [5] Aghbashlo, M., Kianmehr, M.H., Hassan-Beygi, SR., 2010. Drying and rehydration characteristics of sour cherry (Prunus cerasus l.). Journal of Food Processing and Preservation 34(3): 351–365.
  • [6] Ertekin, C,. Yaldiz O,. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering 63(3): 349-359.
  • [7] Adom, K.K., Dzogbefia, V.P., Ellis, W.O., 1997. Combined effect of drying time thickness on the solar drying of okra. Journal of the Science of Food and Agriculture 73(3): 315–320.
  • [8] Midilli, A., 2001. Determination of pistachio drying behaviour and conditions in solar drying system. International Journal of Energy Research 25(8): 715–725.
  • [9] Doymaz, I., Pala, M., 2002. Hot-air drying characteristics of red pepper. Journal of Food Engineering 55(4): 331–335.
  • [10] Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A., 2013. A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews 22: 1-22.
  • [11] Menges, H.O., Ertekin, C., 2006. Mathematical modeling of thin layer drying of Golden apples. Journal of Food Engineering 77(1): 119–125.
  • [12] Akpinar, E.K., 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering 73(1):75–84.
  • [13] Sacilik, K., Elicin, A.K., 2006. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering 73(3): 281-289.
  • [14] Akpinar, E.K., Bicer, Y., Midilli, A., 2003. Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering 26(6): 515-541.
  • [15] Çelen, S., Kahveci, K., 2013. Microwave drying behaviour of apple slices. Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process Mechanical Engineering 227(4): 264-272.
  • [16] Toğrul, H., 2005. Simple modeling of infrared drying of fresh apple slices. Journal of Food Engineering 71(3): 311-323.
  • [17] Blanco-Cano, L., Soria-Verdugo, A., Garcia-Gutierrez, L.M., Ruiz-Rivas, U., 2016. Modeling the thin-layer drying process of Granny Smith apples: Application in an indirect solar dryer. Applied Thermal Engineering 108: 1086-1094.
  • [18] Aktaş, M., Ceylan, İ., Yilmaz, S., 2009. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 239(1): 266-275.
  • [19] Çakmak, K., 2013. Drying ovens for fruits and vegetables with a possibility of possibility of solar panel integration. Turkish Patent No:12 TR 97NA 3PJR. Turkish Patent Institude.
  • [20] Icier, F., Cokgezme O.F., Sabanci, S., 2016. Alternative thawing methods for the blanched/non‐blanched potato cubes: microwave, ohmic, and carbon fiber plate assisted cabin thawing. Journal of Food Process Engineering (doi:10.1111/jfpe.12403) (Basımda).
  • [21] Çokgezme, O.F., Çevik, M., İçier, F., Sabancı, S., Tezcan, D., Çakmak, K., 2015. Drying of licorice in carbon fiber assisted drier”. The 3rd International Symposium on Traditional Foods from Adriatic to Caucasus, October 01-04, 2015, Sarajevo, Bosnia and Herzegovina, Book of Proceedings, 508p.
  • [22] Özmen, D., 2016. Meyankökünün kurutulmasında alternatif kurutma yöntemlerinin etkilerinin incelenmesi, kurutma kinetiğinin ve işlem performansının değerlendirilmesi. Lisans Bitirme Tezi, Ege Üniversitesi, İzmir, Türkiye.
  • [23] Doğan, K., Güneş, D., Yılmaz, S., 2015. Alternatif kurutma sistemlerinin enerjetik ve ekserjetik değerlendirmesi. Lisans Bitirme Tezi, Ege Üniversitesi, İzmir, Türkiye.
  • [24] Cokgezme, O.F., Cevik, M., Doner, D., Sabanci, S., 2016. Performance Evaluation of Carbon Fiber Assisted Cabin Dryer during the Drying Process of Strawberry Slices. 3rd International Conference On Thermophysical And Mechanical Properties Of Advanced Materials, September 1 – 3, 2016, Izmir, Turkey, Book of Proceedings, 25p.
  • [25] Midilli, A., Kucuk, H., 2003. Energy and exergy analyses of solar drying process of pistachio. Energy 28(6): 539-556.
  • [26] Akpinar, E.K., 2004. Energy and exergy analyses of drying of red pepper slices in a convective type dryer. International Communications in Heat and Mass Transfer 31(8): 1165-1176.
  • [27] Akpinar, E., Midilli, A., Bicer, Y., 2005. Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management 46(15): 2530-2552.
  • [28] Akpinar, E., Midilli, A., Bicer, Y., 2005. Thermodynamic analysis of the apple drying process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 219(1): 1-14.
  • [29] Akpinar, E., Midilli, A., Bicer, Y., 2006. The first and second law analyses of thermodynamic of pumpkin drying process. Journal of Food Engineering 72(4): 320-331.
  • [30] Ozgener, L., Ozgener, O., 2006. Exergy analysis of industrial pasta drying process. International Journal of Energy Research 30(15): 1323-1335.
  • [31] Ozgener, L., Ozgener, O., 2009. Exergy analysis of drying process: An experimental study in solar greenhouse. Drying Technology 27(4): 580-586.
  • [32] Syahrul, S., Dincer, I., Hamdullahpur, F., 2003.Thermodynamic modeling of fluidized bed drying of moist particles. International Journal of Thermal Sciences 42(7): 691-701.
  • [33] Dincer, I., Sahin, A.Z., 2004. A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer 47(4): 645-652.
  • [34] Kuzgunkaya, E.H., Hepbasli, A., 2007. Exergetic performance assessment of a ground-source heat pump drying system. International Journal of Energy Research 31(8): 760-777.
  • [35] Liu, Y., Zhao, Y., Feng, X., 2008. Exergy analysis for a freeze-drying process. Applied Thermal Engineering 28(7): 675-690.
  • [36] Erbay, Z., Icier, F., 2011. Energy and exergy analyses on drying of olive leaves (Olea europaea L.) in tray drier. Journal of Food Process Engineering 34(6): 2105-2123.
  • [37] Çolak, N., Kuzgunkaya, E., Hepbasli, A., 2008.Exergetic assessment of drying of mint leaves in a heat pump dryer. Journal of Food Process Engineering 31(3): 281-298.
  • [38] Corzo, O., Bracho, N., Vásquez, A., Pereira, A., 2008. Energy and exergy analyses of thin layer drying of coroba slices. Journal of Food Engineering 86(2): 151-161.
  • [39] Nazghelichi, T., Aghbashlo, M., Kianmehr, M.H., 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture 75(1): 84–91.
  • [40] Çengel, Y.A., Boles, M.A., 2006. Thermodynamics: an Engineering Approach (5th Ed.). McGraw Hill, New York, NY.
  • [41] Yildiz, H., Icier, F., Eroglu, S., Dagci, G., 2016. Effects of electrical pretreatment conditions on osmotic dehydration of apple slices: Experimental investigation and simulation. Innovative Food Science and Emerging Technologies 35: 149-159.
  • [42] Singh, R.P., Heldman, D.R., 2009. Introduction to food engineering (4th ed.). Academic Press, London, UK, 777p.
  • [43] AOAC, 1990. Dry matter content. In Official Methods of Analysis of the Association of Official Analytical Chemists, Method No. 920.151 (K.Helrich, ed.) AOAC, Inc., Washington, DC.
  • [44] Geankoplis, J.C., 2003. Transport Processes and Separation Process Principles (Includes Unit Operations)(4th Ed.). Prentice Hall Press, 410-512p.
  • [45] Kaleta, A., Górnicki, K., 2010. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. International Journal of Food Science and Technology 45(5): 891-898.
  • [46] Lewis, W.K., 1921. The Rate of Drying of Solid Materials. The Journal of Industrial and Engineering Chemistry 13(5): 427-432.
  • [47] Page, G.E., 1949. Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers. M.S.Thesis, Purdue University, West Lafayette, Indiana.
  • [48] White, G.M., Bridges, T.C., Loewer, O.J., Ross, I.J., 1978. Seed coat damage in thin layer drying of soybeans as affected by drying conditions. ASAE paper no. 3052, ASAE St Joseph MI.
  • [49] Henderson, S.M., Pabis, S.,1961. Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research 6(3): 169–174.
  • [50] Chandra, P.K., Singh, R.P., 1995. Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, FL, 163–167.
  • [51] Midilli, A., Kucuk, H., Yapar, Z., 2002. A new model for single-layer drying. Drying Technology 20(7):1503–1513.
  • [52] Henderson, S.M., 1974. Progress in developing the thin layer drying equation. Transaction of the ASAE 17(6): 1167–1172.
  • [53] Sharaf-Eldeen, Y.I., Blaisdell, J.L., Hamdy, M.Y., 1980. A model for ear corn drying. Transaction of the ASAE, 23(5): 1261–1271.
  • [54] Kaseem, A.S., 1998. Comparative studies on thin layer drying models for wheat”. In 13th International Congress on Agricultural Engineering, February 2–6, Morocco.
  • [55] Verma, L.R., Bucklin, R.A., Ednan, J.B., Wratten, F.T., 1985. Effects of drying air parameters on rice drying models. Transaction of the ASAE 28(1): 296– 301.
  • [56] Karathanos, V.T., 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering 39(4): 337–344.
  • [57] Kaleta, A., Gornicki, K., Winiczenko, R., Chojnacka, A., 2013. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management 67: 179–185.
  • [58] Rahman, S., 1995. Food Properties Handbook. CRC Press: Boca Raton, FL, USA, 225–271p.
  • [59] Hammond, G.P., Stapleton, A.J., 2001. Exergy analysis of the United Kingdom energy system. Proceedings of the Institution of Mechanical Engineers 215 (2): 141–162.

Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi

Year 2017, Volume: 15 Issue: 4, 355 - 367, 24.12.2017
https://doi.org/10.24323/akademik-gida.370103

Abstract

Elma dilimlerinin karbon fiber destekli kabin kurutucuda (KFKK) 60, 70
ve 80°C’de kuruma davranışı incelenmiş ve işlemin performans değerlendirmesi
yapılmıştır. On dört farklı ince tabaka kuruma modelinin deneysel verilere
uyumluluğu istatistiksel olarak incelenmiştir. Model uyumluluğu kriteri olarak
en yüksek düzeltilmiş belirleme katsayısı, en düşük indirgenmiş ki-kare ve en
düşük hata kareleri ortalamasının karekökü seçilmiştir. “İki terimli” ve “Lewis”
modelleri 60°C, “difüzyon yaklaşım” modeli ise 70 ve 80°C kurutma
sıcaklıklarında kuruma davranışını en iyi ifade eden modeller olarak belirlenmiştir.
Efektif difüzyon katsayısı (D
eff) 2.06x10-10 ve 4.56x10-10
m
2/s değerleri arasında bulunmuştur. 60-80°C kurutma sıcaklıklarında,
işlemin enerji verimliliğinin %10.51-13.12, ekserji verimliliğinin %9.44-11.64 arasında
olduğu tespit edilmiştir. Elma örneklerinin KFKK’da özgül nem kaybı hızı 60, 70
ve 80°C kurutma sıcaklıkları için sırasıyla 4.44*10
-5±0.00, 4.85*10-5±0.00,
5.63*10
-5±0.00 kg buharlaşan su/kJ olarak belirlenmiştir.

References

  • [1] Tarhan, S., Ergüneş, G., Güneş, M., Mutlu, A., 2009. Farklı Kurutma Koşullarının Amasya Elmasının Kuruma Süresi ve Kalitesi Üzerine Etkileri. Tarım Bilimleri Araştırma Dergisi 2(2): 1-6.
  • [2] TÜİK. Bitkisel Üretim İstatistikleri. http://www.tuik.gov.tr/PreHaberBultenleri.do?id=18706 (08.01.2017).
  • [3] Doymaz, I., Tugrul, N., Pala, M., 2006. Drying characteristics of dill and parsley leaves. Journal of Food Engineering 77(3): 559–565.
  • [4] Erbay, Z., Icier, F., 2010. A review of thin layer drying of foods: theory, modeling, and experimental results. Critical Reviews in Food Science and Nutrition 50(5): 441-464.
  • [5] Aghbashlo, M., Kianmehr, M.H., Hassan-Beygi, SR., 2010. Drying and rehydration characteristics of sour cherry (Prunus cerasus l.). Journal of Food Processing and Preservation 34(3): 351–365.
  • [6] Ertekin, C,. Yaldiz O,. 2004. Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering 63(3): 349-359.
  • [7] Adom, K.K., Dzogbefia, V.P., Ellis, W.O., 1997. Combined effect of drying time thickness on the solar drying of okra. Journal of the Science of Food and Agriculture 73(3): 315–320.
  • [8] Midilli, A., 2001. Determination of pistachio drying behaviour and conditions in solar drying system. International Journal of Energy Research 25(8): 715–725.
  • [9] Doymaz, I., Pala, M., 2002. Hot-air drying characteristics of red pepper. Journal of Food Engineering 55(4): 331–335.
  • [10] Aghbashlo, M., Mobli, H., Rafiee, S., Madadlou, A., 2013. A review on exergy analysis of drying processes and systems. Renewable and Sustainable Energy Reviews 22: 1-22.
  • [11] Menges, H.O., Ertekin, C., 2006. Mathematical modeling of thin layer drying of Golden apples. Journal of Food Engineering 77(1): 119–125.
  • [12] Akpinar, E.K., 2006. Determination of suitable thin layer drying curve model for some vegetables and fruits. Journal of Food Engineering 73(1):75–84.
  • [13] Sacilik, K., Elicin, A.K., 2006. The thin layer drying characteristics of organic apple slices. Journal of Food Engineering 73(3): 281-289.
  • [14] Akpinar, E.K., Bicer, Y., Midilli, A., 2003. Modeling and experimental study on drying of apple slices in a convective cyclone dryer. Journal of Food Process Engineering 26(6): 515-541.
  • [15] Çelen, S., Kahveci, K., 2013. Microwave drying behaviour of apple slices. Proceedings of the Institution of Mechanical Engineers, Part E, Journal of Process Mechanical Engineering 227(4): 264-272.
  • [16] Toğrul, H., 2005. Simple modeling of infrared drying of fresh apple slices. Journal of Food Engineering 71(3): 311-323.
  • [17] Blanco-Cano, L., Soria-Verdugo, A., Garcia-Gutierrez, L.M., Ruiz-Rivas, U., 2016. Modeling the thin-layer drying process of Granny Smith apples: Application in an indirect solar dryer. Applied Thermal Engineering 108: 1086-1094.
  • [18] Aktaş, M., Ceylan, İ., Yilmaz, S., 2009. Determination of drying characteristics of apples in a heat pump and solar dryer. Desalination 239(1): 266-275.
  • [19] Çakmak, K., 2013. Drying ovens for fruits and vegetables with a possibility of possibility of solar panel integration. Turkish Patent No:12 TR 97NA 3PJR. Turkish Patent Institude.
  • [20] Icier, F., Cokgezme O.F., Sabanci, S., 2016. Alternative thawing methods for the blanched/non‐blanched potato cubes: microwave, ohmic, and carbon fiber plate assisted cabin thawing. Journal of Food Process Engineering (doi:10.1111/jfpe.12403) (Basımda).
  • [21] Çokgezme, O.F., Çevik, M., İçier, F., Sabancı, S., Tezcan, D., Çakmak, K., 2015. Drying of licorice in carbon fiber assisted drier”. The 3rd International Symposium on Traditional Foods from Adriatic to Caucasus, October 01-04, 2015, Sarajevo, Bosnia and Herzegovina, Book of Proceedings, 508p.
  • [22] Özmen, D., 2016. Meyankökünün kurutulmasında alternatif kurutma yöntemlerinin etkilerinin incelenmesi, kurutma kinetiğinin ve işlem performansının değerlendirilmesi. Lisans Bitirme Tezi, Ege Üniversitesi, İzmir, Türkiye.
  • [23] Doğan, K., Güneş, D., Yılmaz, S., 2015. Alternatif kurutma sistemlerinin enerjetik ve ekserjetik değerlendirmesi. Lisans Bitirme Tezi, Ege Üniversitesi, İzmir, Türkiye.
  • [24] Cokgezme, O.F., Cevik, M., Doner, D., Sabanci, S., 2016. Performance Evaluation of Carbon Fiber Assisted Cabin Dryer during the Drying Process of Strawberry Slices. 3rd International Conference On Thermophysical And Mechanical Properties Of Advanced Materials, September 1 – 3, 2016, Izmir, Turkey, Book of Proceedings, 25p.
  • [25] Midilli, A., Kucuk, H., 2003. Energy and exergy analyses of solar drying process of pistachio. Energy 28(6): 539-556.
  • [26] Akpinar, E.K., 2004. Energy and exergy analyses of drying of red pepper slices in a convective type dryer. International Communications in Heat and Mass Transfer 31(8): 1165-1176.
  • [27] Akpinar, E., Midilli, A., Bicer, Y., 2005. Energy and exergy of potato drying process via cyclone type dryer. Energy Conversion and Management 46(15): 2530-2552.
  • [28] Akpinar, E., Midilli, A., Bicer, Y., 2005. Thermodynamic analysis of the apple drying process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 219(1): 1-14.
  • [29] Akpinar, E., Midilli, A., Bicer, Y., 2006. The first and second law analyses of thermodynamic of pumpkin drying process. Journal of Food Engineering 72(4): 320-331.
  • [30] Ozgener, L., Ozgener, O., 2006. Exergy analysis of industrial pasta drying process. International Journal of Energy Research 30(15): 1323-1335.
  • [31] Ozgener, L., Ozgener, O., 2009. Exergy analysis of drying process: An experimental study in solar greenhouse. Drying Technology 27(4): 580-586.
  • [32] Syahrul, S., Dincer, I., Hamdullahpur, F., 2003.Thermodynamic modeling of fluidized bed drying of moist particles. International Journal of Thermal Sciences 42(7): 691-701.
  • [33] Dincer, I., Sahin, A.Z., 2004. A new model for thermodynamic analysis of a drying process. International Journal of Heat and Mass Transfer 47(4): 645-652.
  • [34] Kuzgunkaya, E.H., Hepbasli, A., 2007. Exergetic performance assessment of a ground-source heat pump drying system. International Journal of Energy Research 31(8): 760-777.
  • [35] Liu, Y., Zhao, Y., Feng, X., 2008. Exergy analysis for a freeze-drying process. Applied Thermal Engineering 28(7): 675-690.
  • [36] Erbay, Z., Icier, F., 2011. Energy and exergy analyses on drying of olive leaves (Olea europaea L.) in tray drier. Journal of Food Process Engineering 34(6): 2105-2123.
  • [37] Çolak, N., Kuzgunkaya, E., Hepbasli, A., 2008.Exergetic assessment of drying of mint leaves in a heat pump dryer. Journal of Food Process Engineering 31(3): 281-298.
  • [38] Corzo, O., Bracho, N., Vásquez, A., Pereira, A., 2008. Energy and exergy analyses of thin layer drying of coroba slices. Journal of Food Engineering 86(2): 151-161.
  • [39] Nazghelichi, T., Aghbashlo, M., Kianmehr, M.H., 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computers and Electronics in Agriculture 75(1): 84–91.
  • [40] Çengel, Y.A., Boles, M.A., 2006. Thermodynamics: an Engineering Approach (5th Ed.). McGraw Hill, New York, NY.
  • [41] Yildiz, H., Icier, F., Eroglu, S., Dagci, G., 2016. Effects of electrical pretreatment conditions on osmotic dehydration of apple slices: Experimental investigation and simulation. Innovative Food Science and Emerging Technologies 35: 149-159.
  • [42] Singh, R.P., Heldman, D.R., 2009. Introduction to food engineering (4th ed.). Academic Press, London, UK, 777p.
  • [43] AOAC, 1990. Dry matter content. In Official Methods of Analysis of the Association of Official Analytical Chemists, Method No. 920.151 (K.Helrich, ed.) AOAC, Inc., Washington, DC.
  • [44] Geankoplis, J.C., 2003. Transport Processes and Separation Process Principles (Includes Unit Operations)(4th Ed.). Prentice Hall Press, 410-512p.
  • [45] Kaleta, A., Górnicki, K., 2010. Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. International Journal of Food Science and Technology 45(5): 891-898.
  • [46] Lewis, W.K., 1921. The Rate of Drying of Solid Materials. The Journal of Industrial and Engineering Chemistry 13(5): 427-432.
  • [47] Page, G.E., 1949. Factors ınfluencing the maximum rate of air drying shelled corn in thin-layers. M.S.Thesis, Purdue University, West Lafayette, Indiana.
  • [48] White, G.M., Bridges, T.C., Loewer, O.J., Ross, I.J., 1978. Seed coat damage in thin layer drying of soybeans as affected by drying conditions. ASAE paper no. 3052, ASAE St Joseph MI.
  • [49] Henderson, S.M., Pabis, S.,1961. Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Engineering Research 6(3): 169–174.
  • [50] Chandra, P.K., Singh, R.P., 1995. Applied Numerical Methods for Food and Agricultural Engineers. CRC Press, Boca Raton, FL, 163–167.
  • [51] Midilli, A., Kucuk, H., Yapar, Z., 2002. A new model for single-layer drying. Drying Technology 20(7):1503–1513.
  • [52] Henderson, S.M., 1974. Progress in developing the thin layer drying equation. Transaction of the ASAE 17(6): 1167–1172.
  • [53] Sharaf-Eldeen, Y.I., Blaisdell, J.L., Hamdy, M.Y., 1980. A model for ear corn drying. Transaction of the ASAE, 23(5): 1261–1271.
  • [54] Kaseem, A.S., 1998. Comparative studies on thin layer drying models for wheat”. In 13th International Congress on Agricultural Engineering, February 2–6, Morocco.
  • [55] Verma, L.R., Bucklin, R.A., Ednan, J.B., Wratten, F.T., 1985. Effects of drying air parameters on rice drying models. Transaction of the ASAE 28(1): 296– 301.
  • [56] Karathanos, V.T., 1999. Determination of water content of dried fruits by drying kinetics. Journal of Food Engineering 39(4): 337–344.
  • [57] Kaleta, A., Gornicki, K., Winiczenko, R., Chojnacka, A., 2013. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management 67: 179–185.
  • [58] Rahman, S., 1995. Food Properties Handbook. CRC Press: Boca Raton, FL, USA, 225–271p.
  • [59] Hammond, G.P., Stapleton, A.J., 2001. Exergy analysis of the United Kingdom energy system. Proceedings of the Institution of Mechanical Engineers 215 (2): 141–162.
There are 59 citations in total.

Details

Subjects Food Engineering
Journal Section Research Papers
Authors

Serpil Pekdoğan Göztok This is me 0000-0002-6589-1217

Filiz İçier 0000-0002-9555-3390

Publication Date December 24, 2017
Submission Date February 15, 2017
Published in Issue Year 2017 Volume: 15 Issue: 4

Cite

APA Pekdoğan Göztok, S., & İçier, F. (2017). Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi. Akademik Gıda, 15(4), 355-367. https://doi.org/10.24323/akademik-gida.370103
AMA Pekdoğan Göztok S, İçier F. Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi. Akademik Gıda. December 2017;15(4):355-367. doi:10.24323/akademik-gida.370103
Chicago Pekdoğan Göztok, Serpil, and Filiz İçier. “Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri Ve Performans Değerlendirmesi”. Akademik Gıda 15, no. 4 (December 2017): 355-67. https://doi.org/10.24323/akademik-gida.370103.
EndNote Pekdoğan Göztok S, İçier F (December 1, 2017) Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi. Akademik Gıda 15 4 355–367.
IEEE S. Pekdoğan Göztok and F. İçier, “Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi”, Akademik Gıda, vol. 15, no. 4, pp. 355–367, 2017, doi: 10.24323/akademik-gida.370103.
ISNAD Pekdoğan Göztok, Serpil - İçier, Filiz. “Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri Ve Performans Değerlendirmesi”. Akademik Gıda 15/4 (December 2017), 355-367. https://doi.org/10.24323/akademik-gida.370103.
JAMA Pekdoğan Göztok S, İçier F. Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi. Akademik Gıda. 2017;15:355–367.
MLA Pekdoğan Göztok, Serpil and Filiz İçier. “Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri Ve Performans Değerlendirmesi”. Akademik Gıda, vol. 15, no. 4, 2017, pp. 355-67, doi:10.24323/akademik-gida.370103.
Vancouver Pekdoğan Göztok S, İçier F. Karbon Fiber Destekli Kabin Kurutucuda Farklı Sıcaklıklarda Elma Dilimlerinin Kurutulmasının İncelenmesi: Kurutma Karakteristikleri ve Performans Değerlendirmesi. Akademik Gıda. 2017;15(4):355-67.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).