Review
BibTex RIS Cite

Effect of Ultrasonication on Enzyme Activation

Year 2024, Volume: 22 Issue: 2, 158 - 166, 04.09.2024
https://doi.org/10.24323/akademik-gida.1543682

Abstract

Ultrasound has attracted attention in recent years as a green and effective non-thermal processing technique used in various fields, especially in the food, biotechnology and biopharmaceutical industries. It is important to determine the effects of ultrasonication on enzymatic reactions that have important applications in these industries. While intense ultrasonication conditions cause enzyme inactivation, it has been reported that enzyme activity can be increased under mid-ultrasound conditions (i.e. low intensity and short duration). Ultrasound treatment can be applied to free enzyme, substrate and immobilized enzyme. Ultrasonication may have a positive effect on the structure of molecules, increasing enzyme activity and product yield. In this review, information is given about the changes in molecular structure and enzyme activation that occur as a result of the application of ultrasound treatment to free enzyme, immobilized enzyme and substrate, the mechanisms of these changes and the factors that affect these mechanisms.

References

  • [1] Chen, N., Chang, B., Shi, N., Yan, W., Lu, F., Liu, F. (2023). Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Critical Reviews in Biotechnology, 43(3), 369-383.
  • [2] Lindsay, M., Hellmeister, J., Augusto, P.E. (2016). The ultrasound technology for modifying enzyme activity. Scientia Agropecuaria, 7(2), 145-150.
  • [3] Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., Liu, D. (2018). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119, 453-461.
  • [4] Priya, Gogate, P.R. (2021). Ultrasound-Assisted Intensification of activity of free and immobilized enzymes: A Review. Industrial and Engineering Chemistry Research, 60, 9650–9668.
  • [5] Ma, X., Liu, D., Hou, F. (2023). Sono-activation of food enzymes: From principles to practice. Comprehensive Reviews in Food Science and Food Safety, 22, 1184-1225.
  • [6] Chavan, P., Sharma, P., Sharma, S.R., Mittal, T.C., Jaiswal, A.K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review, Foods, 11(1), 122.
  • [7] Su, J., Cavaco-Paulo, A. (2021). Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry, 76, 105653.
  • [8] Wang, Y., Tian, X., Zhang, Z., Tian, M., Zhang, F. (2024). Investigation of the potential mechanisms of α-amylase and glucoamylase through ultrasound intensification. Food Science & Technology, 198, 115979.
  • [9] Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293.
  • [10] Singla, M., Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.
  • [11] Zadeike, D., Degutyte, R. (2023). Recent advances in acoustic technology in food processing. Foods, 12(18), 3365.
  • [12] Nadar, S.S., Rathod, V.K. 2017. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World Journal of Microbiology and Biotechnology, 33(9), 170.
  • [13] Mawson, R., Gamage, M., Terefe, N.S, Knoerzer, K. (2010). Ultrasound in Enzyme Activation and Inactivation. In Ultrasound Technologies for Food and Bioprocessing, Edited by H. Feng, G. Barbosa-Canovas, J. Weiss, Springer, New York, 665p.
  • [14] Oliveira, H.M., Correia, V.S., Segundo, M.A., Fonseca, A.J.M., Cabrita, A.R.J. (2017). Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT-Food Science and Technology, 84, 674-685.
  • [15] Mishra, S. K., Yadav, P., Gogate, P.R. (2024). Intensification of α-amylase activity using ultrasound and its application for food waste hydrolysis. Process Biochemistry, 143, 73-82.
  • [16] Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., Wang, F. (2023). Ultrasound-assisted enzymatic protein hydrolysis in food processing: mechanism and parameters. Foods, 12(21), 4027.
  • [17] Wang, F., Liu, Y., Du, C., Gao, R. (2022). Current strategies for real-time enzyme activation. Biomolecules, 12(5), 599.
  • [18] Nadar, S.S., Rathod, V.K. (2018). Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology, 108, 11-20.
  • [19] Pourmohammadi, K., Sayadi, M., Abedi, E. (2023). Ultrasound-assisted activation amylase in the presence of calcium ion and effect on liquefaction process of dual frequency ultrasonicated potato starch. Journal of Food Measurement and Characterization, 17, 3435-3449.
  • [20] Roohi, R., Abedi, E., Hashemi, S.M.B. (2024). Ultrasound-assisted starch hydrolyzing by alpha-amylase: Implementation of computational fluid dynamics, acoustic field determination, and rheology modeling. Ultrasonics Sonochemistry, 103, 106785.
  • [21] Soares, A.D.S., de Castro Leite Júnior, B.R., Tribst, A.A.L., Augusto P.E.D., Ramos, A.M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT-Food Science and Technology, 130, 109636.
  • [22] Sargazi, G., Afzali, D., Ebrahimi, A.K., Badoei-Dalfard, A., Malekabadi, S., Karami, Z. (2018). Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Materials Science and Engineering: C, 93, 768-775.
  • [23] Wang, D., Lv, R.L., Ma, X.B., Zou, M. M., Wang, W.J., Yan, L.F., Ding, T., Ye, X.Q., Liu, D.H. (2018). Lysozyme immobilization on the calcium alginate film under sonication: Development of an antimicrobial film. Food Hydrocolloids, 83, 1-8.
  • [24] Liow, M.Y., Chan, E., Ng, W.Z., Song, C.P. (2024). Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization. International Journal of Biological Macromolecules, 271(2), 132538.
  • [25] Ferreira, A.L.A., da Silva Monteiro Wanderley, B.R., da Silva Haas, I.C., Biluca, F.C., de Oliveira Costa, A.C., Hoff, R.B., Pereira-Coelho, M., dos Santos Madureira, L.A., de Sena Aquino, A.C.M., de Mello Castanho Amboni, R.D., Fritzen-Freire, C.B. (2024). Low-alcohol wine made from uvaia (Eugenia pyriformis Cambess): Influence of ultrasound-assisted enzymatic pre-treatment on its bioactive properties, Microchemical Journal, 198, 110177.
  • [26] Zhang, Z., Shan, P., Zhang, Z.H., He, R., Xing, L., Liu, J., He, D., Ma, H., Wang, Z., Gao, X. (2023). Efficient degradation of soybean protein B3 subunit in soy sauce by ultrasound-assisted prolyl endopeptidase and its primary mechanism. Food Chemistry, 429, 136972.
  • [27] Zhang, X., Yu, Y., Yu, J., Wang, M., Gao, S., Li, W., Yu, D., Wang, L. (2023b). Ultrasound pretreatment for lipase-catalyzed synthesis of stigmasteryl oleate and evaluation of its physicochemical properties. LWT-Food Science and Technology, 183, 114929.
  • [28] Priya, Gogate, P.R. (2022). Ultrasound-assisted intensification of β-glucosidase enzyme activity in free and immobilized forms, A review. Industrial and Engineering Chemistry Research, 61(5), 2023-2036.
  • [29] Atiya, S.A., Gatea, I.H., Abdulla, K.J. (2021). Effect of ultrasonic technology on cellulase enzyme activity produced by local bacterial isolate. Journal of Physics: Conference Series, 1963(1), 012051.
  • [30] Li, F., Tang, Y. (2021). The activation mechanism of peroxidase by ultrasound. Ultrasonics Sonochemistry, 71, 105362.
  • [31] Lorenzetti, A., Penha, F. M., Petrus, J.C.C., Rezzadori, K. (2020). Low purity enzymes and ultrasound pretreatment applied to partially hydrolyze whey protein. Food Bioscience, 38 (December), 100784.
  • [32] Fan, X.H., Zhang, X.Y., Zhang, Q.A., Zhao, W.Q., Shi, F.F. (2019). Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels. Ultrasonics Sonochemistry, 52, 468-476.
  • [33] Soares, A.D.S., Augusto, P.E.D., Leite Júniori B.R.D.C., Nogueira, C.A, Vieira, É.N.R., Barros, F.A.R. D., Stringheta, P.C., Ramos, A.M. (2019). Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT-Food Science and Technology, 107, 164–170.
  • [34] Hou, F., Ma, X., Fan, L., Wang, D., Wang, W., Ding, T., Ye, X., Liu, D. (2019). Activation and conformational changes of chitinase induced by ultrasound. Food Chemistry, 285, 355-362.
  • [35] Meng, H., Li, D., Zhu, C. (2018). The effect of ultrasound on the properties and conformation of glucoamylase. International Journal of Biological Macromolecules, 113, 411-417.
  • [36] Patil, S.S., Rathod, V.K. (2022). Combined effect of enzyme co-immobilized magnetic nanoparticles (MNPs) and ultrasound for effective extraction and purification of curcuminoids from Curcuma longa. Industrial Crops and Products, 177, 114385.
  • [37] Farhadi, S., Riahi-Madvar, A., Sargazi, G., Mortazavi, M. (2021). Immobilization of Lepidium draba peroxidase on a novel Zn-MOF nanostructure. International Journal of Biological Macromolecules, 173, 366-378.
  • [38] Sun, T., Dong, Z., Wang, J., Huang, F.H., Zheng, M.M. (2020). Ultrasound-assisted interfacial immobilization of lipase on hollow mesoporous silica spheres in a pickering emulsion system: A hyperactive and sustainable biocatalyst. ACS Sustainable Chemistry & Engineering, 8(46), 17280–17290.
  • [39] Ladole, M.R., Nair, R.R., Bhutada, Y.D., Amritkar, V.D., Pandit, A.B. (2018). Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 48, 453-462.
  • [40] Zhao, X., Sun, Q., Qin, Z., Liu, Q., Kong, B. (2018). Ultrasonic pretreatment promotes diacylglycerol production from lard by lipase-catalysed glycerolysis and its physicochemical properties. Ultrasonics Sonochemistry, 48, 11-18.
  • [41] Ladole, M.R., Mevada, J.S., Pandit, A.B. (2017). Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 239, 117-126.

Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri

Year 2024, Volume: 22 Issue: 2, 158 - 166, 04.09.2024
https://doi.org/10.24323/akademik-gida.1543682

Abstract

Ultrases (ultrason) işlemi, özellikle gıda, biyoteknoloji ve biyofarmasötik endüstrileri olmak üzere çeşitli alanlarda kullanılan yeşil ve etkili bir termal olmayan işlem tekniği olarak son yıllarda dikkat çekmektedir. Ultrason işleminin bu endüstrilerde önemli uygulamalara sahip enzimatik reaksiyonlarda etkilerinin belirlenmesi önemlidir. Yoğun ultrason koşulları enzim inaktivasyonuna neden olurken ılımlı ultrason koşullarında (yani düşük yoğunluk ve kısa süre) enzim aktivitesinin arttırılabildiği bildirilmektedir. Ultrason işlemi serbest enzime, substratta ve immobilize enzime uygulanabilir. Ultrasonikasyon işleminin enzim ve substrat yapısı ile enzimatik hidroliz kinetiği ve termodinamik parametreleri üzerine etkileri bulunmaktadır. Bu işlem, moleküllerin yapısını olumlu şekilde değiştirebilir ve böylece enzim aktivitesi ile ürün verimi arttırılabilir. Bu derlemede ultrason işleminin serbest enzim, immobilize enzim ve substrata uygulanması sonucu meydana gelen moleküller yapıdaki ve enzim aktivasyonundaki değişiklikler, bu değişikliklerin mekanizmaları ve bu mekanizmaları etkileyen faktörler ile ilgili bilgiler verilmiştir.

References

  • [1] Chen, N., Chang, B., Shi, N., Yan, W., Lu, F., Liu, F. (2023). Cross-linked enzyme aggregates immobilization: preparation, characterization, and applications. Critical Reviews in Biotechnology, 43(3), 369-383.
  • [2] Lindsay, M., Hellmeister, J., Augusto, P.E. (2016). The ultrasound technology for modifying enzyme activity. Scientia Agropecuaria, 7(2), 145-150.
  • [3] Wang, D., Yan, L., Ma, X., Wang, W., Zou, M., Zhong, J., Ding, T., Ye, X., Liu, D. (2018). Ultrasound promotes enzymatic reactions by acting on different targets: Enzymes, substrates and enzymatic reaction systems. International Journal of Biological Macromolecules, 119, 453-461.
  • [4] Priya, Gogate, P.R. (2021). Ultrasound-Assisted Intensification of activity of free and immobilized enzymes: A Review. Industrial and Engineering Chemistry Research, 60, 9650–9668.
  • [5] Ma, X., Liu, D., Hou, F. (2023). Sono-activation of food enzymes: From principles to practice. Comprehensive Reviews in Food Science and Food Safety, 22, 1184-1225.
  • [6] Chavan, P., Sharma, P., Sharma, S.R., Mittal, T.C., Jaiswal, A.K. (2022). Application of high-intensity ultrasound to improve food processing efficiency: A review, Foods, 11(1), 122.
  • [7] Su, J., Cavaco-Paulo, A. (2021). Effect of ultrasound on protein functionality. Ultrasonics Sonochemistry, 76, 105653.
  • [8] Wang, Y., Tian, X., Zhang, Z., Tian, M., Zhang, F. (2024). Investigation of the potential mechanisms of α-amylase and glucoamylase through ultrasound intensification. Food Science & Technology, 198, 115979.
  • [9] Bhargava, N., Mor, R.S., Kumar, K., Sharanagat, V.S. (2021). Advances in application of ultrasound in food processing: A review. Ultrasonics Sonochemistry, 70, 105293.
  • [10] Singla, M., Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, 105506.
  • [11] Zadeike, D., Degutyte, R. (2023). Recent advances in acoustic technology in food processing. Foods, 12(18), 3365.
  • [12] Nadar, S.S., Rathod, V.K. 2017. Ultrasound assisted intensification of enzyme activity and its properties: a mini-review. World Journal of Microbiology and Biotechnology, 33(9), 170.
  • [13] Mawson, R., Gamage, M., Terefe, N.S, Knoerzer, K. (2010). Ultrasound in Enzyme Activation and Inactivation. In Ultrasound Technologies for Food and Bioprocessing, Edited by H. Feng, G. Barbosa-Canovas, J. Weiss, Springer, New York, 665p.
  • [14] Oliveira, H.M., Correia, V.S., Segundo, M.A., Fonseca, A.J.M., Cabrita, A.R.J. (2017). Does ultrasound improve the activity of alpha amylase? A comparative study towards a tailor-made enzymatic hydrolysis of starch. LWT-Food Science and Technology, 84, 674-685.
  • [15] Mishra, S. K., Yadav, P., Gogate, P.R. (2024). Intensification of α-amylase activity using ultrasound and its application for food waste hydrolysis. Process Biochemistry, 143, 73-82.
  • [16] Qian, J., Chen, D., Zhang, Y., Gao, X., Xu, L., Guan, G., Wang, F. (2023). Ultrasound-assisted enzymatic protein hydrolysis in food processing: mechanism and parameters. Foods, 12(21), 4027.
  • [17] Wang, F., Liu, Y., Du, C., Gao, R. (2022). Current strategies for real-time enzyme activation. Biomolecules, 12(5), 599.
  • [18] Nadar, S.S., Rathod, V.K. (2018). Encapsulation of lipase within metal-organic framework (MOF) with enhanced activity intensified under ultrasound. Enzyme and Microbial Technology, 108, 11-20.
  • [19] Pourmohammadi, K., Sayadi, M., Abedi, E. (2023). Ultrasound-assisted activation amylase in the presence of calcium ion and effect on liquefaction process of dual frequency ultrasonicated potato starch. Journal of Food Measurement and Characterization, 17, 3435-3449.
  • [20] Roohi, R., Abedi, E., Hashemi, S.M.B. (2024). Ultrasound-assisted starch hydrolyzing by alpha-amylase: Implementation of computational fluid dynamics, acoustic field determination, and rheology modeling. Ultrasonics Sonochemistry, 103, 106785.
  • [21] Soares, A.D.S., de Castro Leite Júnior, B.R., Tribst, A.A.L., Augusto P.E.D., Ramos, A.M. (2020). Effect of ultrasound on goat cream hydrolysis by lipase: Evaluation on enzyme, substrate and assisted reaction. LWT-Food Science and Technology, 130, 109636.
  • [22] Sargazi, G., Afzali, D., Ebrahimi, A.K., Badoei-Dalfard, A., Malekabadi, S., Karami, Z. (2018). Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@ Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization. Materials Science and Engineering: C, 93, 768-775.
  • [23] Wang, D., Lv, R.L., Ma, X.B., Zou, M. M., Wang, W.J., Yan, L.F., Ding, T., Ye, X.Q., Liu, D.H. (2018). Lysozyme immobilization on the calcium alginate film under sonication: Development of an antimicrobial film. Food Hydrocolloids, 83, 1-8.
  • [24] Liow, M.Y., Chan, E., Ng, W.Z., Song, C.P. (2024). Enhancing efficiency of ultrasound-assisted biodiesel production catalyzed by Eversa® Transform 2.0 at low lipase concentration: Enzyme characterization and process optimization. International Journal of Biological Macromolecules, 271(2), 132538.
  • [25] Ferreira, A.L.A., da Silva Monteiro Wanderley, B.R., da Silva Haas, I.C., Biluca, F.C., de Oliveira Costa, A.C., Hoff, R.B., Pereira-Coelho, M., dos Santos Madureira, L.A., de Sena Aquino, A.C.M., de Mello Castanho Amboni, R.D., Fritzen-Freire, C.B. (2024). Low-alcohol wine made from uvaia (Eugenia pyriformis Cambess): Influence of ultrasound-assisted enzymatic pre-treatment on its bioactive properties, Microchemical Journal, 198, 110177.
  • [26] Zhang, Z., Shan, P., Zhang, Z.H., He, R., Xing, L., Liu, J., He, D., Ma, H., Wang, Z., Gao, X. (2023). Efficient degradation of soybean protein B3 subunit in soy sauce by ultrasound-assisted prolyl endopeptidase and its primary mechanism. Food Chemistry, 429, 136972.
  • [27] Zhang, X., Yu, Y., Yu, J., Wang, M., Gao, S., Li, W., Yu, D., Wang, L. (2023b). Ultrasound pretreatment for lipase-catalyzed synthesis of stigmasteryl oleate and evaluation of its physicochemical properties. LWT-Food Science and Technology, 183, 114929.
  • [28] Priya, Gogate, P.R. (2022). Ultrasound-assisted intensification of β-glucosidase enzyme activity in free and immobilized forms, A review. Industrial and Engineering Chemistry Research, 61(5), 2023-2036.
  • [29] Atiya, S.A., Gatea, I.H., Abdulla, K.J. (2021). Effect of ultrasonic technology on cellulase enzyme activity produced by local bacterial isolate. Journal of Physics: Conference Series, 1963(1), 012051.
  • [30] Li, F., Tang, Y. (2021). The activation mechanism of peroxidase by ultrasound. Ultrasonics Sonochemistry, 71, 105362.
  • [31] Lorenzetti, A., Penha, F. M., Petrus, J.C.C., Rezzadori, K. (2020). Low purity enzymes and ultrasound pretreatment applied to partially hydrolyze whey protein. Food Bioscience, 38 (December), 100784.
  • [32] Fan, X.H., Zhang, X.Y., Zhang, Q.A., Zhao, W.Q., Shi, F.F. (2019). Optimization of ultrasound parameters and its effect on the properties of the activity of beta-glucosidase in apricot kernels. Ultrasonics Sonochemistry, 52, 468-476.
  • [33] Soares, A.D.S., Augusto, P.E.D., Leite Júniori B.R.D.C., Nogueira, C.A, Vieira, É.N.R., Barros, F.A.R. D., Stringheta, P.C., Ramos, A.M. (2019). Ultrasound assisted enzymatic hydrolysis of sucrose catalyzed by invertase: Investigation on substrate, enzyme and kinetics parameters. LWT-Food Science and Technology, 107, 164–170.
  • [34] Hou, F., Ma, X., Fan, L., Wang, D., Wang, W., Ding, T., Ye, X., Liu, D. (2019). Activation and conformational changes of chitinase induced by ultrasound. Food Chemistry, 285, 355-362.
  • [35] Meng, H., Li, D., Zhu, C. (2018). The effect of ultrasound on the properties and conformation of glucoamylase. International Journal of Biological Macromolecules, 113, 411-417.
  • [36] Patil, S.S., Rathod, V.K. (2022). Combined effect of enzyme co-immobilized magnetic nanoparticles (MNPs) and ultrasound for effective extraction and purification of curcuminoids from Curcuma longa. Industrial Crops and Products, 177, 114385.
  • [37] Farhadi, S., Riahi-Madvar, A., Sargazi, G., Mortazavi, M. (2021). Immobilization of Lepidium draba peroxidase on a novel Zn-MOF nanostructure. International Journal of Biological Macromolecules, 173, 366-378.
  • [38] Sun, T., Dong, Z., Wang, J., Huang, F.H., Zheng, M.M. (2020). Ultrasound-assisted interfacial immobilization of lipase on hollow mesoporous silica spheres in a pickering emulsion system: A hyperactive and sustainable biocatalyst. ACS Sustainable Chemistry & Engineering, 8(46), 17280–17290.
  • [39] Ladole, M.R., Nair, R.R., Bhutada, Y.D., Amritkar, V.D., Pandit, A.B. (2018). Synergistic effect of ultrasonication and co-immobilized enzymes on tomato peels for lycopene extraction. Ultrasonics Sonochemistry, 48, 453-462.
  • [40] Zhao, X., Sun, Q., Qin, Z., Liu, Q., Kong, B. (2018). Ultrasonic pretreatment promotes diacylglycerol production from lard by lipase-catalysed glycerolysis and its physicochemical properties. Ultrasonics Sonochemistry, 48, 11-18.
  • [41] Ladole, M.R., Mevada, J.S., Pandit, A.B. (2017). Ultrasonic hyperactivation of cellulase immobilized on magnetic nanoparticles. Bioresource Technology, 239, 117-126.
There are 41 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Review Papers
Authors

Seval Dağbağlı 0000-0001-9465-0116

Publication Date September 4, 2024
Submission Date June 12, 2024
Acceptance Date July 22, 2024
Published in Issue Year 2024 Volume: 22 Issue: 2

Cite

APA Dağbağlı, S. (2024). Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri. Akademik Gıda, 22(2), 158-166. https://doi.org/10.24323/akademik-gida.1543682
AMA Dağbağlı S. Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri. Akademik Gıda. September 2024;22(2):158-166. doi:10.24323/akademik-gida.1543682
Chicago Dağbağlı, Seval. “Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri”. Akademik Gıda 22, no. 2 (September 2024): 158-66. https://doi.org/10.24323/akademik-gida.1543682.
EndNote Dağbağlı S (September 1, 2024) Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri. Akademik Gıda 22 2 158–166.
IEEE S. Dağbağlı, “Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri”, Akademik Gıda, vol. 22, no. 2, pp. 158–166, 2024, doi: 10.24323/akademik-gida.1543682.
ISNAD Dağbağlı, Seval. “Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri”. Akademik Gıda 22/2 (September 2024), 158-166. https://doi.org/10.24323/akademik-gida.1543682.
JAMA Dağbağlı S. Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri. Akademik Gıda. 2024;22:158–166.
MLA Dağbağlı, Seval. “Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri”. Akademik Gıda, vol. 22, no. 2, 2024, pp. 158-66, doi:10.24323/akademik-gida.1543682.
Vancouver Dağbağlı S. Ultrases İşleminin Enzim Aktivasyonu Üzerine Etkileri. Akademik Gıda. 2024;22(2):158-66.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).