Research Article
BibTex RIS Cite

Changes in Green Bean Phenolics, Flavonoids and Antioxidant Capacity during Industrial Freezing Process and in vitro Gastrointestinal Digestion

Year 2019, Volume: 17 Issue: 2, 176 - 184, 02.09.2019
https://doi.org/10.24323/akademik-gida.613559

Abstract

Green bean (Phaseolus vulgaris) contains high amounts
of phenolic compounds, and it is classified as one of the widely consumed
vegetables, which is rich in antioxidant content and activity. The aim of this
study was to determine the changes in total phenolic content, total flavonoid
content and total antioxidant capacity in the samples taken from various
production steps of the industrial freezing process of green beans, and to
evaluate the bioaccessibility of phenolics, flavonoids and antioxidant capacity
for raw material, waste and frozen product using the standardized in vitro gastrointestinal digestion
model simulating the digestion in the mouth, stomach and intestine,
respectively. Total phenolic content, total flavonoid content and total
antioxidant capacity were determined using spectrophotometric methods and for
the evaluation of total antioxidant capacity 4 different methods including
ABTS, CUPRAC, DPPH and FRAP were used. Results showed that the total phenolic
and flavonoid contents of the fresh green beans were preserved after industrial
freezing process and their by-product that is separated as waste contains
higher total flavonoid content and antioxidant capacity compared to raw
material (117% and up to 97%, respectively) (p<0.05). In addition, after in vitro gastrointestinal digestion, frozen
green beans and waste contained 12–23%, 143–148% and 10–230% more bioaccessible
total phenolics, flavonoids and antioxidant capacity, respectively compared to
fresh green beans
(p<0.05). In conclusion, this study showed that food
processing may affect the bioaccessibility of polyphenols. 

References

  • [1] Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonnet, E., Müller, M.J., Oberritter, H., Schulze, M. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637-663.
  • [2] Shahidi, F., Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820-897.
  • [3] Abu‐Reidah, I.M., Arráez‐Román, D., Lozano‐Sánchez, J., Segura‐Carretero, A., Fernández‐Gutiérrez, A. (2013). Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using high‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry. Phytochemical Analysis, 24(2), 105-116.
  • [4] Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables—Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337.
  • [5] Mazzeo, T., Paciulli, M., Chiavaro, E., Visconti, A., Fogliano, V., Ganino, T., Pellegrini, N. (2015). Impact of the industrial freezing process on selected vegetables-Part II. Colour and bioactive compounds. Food Research International, 75, 89-97.
  • [6] Baardseth, P., Bjerke, F., Martinsen, B.K., Skrede, G. (2010). Vitamin C, total phenolics and antioxidative activity in tip‐cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processed by methods used in catering. Journal of the Science of Food and Agriculture, 90(7), 1245-1255.
  • [7] Kamiloglu, S., Ozkan, G., Isik, H., Horoz, O., Van Camp, J., Capanoglu, E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science and Technology, 77, 475-481.
  • [8] Kamiloglu, S. (2019). Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda, 17(1), 38-46.
  • [9] Alminger, M., Aura, A.M., Bohn, T., Dufour, C., El, S., Gomes, A., Karakaya, S., Martínez-Cuesta, M., McDougall, G., Requena, T. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13(4), 413-436.
  • [10] Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Menard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W., Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124.
  • [11] Kamiloglu, S. (2019). Taze ve dondurulmuş elmalarda ve elma posasında polifenol biyoerişebilirliğinin değerlendirilmesi. Gıda, 44(3), 409-418.
  • [12] Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548.
  • [13] AOAC. (1999). Official Method of Analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.
  • [14] Kamiloglu, S., Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties, 18(3), 521-535.
  • [15] Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • [16] Kim, D.O., Jeong, S.W., Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326.
  • [17] Miller, N.J., Rice-Evans, C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26(6), 195-199.
  • [18] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [19] Kumaran, A., Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114.
  • [20] Benzie, I.F., Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [21] USDA Food Composition Database. Available from: http://ndb.nal.usda.gov.
  • [22] Patras, A., Tiwari, B., Brunton, N. (2011). Influence of blanching and low temperature preservation strategies on antioxidant activity and phytochemical content of carrots, green beans and broccoli. LWT-Food Science and Technology, 44(1), 299-306.
  • [23] Guillén, S., Mir-Bel, J., Oria, R., Salvador, M.L. (2017). Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chemistry, 217, 209-216.
  • [24] Kaiser, A., Kammerer, D.R., Carle, R. (2013). Impact of blanching on polyphenol stability and antioxidant capacity of innovative coriander (Coriandrum sativum L.) pastes. Food Chemistry, 140(1-2), 332-339.
  • [25] Gupta, S., Chatterjee, S., Vaishnav, J., Kumar, V., Variyar, P.S., Sharma, A. (2012). Hurdle technology for shelf stable minimally processed French beans (Phaseolus vulgaris): A response surface methodology approach. LWT-Food Science and Technology, 48(2), 182-189.
  • [26] [26] Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547.
  • [27] Oliveira, A., Alexandre, E.M., Coelho, M., Barros, R.M., Almeida, D.P., Pintado, M. (2016). Peach polyphenol and carotenoid content as affected by frozen storage and pasteurization. LWT-Food Science and Technology, 66, 361-368.
  • [28] Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21.
  • [29] Kamiloglu, S. (2019). Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. International Journal of Food Science & Technology, 54(8), 2652-2660.
  • [30] Apak, R., Ozyurek, M., Guclu, K., Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027.
  • [31] Capanoglu, E., Kamiloglu, S., Ozkan, G., Apak, R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, R. Apak, E. Capanoglu, & F. Shahidi, Editors., Chicester, United Kingdom: John Wiley & Sons Ltd., p. 273-286.
  • [32] Ho, Y.C., Yu, H.T., Su, N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry, 60(10), 2674-2681.

Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler

Year 2019, Volume: 17 Issue: 2, 176 - 184, 02.09.2019
https://doi.org/10.24323/akademik-gida.613559

Abstract

Taze fasulye (Phaseolus vulgaris)
fenolik bileşen içeriği yüksek olan bir sebze olup, antioksidan içeriği ve
aktivitesi bakımından zengin olan ve yaygın tüketilen sebzeler içerisinde
sınıflandırılmaktadır. Bu çalışmada taze fasulyenin endüstriyel dondurulma
işlemi sırasında çeşitli üretim basamaklardan alınan numunelerde toplam fenolik
maddede, toplam flavonoid maddede ve toplam antioksidan kapasitede meydana
gelen değişimleri belirlemek ve hammadde, atık ve dondurulmuş ürün için sırasıyla
ağız, mide ve bağırsak sindirimi aşamalarından oluşan standartlaştırılmış in vitro gastrointestinal sindirim
modeli kullanılarak fenoliklerin, flavonoidlerin ve antioksidan kapasitenin
biyoerişilebilirliklerinin değerlendirilmesi amaçlanmıştır. Toplam fenolik
madde, toplam flavonoid madde ve toplam antioksidan kapasitedeki değişimler spektrofotometrik
yöntemlerle tespit edilmiş olup, toplam antioksidan kapasitenin belirlenmesinde
ABTS, CUPRAC, DPPH ve FRAP olmak üzere 4 farklı metot kullanılmıştır. Elde
edilen sonuçlar endüstriyel dondurma işleminin taze fasulyenin toplam fenolik
ve flavonoid madde içeriğini korunduğunu ve atık olarak ayrılan yan ürünün toplam
flavonoid madde içeriğinin ve antioksidan kapasitesinin hammaddeden yüksek
olduğunu göstermiştir (sırasıyla %117 ve %97’ye kadar) (p<0.05). İlaveten, in vitro gastrointestinal sindirim
sonrasında dondurulmuş taze fasulyenin ve atık ürünün hammaddeye kıyasla sırasıyla
%12–23, %143–148 ve %10–230 kadar daha fazla biyoerişilebilir toplam fenolik
maddeye, toplam flavonoid maddeye ve toplam antioksidan kapasiteye sahip olduğu
görülmüştür (p<0.05). Sonuç olarak bu çalışma gıda işlemenin polifenollerin
biyoerişilebilirliğini etkileyebileceğini göstermiştir.

References

  • [1] Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonnet, E., Müller, M.J., Oberritter, H., Schulze, M. (2012). Critical review: Vegetables and fruit in the prevention of chronic diseases. European Journal of Nutrition, 51(6), 637-663.
  • [2] Shahidi, F., Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects–A review. Journal of Functional Foods, 18, 820-897.
  • [3] Abu‐Reidah, I.M., Arráez‐Román, D., Lozano‐Sánchez, J., Segura‐Carretero, A., Fernández‐Gutiérrez, A. (2013). Phytochemical characterisation of green beans (Phaseolus vulgaris L.) by using high‐performance liquid chromatography coupled with time‐of‐flight mass spectrometry. Phytochemical Analysis, 24(2), 105-116.
  • [4] Paciulli, M., Ganino, T., Pellegrini, N., Rinaldi, M., Zaupa, M., Fabbri, A., Chiavaro, E. (2015). Impact of the industrial freezing process on selected vegetables—Part I. Structure, texture and antioxidant capacity. Food Research International, 74, 329-337.
  • [5] Mazzeo, T., Paciulli, M., Chiavaro, E., Visconti, A., Fogliano, V., Ganino, T., Pellegrini, N. (2015). Impact of the industrial freezing process on selected vegetables-Part II. Colour and bioactive compounds. Food Research International, 75, 89-97.
  • [6] Baardseth, P., Bjerke, F., Martinsen, B.K., Skrede, G. (2010). Vitamin C, total phenolics and antioxidative activity in tip‐cut green beans (Phaseolus vulgaris) and swede rods (Brassica napus var. napobrassica) processed by methods used in catering. Journal of the Science of Food and Agriculture, 90(7), 1245-1255.
  • [7] Kamiloglu, S., Ozkan, G., Isik, H., Horoz, O., Van Camp, J., Capanoglu, E. (2017). Black carrot pomace as a source of polyphenols for enhancing the nutritional value of cake: An in vitro digestion study with a standardized static model. LWT-Food Science and Technology, 77, 475-481.
  • [8] Kamiloglu, S. (2019). Bireysel Hızlı Dondurma İşlemi Basamaklarının Granny Smith Elmaların Polifenol İçeriği ve Antioksidan Kapasitesine Etkileri. Akademik Gıda, 17(1), 38-46.
  • [9] Alminger, M., Aura, A.M., Bohn, T., Dufour, C., El, S., Gomes, A., Karakaya, S., Martínez-Cuesta, M., McDougall, G., Requena, T. (2014). In vitro models for studying secondary plant metabolite digestion and bioaccessibility. Comprehensive Reviews in Food Science and Food Safety, 13(4), 413-436.
  • [10] Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T., Bourlieu, C., Carriere, F., Boutrou, R., Corredig, M., Dupont, D., Dufour, C., Egger, L., Golding, M., Karakaya, S., Kirkhus, B., Le Feunteun, S., Lesmes, U., Macierzanka, A., Mackie, A., Marze, S., McClements, D.J., Menard, O., Recio, I., Santos, C.N., Singh, R.P., Vegarud, G.E., Wickham, M.S.J., Weitschies, W., Brodkorb, A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124.
  • [11] Kamiloglu, S. (2019). Taze ve dondurulmuş elmalarda ve elma posasında polifenol biyoerişebilirliğinin değerlendirilmesi. Gıda, 44(3), 409-418.
  • [12] Ribas-Agustí, A., Martín-Belloso, O., Soliva-Fortuny, R., Elez-Martínez, P. (2018). Food processing strategies to enhance phenolic compounds bioaccessibility and bioavailability in plant-based foods. Critical Reviews in Food Science and Nutrition, 58(15), 2531-2548.
  • [13] AOAC. (1999). Official Method of Analysis (16th ed.). Washington, DC: Association of Official Analytical Chemists.
  • [14] Kamiloglu, S., Capanoglu, E. (2015). Polyphenol content in figs (Ficus carica L.): Effect of sun-drying. International Journal of Food Properties, 18(3), 521-535.
  • [15] Velioglu, Y.S., Mazza, G., Gao, L., Oomah, B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117.
  • [16] Kim, D.O., Jeong, S.W., Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326.
  • [17] Miller, N.J., Rice-Evans, C. (1997). Factors influencing the antioxidant activity determined by the ABTS•+ radical cation assay. Free Radical Research, 26(6), 195-199.
  • [18] Apak, R., Guclu, K., Ozyurek, M., Karademir, S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981.
  • [19] Kumaran, A., Karunakaran, R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114.
  • [20] Benzie, I.F., Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76.
  • [21] USDA Food Composition Database. Available from: http://ndb.nal.usda.gov.
  • [22] Patras, A., Tiwari, B., Brunton, N. (2011). Influence of blanching and low temperature preservation strategies on antioxidant activity and phytochemical content of carrots, green beans and broccoli. LWT-Food Science and Technology, 44(1), 299-306.
  • [23] Guillén, S., Mir-Bel, J., Oria, R., Salvador, M.L. (2017). Influence of cooking conditions on organoleptic and health-related properties of artichokes, green beans, broccoli and carrots. Food Chemistry, 217, 209-216.
  • [24] Kaiser, A., Kammerer, D.R., Carle, R. (2013). Impact of blanching on polyphenol stability and antioxidant capacity of innovative coriander (Coriandrum sativum L.) pastes. Food Chemistry, 140(1-2), 332-339.
  • [25] Gupta, S., Chatterjee, S., Vaishnav, J., Kumar, V., Variyar, P.S., Sharma, A. (2012). Hurdle technology for shelf stable minimally processed French beans (Phaseolus vulgaris): A response surface methodology approach. LWT-Food Science and Technology, 48(2), 182-189.
  • [26] [26] Apak, R., Güçlü, K., Demirata, B., Özyürek, M., Çelik, S.E., Bektaşoğlu, B., Berker, K.I., Özyurt, D. (2007). Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. Molecules, 12(7), 1496-1547.
  • [27] Oliveira, A., Alexandre, E.M., Coelho, M., Barros, R.M., Almeida, D.P., Pintado, M. (2016). Peach polyphenol and carotenoid content as affected by frozen storage and pasteurization. LWT-Food Science and Technology, 66, 361-368.
  • [28] Bouayed, J., Hoffmann, L., Bohn, T. (2011). Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chemistry, 128(1), 14-21.
  • [29] Kamiloglu, S. (2019). Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. International Journal of Food Science & Technology, 54(8), 2652-2660.
  • [30] Apak, R., Ozyurek, M., Guclu, K., Capanoglu, E. (2016). Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. Journal of Agricultural and Food Chemistry, 64(5), 997-1027.
  • [31] Capanoglu, E., Kamiloglu, S., Ozkan, G., Apak, R. (2018). Evaluation of antioxidant activity/capacity measurement methods for food products. In Measurement of Antioxidant Activity and Capacity: Recent Trends and Applications, R. Apak, E. Capanoglu, & F. Shahidi, Editors., Chicester, United Kingdom: John Wiley & Sons Ltd., p. 273-286.
  • [32] Ho, Y.C., Yu, H.T., Su, N.W. (2012). Re-examination of chromogenic quantitative assays for determining flavonoid content. Journal of Agricultural and Food Chemistry, 60(10), 2674-2681.
There are 32 citations in total.

Details

Primary Language Turkish
Journal Section Research Papers
Authors

Senem Kamiloğlu 0000-0003-3902-4360

Publication Date September 2, 2019
Submission Date June 10, 2019
Published in Issue Year 2019 Volume: 17 Issue: 2

Cite

APA Kamiloğlu, S. (2019). Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler. Akademik Gıda, 17(2), 176-184. https://doi.org/10.24323/akademik-gida.613559
AMA Kamiloğlu S. Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler. Akademik Gıda. September 2019;17(2):176-184. doi:10.24323/akademik-gida.613559
Chicago Kamiloğlu, Senem. “Endüstriyel Dondurma İşlemi Ve in Vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde Ve Antioksidan Kapasitesinde Meydana Gelen Değişimler”. Akademik Gıda 17, no. 2 (September 2019): 176-84. https://doi.org/10.24323/akademik-gida.613559.
EndNote Kamiloğlu S (September 1, 2019) Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler. Akademik Gıda 17 2 176–184.
IEEE S. Kamiloğlu, “Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler”, Akademik Gıda, vol. 17, no. 2, pp. 176–184, 2019, doi: 10.24323/akademik-gida.613559.
ISNAD Kamiloğlu, Senem. “Endüstriyel Dondurma İşlemi Ve in Vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde Ve Antioksidan Kapasitesinde Meydana Gelen Değişimler”. Akademik Gıda 17/2 (September 2019), 176-184. https://doi.org/10.24323/akademik-gida.613559.
JAMA Kamiloğlu S. Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler. Akademik Gıda. 2019;17:176–184.
MLA Kamiloğlu, Senem. “Endüstriyel Dondurma İşlemi Ve in Vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde Ve Antioksidan Kapasitesinde Meydana Gelen Değişimler”. Akademik Gıda, vol. 17, no. 2, 2019, pp. 176-84, doi:10.24323/akademik-gida.613559.
Vancouver Kamiloğlu S. Endüstriyel Dondurma İşlemi ve in vitro Gastrointestinal Sindirim Sırasında Taze Fasulyenin Fenoliklerinde, Flavonoidlerinde ve Antioksidan Kapasitesinde Meydana Gelen Değişimler. Akademik Gıda. 2019;17(2):176-84.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).