Review
BibTex RIS Cite

Surface Applications of Ultraviolet Light in Food Industry

Year 2018, Volume: 16 Issue: 1, 88 - 100, 23.04.2018
https://doi.org/10.24323/akademik-gida.417901

Abstract

In food industry, surface decontamination of foods that cannot be heat
treated or contaminated after heat treatment is of great importance. Ultraviolet
(UV) light is a promising technology for microbial decontamination and can be
used as an alternative to heat treatments for surfaces. In recent years, UV
light application has become widespread because of its low maintenance cost,
easy to use and positive consumer image. It can be used for surface
decontamination of foods, equipments in contact with foods and packaging
materials. For this purpose, batch or continuous UV disinfection units can be
designed for specific uses. Factors influencing surface disinfection and
microbial inactivation and, quality changes with the use of UV light systems
need to be considered. In this study, potential applications of UV light on food
surfaces, equipments in contact with foods and packaging materials besides inactivation
mechanisms and light sources are reviewed. Advantages of this technology,
factors influencing the efficacy of UV light and legal aspects are also presented.

References

  • [1] Manzocco, L., Nicoli, M.C., 2015. Surface Processing: Existing and Potential Applications of Ultraviolet Light. Critical Reviews in Food Science and Nutrition 55(4): 469-484.
  • [2] Koutchma, T., Forney, L.J., Moraru, C.I., 2009. Ultraviolet light in food technology: principles and applications. CRC Press, Taylor & Francis Group. Boca Raton, FL.
  • [3] Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R.K., 2000. Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture 80: 637-645.
  • [4] Keyser, M., Müller, I.A., Cilliers, F.P., Nel, W., Gouws, P.A., 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies 9: 348–354.
  • [5] Özkütük, N., 2007. Ultraviyole Lambalarının Kullanımı. 5. Ulusal Sterilizasyon Dezenfeksiyon Kongresi. Nisan 4-8, 2007, Antalya, Türkiye, DAS Kongre Kitabı 2007, 490-496p.
  • [6] Tran, M.T.T., Farid M., 2004. Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies 5: 495– 502.
  • [7] Artes, F., Allende, A., 2005. Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. European Journal of Horticultural Science 70(5): 231–245.
  • [8] Bolton, J.R., Linden, K.G., 2003. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Enviromental Engineering 129(3): 209-215.
  • [9] Gomez-Lopez, V.M., Ragaert, P., Debevere, J., Devlieghere, F., 2007. Pulsed light for food decontamination: a review. Trends in Food Science & Technology 18: 464-473.
  • [10] Jagger, J., 1967. Introduction to research in ultraviolet photobiology. Prentice-Hall Inc., Englewood Cliffs, NJ.
  • [11] Harm, W., 1980. Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge, MA.
  • [12] Quek, P.H., Hu, J., 2008. Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. The Journal of Industrial Microbiology and Biotechnology 35: 533-541.
  • [13] Koutchma, T., 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology 2: 138-155.
  • [14] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V., 2004. Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International 10(3): 137-147.
  • [15] Bachmann, R., 1975. Sterilization by intense ultraviolet radiation. The Brown Boveri Review 62: 206-209.
  • [16] Morgan, R., 1989. UV "green" light disinfection. Dairy Industries International 54(11): 33-35.
  • [17] Shama, G., 1999. Ultraviolet light. In: Encyclopedia of Food Microbiology-3, Edited by Robinson, R.K., Batt, C., & Patel, P. London: Academic Press, 2208-2214p.
  • [18] Milly, P.J., Toledo, R.T., Chen, J., Kazem, B., 2007. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods. Journal of Food Science 72(9): M407−M413.
  • [19] Ha, J.W., Back, K.H., Kim, Y.H., Kang, D.H., 2016. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films. Food Microbiology 57: 172-177.
  • [20] Koutchma, T., 2008. UV light for processing foods. Ozone: Science and Engineering 30(1): 93-98.
  • [21] Koutchma, T., Keller, S., Chirtel, S., Parisi, B., 2004. Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies 5: 179-189.
  • [22] Franz, C.M.A.P., Specht, I., Cho, G.S., Graef, V., Stahl, M.P., 2009. UV-C inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control 20: 1103-1107.
  • [23] Shah, P.B., Shah, U.S., Siripurapu, S.C.B., 1994. Ultraviolet irradiation and laminar air flow systems for clean air in dairy plants. Indian Dairyman 46: 757-759.
  • [24] Bailey, J.S., Buhr, R.J., Cox, N.A., Berrang, M.E., 1996. Effect of hatching cabinet sanitation treatments on Salmonella cross-contamination and hatchability of broiler eggs. Poultry Science 75:191-196.
  • [25] World Health Organization, 1994. Ultraviolet radiation. Environmental Health Criteria 160, Vammala.
  • [26] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V., 2005. Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by Ultraviolet Light. Journal of Food Process Engineering 28: 437-452.
  • [27] Kim, T., Silva, T., Chen, T., 2002. Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. Journal of Food Protection 65: 1142–1145.
  • [28] Tamime, A.Y., Robinson, R.K., 1999. Yogurt Science and Technology, (2nd edn). Woodhead Publishers, Cambridge.
  • [29] Park, S.Y., Ha, S.D., 2015. Ultraviolet-C radiation on the fresh chicken breast: Inactivation of major foodborne viruses and changes in physicochemical and sensory qualities of product. Food and Bioprocess Technology 8: 895–906.
  • [30] Lyon, S.A., Fletcher, D.L., Berrang, M.E., 2007. Germicidal ultraviolet light to lower numbers of Listeria monocytogenes on broiler breast fillets. Poultry Science 86: 964-967.
  • [31] Sommers, C.H., Sites, J.E., Musgrove, M., 2010. Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. Journal of Food Safety 30(2): 470-479.
  • [32] Tawema, P., Han, J., Vu, K.D., Salmieri, S., 2016. Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157: H7, and total yeasts/molds in fresh cut cauliflower. Food Science and Technology 65: 451-456.
  • [33] George, D.S., Razali, Z., Santhirasegaram, V., Somasundram, C., 2015. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut chokanan mango and josephine pineapple. Journal of Food Science 80(2): 426–434.
  • [34] Gündüz, G.T., Pazır, F., 2013. Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light. Journal of Food Protection 76(10): 1761-1766.
  • [35] Liu, J., Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Adeyeye, O., Kabwe, M.K., Pusey, P.L., Chalutz, E., Sultana, T., Droby, S., 1993. Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection 56: 868-872.
  • [36] Şık, S, Urgu, M, Koca, N., 2017. The effect of UV light on the mould inactivation and the quality of fresh kashar cheese. Innovations in Food Science and Technology, May 10-12, 2017; Munich, Germany.
  • [37] Can, F.O., Demirci, A., Puri, V.M., Gourama, H., 2014. Decontamination of hard cheeses by pulsed UV light. Journal of Food Protection 77(10): 1723-1731.
  • [38] Stermer, R., Lasater-Smith, M., Brasington, C., 1987. Ultraviolet radiation-an effective bactericide for fresh meat. Journal of Food Protection 50: 108–111.
  • [39] Birmpa, A., Sfika, V., Vantarakis, A., 2013. Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology 167(1): 96–102.
  • [40] Yun, J., Yan, R., Fan, X., Gurtler, J., Phillips, J., 2013. Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. International Journal of Food Microbiology 166(3): 356–363.
  • [41] Guan, W., Fan, X., Yan, R., 2012. Effects of UV-C treatment on inactivation of Escherichia coli O157: H7, microbial loads, and quality of button mushrooms. Postharvest Biology and Technology 64(1): 119–125.
  • [42] Escalona, V.H., Aguayo, E., Martinez-Hernandez, G.B., Artes, F., 2010. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biology and Technology 56(3): 223–231.
  • [43] Allende, A., McEvoy, J.L., Luo, Y., Artes, F., Wang, C.Y., 2006. Effectiveness of twosided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed “Red Oak Leaf” lettuce. Food Microbiology 23(3): 241–249.
  • [44] Yaun, B.R., Sumner, S.S., Eifert, J.D., Marcy, J.E., 2004. Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology 90(1): 1-8.
  • [45] Lacivita, V., Conte, A., Manzocco, L., Plazzotta, S., Zambrini, V.A., Del Nobile, M.A., Nicoli, M.C., 2016. Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innovative Food Science and Emerging Technologies 36: 150–155.
  • [46] Proulx, J., Hsu, L.C., Miller, B.M., Sullivan, G., Paradis, K., Moraru, C.I., 2015. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. Journal of Dairy Science 98: 5890-5898.
  • [47] Kilcast, D., 1994. Effect of irradiation on vitamins. Food Chemistry 49: 157-164.
  • [48] Matak, K.E., Sumner, S.S., Duncan, S.E., Hovingh, E., Worobo, R.W., Hackney, C.R., Pierson, M.D., 2007. Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science 90(7): 3178-3186.
  • [49] Bandla, S., Choudhary, R., Watson, D.G., Haddock, J., 2012. UV-C treatment of soymilk in coiled tube UV reactors for inactivation of Escherichia coli W1485 and Bacillus cereus endospores. LWT - Food Science and Technology 46(1): 71-76.
  • [50] Turan, O.Y., Met, A., Belbez, E., Pektaş, S., Şahin-Yeşilçubuk, N., Fıratlıgil-Durmuş, E., 2015. Investigating the effects of (UV-C) light on qualitative properties of beef in prototype household-type refrigerators. The 5th Food Safety Congress, May 7-8, 2015, İstanbul, Turkey.
  • [51] Andersen, L.T., Lund, M.N., Glyager, R., Jensen, S.B., Mortensen, G., Skibsted, L.H., 2006. Light-induced deterioration of reduced-fat cream cheese. Relative importance of protein and lipid oxidation. Milchwissenschaft 62(2): 162-165.
  • [52] Jung, M.Y., Yoon, S.H., Lee, H.O., Min, D.B., 1998. Singlet oxygen and ascorbic acid effects on dimethyl disulfide and off-flavor in skim milk exposed to light. Journal of Food Science 63(3): 408-412.
  • [53] Pan, X.Q., Ushio, H., Ohshima, T., 2005. Comparison of volatile compounds formed by autoxidation and photosensitized oxidation of cod liver oil in emulsion systems. Fisheries Science 71(3): 639-647.
  • [54] Yang, S.O., Lee, J.M., Lee, J.C., Lee, J.H., 2007. Effects of riboflavin-photosensitization on the formation of volatiles in linoleic acid model systems with sodium azide or D2O. Food Chemistry 105(4): 1375-1381.
  • [55] Westermann, S., Brüggemann, D.A., Olsen, K., Skibsted, L.H., 2009. Light-induced formation of free radicals in cream cheese. Food Chemistry 116: 974-981.
  • [56] Ergezer, H., Gökçe, R., Hozer, Ş., Akcan, T., 2016. Et ve ürünlerinde protein oksidasyonu: etki mekanizması, tespit yöntemleri ve etkileri. Akademik Gıda 14(1): 54-60.
  • [57] Chairat, B., Nutthachai, P., Varit, S., 2013. Effect of UV-C treatment on chlorophyll degradation, antioxidant enzyme activities and sensescence in Chinese kale (Brassica oleracea var. alboglabra). International Food Research Journal 20(2): 623-628.
  • [58] Alothman, M., Bhat, R., Karim, A.A., 2009. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technologies 10: 512-516.
  • [59] Higashio, H., Ippoushi, H., Ito, H., Azuma, K., 1999. Induction of an oxidative defense system against UV-stress and application to improve quality of green vegetables. In International Symposium on Vegetable Quality of Fresh and Fermented Vegetables, Edited by Lee, J.M., Gross, K.S., Watada, A.E., Lee, S.K. Acta Horticulture 483.
  • [60] Steenbock, H., Black, A., 1924. Fat-soluble vitamins: the induction of growth promoting and calcifying properties in a ration by exposure to ultra-violet light. The Journal of Biological Chemistry 61: 405–422.
  • [61] Hess, A.F., Weinstock, M., 1924. Antirachitic properties imparted to inert fluids and to green vegetables by ultraviolet radiation. The Journal of Biological Chemistry 62: 301-313.
  • [62] Mau, J-L., Chen, P.R., Yang, J-H., 1998. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. Journal of Agricultural and Food Chemistry 46: 5269-5272.
  • [63] EU, 2016. Commission Implementing Decision (EU) 2016/1189 of 19 July 2016 authorising the placing on the market of UV-treated milk as a novel food under Regulation (EC) No 258/97 of the European Parliament and of the Council.
  • [64] Ibarz, A., Pagan, J., Panades, R., Garza, S., 2005. Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering 69: 155-160.
  • [65] Falguera, V., Pagan, J., Ibarz, A., 2011. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT-Food Science and Technology 44: 115-119.
  • [66] Wallner-Pendleton, E.A., Sumner, S.S., Froning, G.W., Stetson, L.E., 1994. The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poultry Science 73(8): 1327-1333.
  • [67] US Food and Drug Administration, 2016. Ultraviolet radiation for the processing and treatment of food. Code of Federal Regulations 21 (Part 179.39). Washington, DC.
  • [68] European Communities, 1999. European Directive 1999/2/EC of the European Parliament and of the Council of 22 February 1999 on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation, Official Journal of European Communities.
  • [69] EU, 2016. Commission Implementing Decision (EU) 2016/398 of 16 March 2016 authorising the placing on the market of UV-treated bread as a novel food under Regulation (EC) No 258/97 of the European Parliament and of the Council.
  • [70] Anonim, 1999. Gıda Işınlama Yönetmeliği. T.C. Resmi Gazete 06.11.1999 Tarih 23868 sayı. Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü, Ankara.

Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları

Year 2018, Volume: 16 Issue: 1, 88 - 100, 23.04.2018
https://doi.org/10.24323/akademik-gida.417901

Abstract

Gıda sektöründe, ısıl işlem uygulanamayan ya da ısıl işlem uygulanmış
ancak sonrasında bulaşma olmuş gıdaların yüzey dekontaminasyonu her zaman önemini
korumuştur. Ultraviyole (UV) ışık; ısıl işlem alternatifi olarak yüzeylerde
rahatlıkla kullanılabilen umut verici mikrobiyal dekontaminasyon yöntemidir. Son
yıllarda, düşük yatırım maliyeti, kolay uygulanabilmesi ve pozitif tüketici
imajı gibi çeşitli avantajları sebebiyle UV ışın uygulaması gıda endüstrisinde gittikçe
yaygınlaşmaktadır. Gıdaların ve gıdayla
temas eden ekipmanların yüzey dezenfeksiyonu ile ambalaj dekontaminasyonu başta
olmak üzere çeşitli yüzey uygulamalarında kullanılabilmektedir. Bu amaçla,
hedefe yönelik olarak kesikli ya da sürekli sistem çalışan UV kabinleri dizayn
edilmektedir. Bu sistemlerin kullanımında, yüzey dezenfeksiyonunu etkileyen
faktörlerin bilinmesi ve mikrobiyal inaktivasyon yanısıra kalite değişimlerinin
de göz önünde bulundurulması oldukça önemlidir.
Bu derlemede, UV ışık
uygulamasının inaktivasyon mekanizması ve kullanılan ışık kaynakları hakkında
genel bilgiler verilmekle birlikte, UV ışığın gıda ve gıda ile temas eden
ekipman yüzeyleri ile ambalajların yüzey uygulamalarında kullanım olanakları ve
etkileri ile ilgili detaylı bilgi verilmesi amaçlanmıştır. Ayrıca, UV ışığın
yüzey uygulamalarındaki avantajları, uygulamanın etkinliğini sınırlandıran
faktörler ile yasal düzenlemeler de ele alınmıştır.

References

  • [1] Manzocco, L., Nicoli, M.C., 2015. Surface Processing: Existing and Potential Applications of Ultraviolet Light. Critical Reviews in Food Science and Nutrition 55(4): 469-484.
  • [2] Koutchma, T., Forney, L.J., Moraru, C.I., 2009. Ultraviolet light in food technology: principles and applications. CRC Press, Taylor & Francis Group. Boca Raton, FL.
  • [3] Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R.K., 2000. Existing and potential applications of ultraviolet light in the food industry – a critical review. Journal of the Science of Food and Agriculture 80: 637-645.
  • [4] Keyser, M., Müller, I.A., Cilliers, F.P., Nel, W., Gouws, P.A., 2008. Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innovative Food Science and Emerging Technologies 9: 348–354.
  • [5] Özkütük, N., 2007. Ultraviyole Lambalarının Kullanımı. 5. Ulusal Sterilizasyon Dezenfeksiyon Kongresi. Nisan 4-8, 2007, Antalya, Türkiye, DAS Kongre Kitabı 2007, 490-496p.
  • [6] Tran, M.T.T., Farid M., 2004. Ultraviolet treatment of orange juice. Innovative Food Science and Emerging Technologies 5: 495– 502.
  • [7] Artes, F., Allende, A., 2005. Processing lines and alternative preservation techniques to prolong the shelf-life of minimally fresh processed leafy vegetables. European Journal of Horticultural Science 70(5): 231–245.
  • [8] Bolton, J.R., Linden, K.G., 2003. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. Journal of Enviromental Engineering 129(3): 209-215.
  • [9] Gomez-Lopez, V.M., Ragaert, P., Debevere, J., Devlieghere, F., 2007. Pulsed light for food decontamination: a review. Trends in Food Science & Technology 18: 464-473.
  • [10] Jagger, J., 1967. Introduction to research in ultraviolet photobiology. Prentice-Hall Inc., Englewood Cliffs, NJ.
  • [11] Harm, W., 1980. Biological effects of ultraviolet radiation. Cambridge University Press, Cambridge, MA.
  • [12] Quek, P.H., Hu, J., 2008. Indicators for photoreactivation and dark repair studies following ultraviolet disinfection. The Journal of Industrial Microbiology and Biotechnology 35: 533-541.
  • [13] Koutchma, T., 2009. Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food and Bioprocess Technology 2: 138-155.
  • [14] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V., 2004. Review: Advantages and limitations on processing foods by UV light. Food Science and Technology International 10(3): 137-147.
  • [15] Bachmann, R., 1975. Sterilization by intense ultraviolet radiation. The Brown Boveri Review 62: 206-209.
  • [16] Morgan, R., 1989. UV "green" light disinfection. Dairy Industries International 54(11): 33-35.
  • [17] Shama, G., 1999. Ultraviolet light. In: Encyclopedia of Food Microbiology-3, Edited by Robinson, R.K., Batt, C., & Patel, P. London: Academic Press, 2208-2214p.
  • [18] Milly, P.J., Toledo, R.T., Chen, J., Kazem, B., 2007. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods. Journal of Food Science 72(9): M407−M413.
  • [19] Ha, J.W., Back, K.H., Kim, Y.H., Kang, D.H., 2016. Efficacy of UV-C irradiation for inactivation of food-borne pathogens on sliced cheese packaged with different types and thicknesses of plastic films. Food Microbiology 57: 172-177.
  • [20] Koutchma, T., 2008. UV light for processing foods. Ozone: Science and Engineering 30(1): 93-98.
  • [21] Koutchma, T., Keller, S., Chirtel, S., Parisi, B., 2004. Ultraviolet disinfection of juice products in laminar and turbulent flow reactors. Innovative Food Science and Emerging Technologies 5: 179-189.
  • [22] Franz, C.M.A.P., Specht, I., Cho, G.S., Graef, V., Stahl, M.P., 2009. UV-C inactivation of microorganisms in naturally cloudy apple juice using novel inactivation equipment based on Dean vortex technology. Food Control 20: 1103-1107.
  • [23] Shah, P.B., Shah, U.S., Siripurapu, S.C.B., 1994. Ultraviolet irradiation and laminar air flow systems for clean air in dairy plants. Indian Dairyman 46: 757-759.
  • [24] Bailey, J.S., Buhr, R.J., Cox, N.A., Berrang, M.E., 1996. Effect of hatching cabinet sanitation treatments on Salmonella cross-contamination and hatchability of broiler eggs. Poultry Science 75:191-196.
  • [25] World Health Organization, 1994. Ultraviolet radiation. Environmental Health Criteria 160, Vammala.
  • [26] Guerrero-Beltran, J.A., Barbosa-Canovas, G.V., 2005. Reduction of Saccharomyces cerevisiae, Escherichia coli and Listeria innocua in apple juice by Ultraviolet Light. Journal of Food Process Engineering 28: 437-452.
  • [27] Kim, T., Silva, T., Chen, T., 2002. Effects of UV irradiation on selected pathogens in peptone water and on stainless steel and chicken meat. Journal of Food Protection 65: 1142–1145.
  • [28] Tamime, A.Y., Robinson, R.K., 1999. Yogurt Science and Technology, (2nd edn). Woodhead Publishers, Cambridge.
  • [29] Park, S.Y., Ha, S.D., 2015. Ultraviolet-C radiation on the fresh chicken breast: Inactivation of major foodborne viruses and changes in physicochemical and sensory qualities of product. Food and Bioprocess Technology 8: 895–906.
  • [30] Lyon, S.A., Fletcher, D.L., Berrang, M.E., 2007. Germicidal ultraviolet light to lower numbers of Listeria monocytogenes on broiler breast fillets. Poultry Science 86: 964-967.
  • [31] Sommers, C.H., Sites, J.E., Musgrove, M., 2010. Ultraviolet light (254 nm) inactivation of pathogens on foods and stainless steel surfaces. Journal of Food Safety 30(2): 470-479.
  • [32] Tawema, P., Han, J., Vu, K.D., Salmieri, S., 2016. Antimicrobial effects of combined UV-C or gamma radiation with natural antimicrobial formulations against Listeria monocytogenes, Escherichia coli O157: H7, and total yeasts/molds in fresh cut cauliflower. Food Science and Technology 65: 451-456.
  • [33] George, D.S., Razali, Z., Santhirasegaram, V., Somasundram, C., 2015. Effects of ultraviolet light (UV-C) and heat treatment on the quality of fresh-cut chokanan mango and josephine pineapple. Journal of Food Science 80(2): 426–434.
  • [34] Gündüz, G.T., Pazır, F., 2013. Inactivation of Penicillium digitatum and Penicillium italicum under in vitro and in vivo conditions by using UV-C light. Journal of Food Protection 76(10): 1761-1766.
  • [35] Liu, J., Stevens, C., Khan, V.A., Lu, J.Y., Wilson, C.L., Adeyeye, O., Kabwe, M.K., Pusey, P.L., Chalutz, E., Sultana, T., Droby, S., 1993. Application of ultraviolet-C light on storage rots and ripening of tomatoes. Journal of Food Protection 56: 868-872.
  • [36] Şık, S, Urgu, M, Koca, N., 2017. The effect of UV light on the mould inactivation and the quality of fresh kashar cheese. Innovations in Food Science and Technology, May 10-12, 2017; Munich, Germany.
  • [37] Can, F.O., Demirci, A., Puri, V.M., Gourama, H., 2014. Decontamination of hard cheeses by pulsed UV light. Journal of Food Protection 77(10): 1723-1731.
  • [38] Stermer, R., Lasater-Smith, M., Brasington, C., 1987. Ultraviolet radiation-an effective bactericide for fresh meat. Journal of Food Protection 50: 108–111.
  • [39] Birmpa, A., Sfika, V., Vantarakis, A., 2013. Ultraviolet light and Ultrasound as non-thermal treatments for the inactivation of microorganisms in fresh ready-to-eat foods. International Journal of Food Microbiology 167(1): 96–102.
  • [40] Yun, J., Yan, R., Fan, X., Gurtler, J., Phillips, J., 2013. Fate of E. coli O157:H7, Salmonella spp. and potential surrogate bacteria on apricot fruit, following exposure to UV-C light. International Journal of Food Microbiology 166(3): 356–363.
  • [41] Guan, W., Fan, X., Yan, R., 2012. Effects of UV-C treatment on inactivation of Escherichia coli O157: H7, microbial loads, and quality of button mushrooms. Postharvest Biology and Technology 64(1): 119–125.
  • [42] Escalona, V.H., Aguayo, E., Martinez-Hernandez, G.B., Artes, F., 2010. UV-C doses to reduce pathogen and spoilage bacterial growth in vitro and in baby spinach. Postharvest Biology and Technology 56(3): 223–231.
  • [43] Allende, A., McEvoy, J.L., Luo, Y., Artes, F., Wang, C.Y., 2006. Effectiveness of twosided UV-C treatments in inhibiting natural microflora and extending the shelf-life of minimally processed “Red Oak Leaf” lettuce. Food Microbiology 23(3): 241–249.
  • [44] Yaun, B.R., Sumner, S.S., Eifert, J.D., Marcy, J.E., 2004. Inhibition of pathogens on fresh produce by ultraviolet energy. International Journal of Food Microbiology 90(1): 1-8.
  • [45] Lacivita, V., Conte, A., Manzocco, L., Plazzotta, S., Zambrini, V.A., Del Nobile, M.A., Nicoli, M.C., 2016. Surface UV-C light treatments to prolong the shelf-life of Fiordilatte cheese. Innovative Food Science and Emerging Technologies 36: 150–155.
  • [46] Proulx, J., Hsu, L.C., Miller, B.M., Sullivan, G., Paradis, K., Moraru, C.I., 2015. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface. Journal of Dairy Science 98: 5890-5898.
  • [47] Kilcast, D., 1994. Effect of irradiation on vitamins. Food Chemistry 49: 157-164.
  • [48] Matak, K.E., Sumner, S.S., Duncan, S.E., Hovingh, E., Worobo, R.W., Hackney, C.R., Pierson, M.D., 2007. Effects of ultraviolet irradiation on chemical and sensory properties of goat milk. Journal of Dairy Science 90(7): 3178-3186.
  • [49] Bandla, S., Choudhary, R., Watson, D.G., Haddock, J., 2012. UV-C treatment of soymilk in coiled tube UV reactors for inactivation of Escherichia coli W1485 and Bacillus cereus endospores. LWT - Food Science and Technology 46(1): 71-76.
  • [50] Turan, O.Y., Met, A., Belbez, E., Pektaş, S., Şahin-Yeşilçubuk, N., Fıratlıgil-Durmuş, E., 2015. Investigating the effects of (UV-C) light on qualitative properties of beef in prototype household-type refrigerators. The 5th Food Safety Congress, May 7-8, 2015, İstanbul, Turkey.
  • [51] Andersen, L.T., Lund, M.N., Glyager, R., Jensen, S.B., Mortensen, G., Skibsted, L.H., 2006. Light-induced deterioration of reduced-fat cream cheese. Relative importance of protein and lipid oxidation. Milchwissenschaft 62(2): 162-165.
  • [52] Jung, M.Y., Yoon, S.H., Lee, H.O., Min, D.B., 1998. Singlet oxygen and ascorbic acid effects on dimethyl disulfide and off-flavor in skim milk exposed to light. Journal of Food Science 63(3): 408-412.
  • [53] Pan, X.Q., Ushio, H., Ohshima, T., 2005. Comparison of volatile compounds formed by autoxidation and photosensitized oxidation of cod liver oil in emulsion systems. Fisheries Science 71(3): 639-647.
  • [54] Yang, S.O., Lee, J.M., Lee, J.C., Lee, J.H., 2007. Effects of riboflavin-photosensitization on the formation of volatiles in linoleic acid model systems with sodium azide or D2O. Food Chemistry 105(4): 1375-1381.
  • [55] Westermann, S., Brüggemann, D.A., Olsen, K., Skibsted, L.H., 2009. Light-induced formation of free radicals in cream cheese. Food Chemistry 116: 974-981.
  • [56] Ergezer, H., Gökçe, R., Hozer, Ş., Akcan, T., 2016. Et ve ürünlerinde protein oksidasyonu: etki mekanizması, tespit yöntemleri ve etkileri. Akademik Gıda 14(1): 54-60.
  • [57] Chairat, B., Nutthachai, P., Varit, S., 2013. Effect of UV-C treatment on chlorophyll degradation, antioxidant enzyme activities and sensescence in Chinese kale (Brassica oleracea var. alboglabra). International Food Research Journal 20(2): 623-628.
  • [58] Alothman, M., Bhat, R., Karim, A.A., 2009. UV radiation-induced changes of antioxidant capacity of fresh-cut tropical fruits. Innovative Food Science and Emerging Technologies 10: 512-516.
  • [59] Higashio, H., Ippoushi, H., Ito, H., Azuma, K., 1999. Induction of an oxidative defense system against UV-stress and application to improve quality of green vegetables. In International Symposium on Vegetable Quality of Fresh and Fermented Vegetables, Edited by Lee, J.M., Gross, K.S., Watada, A.E., Lee, S.K. Acta Horticulture 483.
  • [60] Steenbock, H., Black, A., 1924. Fat-soluble vitamins: the induction of growth promoting and calcifying properties in a ration by exposure to ultra-violet light. The Journal of Biological Chemistry 61: 405–422.
  • [61] Hess, A.F., Weinstock, M., 1924. Antirachitic properties imparted to inert fluids and to green vegetables by ultraviolet radiation. The Journal of Biological Chemistry 62: 301-313.
  • [62] Mau, J-L., Chen, P.R., Yang, J-H., 1998. Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. Journal of Agricultural and Food Chemistry 46: 5269-5272.
  • [63] EU, 2016. Commission Implementing Decision (EU) 2016/1189 of 19 July 2016 authorising the placing on the market of UV-treated milk as a novel food under Regulation (EC) No 258/97 of the European Parliament and of the Council.
  • [64] Ibarz, A., Pagan, J., Panades, R., Garza, S., 2005. Photochemical destruction of color compounds in fruit juices. Journal of Food Engineering 69: 155-160.
  • [65] Falguera, V., Pagan, J., Ibarz, A., 2011. Effect of UV irradiation on enzymatic activities and physicochemical properties of apple juices from different varieties. LWT-Food Science and Technology 44: 115-119.
  • [66] Wallner-Pendleton, E.A., Sumner, S.S., Froning, G.W., Stetson, L.E., 1994. The use of ultraviolet radiation to reduce Salmonella and psychrotrophic bacterial contamination on poultry carcasses. Poultry Science 73(8): 1327-1333.
  • [67] US Food and Drug Administration, 2016. Ultraviolet radiation for the processing and treatment of food. Code of Federal Regulations 21 (Part 179.39). Washington, DC.
  • [68] European Communities, 1999. European Directive 1999/2/EC of the European Parliament and of the Council of 22 February 1999 on the approximation of the laws of the Member States concerning foods and food ingredients treated with ionising radiation, Official Journal of European Communities.
  • [69] EU, 2016. Commission Implementing Decision (EU) 2016/398 of 16 March 2016 authorising the placing on the market of UV-treated bread as a novel food under Regulation (EC) No 258/97 of the European Parliament and of the Council.
  • [70] Anonim, 1999. Gıda Işınlama Yönetmeliği. T.C. Resmi Gazete 06.11.1999 Tarih 23868 sayı. Başbakanlık Mevzuatı Geliştirme ve Yayın Genel Müdürlüğü, Ankara.
There are 70 citations in total.

Details

Primary Language Turkish
Journal Section Review Papers
Authors

Nurcan Koca 0000-0002-0733-4500

Turkuaz Ecem Saatli This is me 0000-0002-7766-7773

Müge Urgu This is me 0000-0002-6345-9252

Publication Date April 23, 2018
Submission Date November 21, 2017
Published in Issue Year 2018 Volume: 16 Issue: 1

Cite

APA Koca, N., Saatli, T. E., & Urgu, M. (2018). Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda, 16(1), 88-100. https://doi.org/10.24323/akademik-gida.417901
AMA Koca N, Saatli TE, Urgu M. Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda. April 2018;16(1):88-100. doi:10.24323/akademik-gida.417901
Chicago Koca, Nurcan, Turkuaz Ecem Saatli, and Müge Urgu. “Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları”. Akademik Gıda 16, no. 1 (April 2018): 88-100. https://doi.org/10.24323/akademik-gida.417901.
EndNote Koca N, Saatli TE, Urgu M (April 1, 2018) Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda 16 1 88–100.
IEEE N. Koca, T. E. Saatli, and M. Urgu, “Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları”, Akademik Gıda, vol. 16, no. 1, pp. 88–100, 2018, doi: 10.24323/akademik-gida.417901.
ISNAD Koca, Nurcan et al. “Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları”. Akademik Gıda 16/1 (April 2018), 88-100. https://doi.org/10.24323/akademik-gida.417901.
JAMA Koca N, Saatli TE, Urgu M. Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda. 2018;16:88–100.
MLA Koca, Nurcan et al. “Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları”. Akademik Gıda, vol. 16, no. 1, 2018, pp. 88-100, doi:10.24323/akademik-gida.417901.
Vancouver Koca N, Saatli TE, Urgu M. Gıda Sanayisinde Ultraviyole Işığın Yüzey Uygulamaları. Akademik Gıda. 2018;16(1):88-100.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).