Research Article
BibTex RIS Cite

Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri

Year 2024, Volume: 22 Issue: 4, 314 - 327, 31.12.2024
https://doi.org/10.24323/akademik-gida.1610462

Abstract

Meyve ve sebzelerin zengin biyoaktif bileşenler içermesi, pestillerin fonksiyonel bir atıştırmalık olarak tüketilmesini cazip kılmaktadır. Koyu kırmızı bir kök sebzesi olan pancar (Beta vulgaris L.), sağlık üzerindeki olumlu etkileri ve zengin besin içeriği ile son yıllarda dikkat çekmiştir. Bu çalışmanın amacı, termosonikasyon ve mikrodalga ön işlemlerinin fonksiyonel bir atıştırmalık olarak geliştirilen kırmızı pancar pestilinin ince tabaka kuruma kinetiği üzerindeki etkilerini araştırmaktır. Ayrıca ön işlem süresini ve etkisini azaltmak için pestil herlesinin suda çözünür kuru madde oranını geleneksel yöntemlerde uygulanan 40°Brix (Bx) değerinden 15-20°Bx’e düşürme olanağının irdelenmesi hedeflenmiştir. Yapılan çalışma sırasında pestil herlesine uygulanan ön işlemlere bağlı olarak kuruma süresi 75-120 dakika arasında değişmiştir. Geleneksel haşlama yöntemine alternatif olarak uygulanan termosonikasyon ön işlemi, kuruma süresini %4-10 aralığında azaltmıştır. Kuruma süresi, termosonikasyon ve mikrodalga ön işleme yöntemlerinin birlikte uygulanmasıyla %12-22 aralığında azalmıştır. Dolayısıyla farklı ön işlem uygulamaları, kırmızı pancar pestillerinin kuruma süresi ve buna bağlı olarak kuruma hızını etkilemiştir. Kırmızı pancar pestillerinin kuruma davranışına en uygun ince tabaka matematiksel modellerinin belirlendiği çalışmada, ön işlem koşulları değiştikçe kurutma kinetiğini açıklayan en uygun model de değişmiştir. Pestillerin efektif nem difüzyon katsayısı (m2/s) 8.9110-8-1.1410-7 arasında değişmiştir.

Project Number

FYL-2023-1225

References

  • [1] Anonim. (2022a). Beetroot powder market growth and forecast 2022-2027: Market data forecast, (ID: 4263). Market Data Forecast. https://www.marketdataforecast.com/market-reports/beetroot-powder-market (Erişim Tarihi: 22.11.2024).
  • [2] Kara, O.O., Küçüköner, E. (2019). Geleneksel bir meyve çerezi: Pestil. Akademik Gıda, 260-268.
  • [3] Chawla, H., Parle, M., Sharma, K., Yadav, M. (2016). Beetroot: A health-promoting functional food. Inventi Rapid: Nutraceuticals, 1(1), 0976–3872.
  • [4] Babarykin, D., Smirnova, G., Pundinsh, I., Vasiljeva, S., Krumina, G., Agejchenko, V. (2019). Red beet (Beta vulgaris) impact on human health. Journal of Biosciences and Medicines, 7(3), 61–79.
  • [5] Ceclu, L., Nistor, O.V. (2020). Red beetroot: Composition and health effects – A review. Journal of Nutritional Medicine and Diet Care, 6(1), 1-9.
  • [6] Bilişli, A. (2015). Gıda Kimyası (3rd ed.). Sidas Medya Ltd. Şti, Çankaya, İzmir.
  • [7] Dhiman, A., Suhag, R., Chauhan, D.S., Thakur, D., Chhikara, S., Prabhakar, P.K. (2021). Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends in Food Science & Technology, 114, 443–458.
  • [8] Bahriye, G., Dadashi, S., Dehghannya, J., Ghaffari, H. H. (2023). Influence of processing temperature on production of red beetroot powder as a natural red colorant using foam-mat drying: Experimental and modeling study. Food Science and Nutrition, 11(11), 6955–6973.
  • [9] Wang, X., Wang, P. (2023). Red beetroot juice fermented by water kefir grains: Physicochemical, antioxidant profile, and anticancer activity. European Food Research and Technology, 249, 939–950.
  • [10] Jakubczyk, K., Melkis, K., Janda-Milczarek, K., Skonieczna-Żydecka, K. (2024). Phenolic compounds and antioxidant properties of fermented beetroot juices enriched with different additives. Foods, 13, 102.
  • [11] Akan, S., Tuna Gunes, N., Erkan, M. (2021). Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. Journal of Food Processing and Preservation, 45(10), e15781.
  • [12] Özkan Karabacak, A. (2019). Effects of different drying methods on drying characteristics, colour and in-vitro bioaccessibility of phenolics and antioxidant capacity of blackthorn pestil (leather). Heat and Mass Transfer, 55(10), 2739–2750.
  • [13] Özkan Karabacak, A. (2021). Farklı yöntemlerle kurutulan havuç pestillerinin kurutma karakteristikleri ile bazı kalite parametrelerindeki değişimin modellemesi ve in-vitro biyoyararlılıklarının belirlenmesi. Doktora Tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Bursa.
  • [14] Barman, M., Das, A.B., Badwaik, L.S. (2021). Effect of xanthan gum, guar gum, and pectin on physicochemical, color, textural, sensory, and drying characteristics of kiwi fruit leather. Journal of Food Processing and Preservation, 45(5), e15478.
  • [15] Kamiloglu, S., Capanoglu, E. (2014). In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. International Journal of Food Science & Technology, 49(4), 1027–1039.
  • [16] Tontul, İ., Eroğlu, E., Topuz, A. (2019). Kırınım pencereli kurutma ve sıcak hava akımında kurutma işlem şartlarının kuşburnu tozlarının fizikokimyasal özellikleri üzerine etkisi. Gıda, 44(1), 1-9.
  • [17] Özkan-Karabacak, A., Çopur, Ö. (2020). Farklı kurutma yöntemleri ile üretilen karışık sebze pestilinin kuruma karakteristikleri, renk değişim kinetiği, mineral madde içeriği ve tekstürel özelliklerinin belirlenmesi. Gıda, 46(1), 1-20.
  • [18] Silva Simão, R., de Moraes, J.O., Carciofi, B.A. M., Laurindo, J.B. (2020). Recent advances in the production of fruit leathers. Food Engineering Reviews, 12(1), 68-82.
  • [19] İncedayi, B., Dogan, N., Copur, O.U. (2022). Assessment of cactus pear leather (pestil) as a new snack food. Journal of Food Science and Technology, 59(8), 3158-3166.
  • [20] Kutlu, N., İşci, A., Şakıyan Demirkol, Ö. (2015). Gıdalarda ince tabaka kurutma modelleri. Gıda, 40(1), 39-46.
  • [21] Al-Hilphy, A.R., Mohsen, G., Barba, F.J., Lorenzo, J.M., Al-Shalah, Z.M., Deepak, K.V. (2021). Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. Journal of Food Process Engineering, 44(3), e13624.
  • [22] Alaei, B., Dibagar, N., Chayjan, R.A., Kaveh, M., Taghinezhad, E. (2018). The effect of short and medium infrared radiation on some drying and quality characteristics of quince slices under vacuum condition. Quality Assurance and Safety of Crops & Foods, 10(4), 371-381.
  • [23] Srimagal, A., Mishra, S., Pradhan, R.C. (2017). Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. Journal of Food Science and Technology, 54(5), 1192-1198.
  • [24] Bassey, E.J., Cheng, J.-H., Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137-148.
  • [25] Bozkır, H., Rayman Ergün, A., Tekgül, Y., Baysal, T. (2019a). Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology, 28(2), 347-354.
  • [26] Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950.
  • [27] Önal, B., Adiletta, G., di Matteo, M., Russo, P., Ramos, I.N., Silva, C.L.M. (2021). Microwave and ultrasound pre-treatments for drying of the “Rocha” pear: Impact on phytochemical parameters, color changes and drying kinetics. Foods, 10(4), 853.
  • [28] Kumar, C., Karim, M.A. (2019). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59(3), 379-394.
  • [29] Ciurzyńska, A., Falacińska, J., Kowalska, H., Kowalska, J., Galus, S., Marzec, A., Domian, E. (2021). The effect of pre-treatment (blanching, ultrasound and freezing) on quality of freeze-dried red beets. Foods, 10(1), 132.
  • [30] Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi. Yüksek Lisans Tezi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • [31] Dirim, S.N., Talih, M., Koç, G.Ç. (2019). Drying characteristics of red beet (Beta vulgaris esculentacruenta) puree in a microwave oven. Gıda, 44(4), 654-671.
  • [32] Inyang, U.E., Oboh, I.O., Etuk, B.R. (2018). Kinetic models for drying techniques-Food materials. Advances in Chemical Engineering and Science, 8(02), 27-48.
  • [33] Fernando, J.A.K.M., Amarasinghe, A.D.U.S. (2016). Drying kinetics and mathematical modeling of hot air drying of coconut coir pith. SpringerPlus, 5(1), 807.
  • [34] Abraham-Juárez, M. del R., Olalde-Portugal, V., Cerón-García, A., Sosa-Morales, M.E. (2019). Hot air drying kinetics of thin layers of prickly pear fruit paste. Sains Malaysiana, 48(2), 361-367.
  • [35] Suna, S. (2019). Effects of hot air, microwave and vacuum drying on drying characteristics and in vitro bioaccessibility of medlar fruit leather (pestil). Food Science and Biotechnology, 28(5), 1465-1474.
  • [36] Suna, S., Özkan‐Karabacak, A. (2019). Investigation of drying kinetics and physicochemical properties of mulberry leather (pestil) dried with different methods. Journal of Food Processing and Preservation, 43(8), e14051.
  • [37] Sarkar, T., Saha, S.K., Salauddin, M., Chakraborty, R. (2021). Drying kinetics, Fourier-transform infrared spectroscopy analysis and sensory evaluation of sun, hot-air, microwave and freeze-dried mango. Journal of Microbiology, Biotechnology and Food Sciences, 10(5), e3313.
  • [38] Maskan, M. (2001). Drying, shrinkage, and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177-182.
  • [39] Lewis, W.K. (1921). The rate of drying of solid materials. Journal of Industrial & Engineering Chemistry, 13(5), 427-432.
  • [40] Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn thin layers. Purdue University, Dissertations, AAI1300089.
  • [41] Overhults, D. G., White, G. M., Hamilton, H. E., Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1), 112-113.
  • [42] Henderson, S.M. (1961). Grain drying theory (I) temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [43] Doymaz, İ. (2011). Drying of eggplant slices in thin layers at different air temperatures. Journal of Food Processing and Preservation, 35(2), 280-289.
  • [44] Ertekin, C., Yaldız, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.
  • [45] Wang, C.Y., Singh, R.P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of the American Society of Agricultural Engineers, 11(6), 668-672.
  • [46] Süfer, Ö., Palazoğlu, T.K. (2019). A study on hot-air drying of pomegranate. Journal of Thermal Analysis and Calorimetry, 137(6), 1981-1990.
  • [47] Kılıç, F., Tabanlıgil Calam, T. (2020). Kırmızı kapya biberlerinin (Capsicum annuum L.) kurutma ve rehidrasyon kinetiklerinin belirlenmesi. DEU Mühendislik Fakültesi Fen ve Mühendislik, 22(65), 343-352.
  • [48] Tütüncü, M.A., Labuza, T.P. (1996). Effect of geometry on the effective moisture transfer diffusion coefficient. Journal of Food Engineering, 30(3–4), 433-447.
  • [49] Özkan-Karabacak, A., Durgut-Malçok, S., Tunçkal, C., Tamer, C.E., Pandiselvam, R. (2023a). Optimization of heat pump dryer conditions on bioaccessibility of some secondary metabolites of Cornelian cherry-Capia pepper pestil. Journal of Food Biochemistry, 2023, 5443962.
  • [50] Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433.
  • [51] Silva, J.H.F., Silva Neto, J.S., Silva, E.S., Cavalcanti, D.E. de S., Azoubel, P.M., Benachour, M. (2020). Effect of ultrasonic pretreatment on melon drying and computational fluid dynamic modelling of thermal profile. Food Technology and Biotechnology, 58(4), 381-390.
  • [52] Aydar, A.Y., Mataraci, C.E., Saglam, T.B., Yilmaz, T. (2022). Effect of ultrasound pre-treatment on drying kinetics and quality properties of Jerusalem artichoke. Latin American Applied Research-An International Journal, 52(2), 77-82.
  • [53] Liu, P., Mujumdar, A.S., Zhang, M., Jiang, H. (2015). Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Drying Technology, 33(1), 66-71.
  • [54] Kowalski, S.J., Pawłowski, A., Szadzińska, J., Łechtańska, J., Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233.
  • [55] Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., Aziz, M. (2021). Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods, 10(5), 1006.
  • [56] Cemeroğlu, B., Karadeniz, F., Ozkan, M. (2003). Meyve ve sebze işleme teknolojisi (pp. 541-542). Gıda Teknolojisi Derneği Yayınları.
  • [57] Prakash, S., Jha, S.K., Datta, N. (2004). Performance evaluation of blanched carrots dried by three different driers. Journal of Food Engineering, 62(3), 305-313.
  • [58] Oladejo, A.O., Ekpene, M.A.M., Onwude, D.I., Assian, U.E., Nkem, O.M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • [59] Malvandi, A., Nicole Coleman, D., Loor, J.J., Feng, H. (2022). A novel sub-pilot-scale direct-contact ultrasonic dehydration technology for sustainable production of distillers dried grains (DDG). Ultrasonics Sonochemistry, 85, 105982.
  • [60] Wang, C., Zhang, L., Qiao, Y., Liao, L., Shi, D., Wang, J., Shi, L. (2022). Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slices. LWT, 160, 113232.
  • [61] Bozkır, H., Rayman Ergün, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, 54, 135-141.
  • [62] Szadzińska, J., Kowalski, S.J., Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074.
  • [63] Durgut-Malçok, S., Özkan Karabacak, A., Tunçkal, C., Ece Tamer, C.E. (2023). Application of response surface methodology for optimisation of Cornelian cherry–Capia pepper leather dried in a heat pump drying system. Journal of Agricultural Engineering, 54, 1538.
  • [64] Rani, P., Tripathy, P.P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air dried pineapple slices. Journal of Food Science and Technology, 56(11), 4911-4924.
  • [65] Rashid, M.T., Jatoi, M.A., Safdar, B., Wali, A., Aadil, R.M., Sarpong, F., Ma, H. (2020). Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups. Ultrasonics Sonochemistry, 68, 105226.
  • [66] Kaur, M., Modi, V. K., Sharma, H.K. (2022). Evaluation of ultrasonication and carbonation-ultrasonication assisted convective drying techniques for enhancing the drying rates and quality parameters of ripe and raw banana (Musa) peel. Journal of Food Science and Technology, 59(11), 4542-4552.
  • [67] Horuz, E., Jaafar, H.J., Maskan, M. (2017). Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology, 35(7), 849-859.
  • [68] Labuza, T.P. (1984). Moisture sorption: Practical aspects of isotherm measurement and use. The American Association of Cereal Chemists, St. Paul, MN.
  • [69] Doulia, D., Tzia, K., Gekas, V. (2000). A knowledge base for the apparent mass diffusion coefficient (Deff) of foods. International Journal of Food Properties, 3(1), 1-14.
  • [70] Aydar, A.Y. (2020). Quality parameters and drying kinetics of ultrasound pretreated fermented black table olives. Latin American Applied Research-An International Journal, 50(4), 271-276.
  • [71] Jangam, S.V., Mujumdar, A.S. (2010). Basic concepts and definitions. In Drying of foods, vegetables, and fruits (Vol. 1, Ed. Jangam, S. V., Law, C. L., & Mujumdar, A. S.). ISBN - 978-981-08-6759-1

Effects of Thermosonication and Microwave Pre-treatments on Thin Layer Drying Kinetics of Red Beetroot (Beta vulgaris L.) Pestils

Year 2024, Volume: 22 Issue: 4, 314 - 327, 31.12.2024
https://doi.org/10.24323/akademik-gida.1610462

Abstract

The rich bioactive components found in fruits and vegetables make pestils an attractive option as a functional snack. Beetroot (Beta vulgaris L.), a dark red root vegetable, has received a great attention in recent years due to its positive health effects and rich nutritional content. The aim of this study is to investigate the effects of thermosonication and microwave pre-treatments on the thin-layer drying kinetics of red beetroot pestil developed as a functional snack. Additionally, it aims to explore the possibility of reducing the water-soluble dry matter content of the pestil pulp from the traditionally applied 40°Brix (Bx) to 15-20°Bx to minimize pre-treatment time and influence. During the study, the drying time of the pestil pulp varied between 75 and 120 min depending on the pretreatments applied. Thermosonication pre-treatment, used as an alternative to the conventional blanching method, reduced the drying time by 4-10%. When thermosonication and microwave pretreatment methods were applied together, the drying time decreased by 12-22%. Therefore, different pretreatment applications influenced the drying time and, consequently, the drying rate of red beetroot pestils. In the study, which identified the most suitable thin-layer mathematical models for the drying behavior of red beetroot pestils, the optimal model explaining the drying kinetics changed as the pre-treatment conditions varied. The effective moisture diffusion coefficient (m2/s) of the pestils ranged between 8.9110-8 and 1.1410-7.

Supporting Institution

Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

FYL-2023-1225

Thanks

Bu çalışma Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü tarafından FYL-2023-1225 nolu proje ile desteklenmiştir.

References

  • [1] Anonim. (2022a). Beetroot powder market growth and forecast 2022-2027: Market data forecast, (ID: 4263). Market Data Forecast. https://www.marketdataforecast.com/market-reports/beetroot-powder-market (Erişim Tarihi: 22.11.2024).
  • [2] Kara, O.O., Küçüköner, E. (2019). Geleneksel bir meyve çerezi: Pestil. Akademik Gıda, 260-268.
  • [3] Chawla, H., Parle, M., Sharma, K., Yadav, M. (2016). Beetroot: A health-promoting functional food. Inventi Rapid: Nutraceuticals, 1(1), 0976–3872.
  • [4] Babarykin, D., Smirnova, G., Pundinsh, I., Vasiljeva, S., Krumina, G., Agejchenko, V. (2019). Red beet (Beta vulgaris) impact on human health. Journal of Biosciences and Medicines, 7(3), 61–79.
  • [5] Ceclu, L., Nistor, O.V. (2020). Red beetroot: Composition and health effects – A review. Journal of Nutritional Medicine and Diet Care, 6(1), 1-9.
  • [6] Bilişli, A. (2015). Gıda Kimyası (3rd ed.). Sidas Medya Ltd. Şti, Çankaya, İzmir.
  • [7] Dhiman, A., Suhag, R., Chauhan, D.S., Thakur, D., Chhikara, S., Prabhakar, P.K. (2021). Status of beetroot processing and processed products: Thermal and emerging technologies intervention. Trends in Food Science & Technology, 114, 443–458.
  • [8] Bahriye, G., Dadashi, S., Dehghannya, J., Ghaffari, H. H. (2023). Influence of processing temperature on production of red beetroot powder as a natural red colorant using foam-mat drying: Experimental and modeling study. Food Science and Nutrition, 11(11), 6955–6973.
  • [9] Wang, X., Wang, P. (2023). Red beetroot juice fermented by water kefir grains: Physicochemical, antioxidant profile, and anticancer activity. European Food Research and Technology, 249, 939–950.
  • [10] Jakubczyk, K., Melkis, K., Janda-Milczarek, K., Skonieczna-Żydecka, K. (2024). Phenolic compounds and antioxidant properties of fermented beetroot juices enriched with different additives. Foods, 13, 102.
  • [11] Akan, S., Tuna Gunes, N., Erkan, M. (2021). Red beetroot: Health benefits, production techniques, and quality maintaining for food industry. Journal of Food Processing and Preservation, 45(10), e15781.
  • [12] Özkan Karabacak, A. (2019). Effects of different drying methods on drying characteristics, colour and in-vitro bioaccessibility of phenolics and antioxidant capacity of blackthorn pestil (leather). Heat and Mass Transfer, 55(10), 2739–2750.
  • [13] Özkan Karabacak, A. (2021). Farklı yöntemlerle kurutulan havuç pestillerinin kurutma karakteristikleri ile bazı kalite parametrelerindeki değişimin modellemesi ve in-vitro biyoyararlılıklarının belirlenmesi. Doktora Tezi. Bursa Uludağ Üniversitesi Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Bursa.
  • [14] Barman, M., Das, A.B., Badwaik, L.S. (2021). Effect of xanthan gum, guar gum, and pectin on physicochemical, color, textural, sensory, and drying characteristics of kiwi fruit leather. Journal of Food Processing and Preservation, 45(5), e15478.
  • [15] Kamiloglu, S., Capanoglu, E. (2014). In vitro gastrointestinal digestion of polyphenols from different molasses (pekmez) and leather (pestil) varieties. International Journal of Food Science & Technology, 49(4), 1027–1039.
  • [16] Tontul, İ., Eroğlu, E., Topuz, A. (2019). Kırınım pencereli kurutma ve sıcak hava akımında kurutma işlem şartlarının kuşburnu tozlarının fizikokimyasal özellikleri üzerine etkisi. Gıda, 44(1), 1-9.
  • [17] Özkan-Karabacak, A., Çopur, Ö. (2020). Farklı kurutma yöntemleri ile üretilen karışık sebze pestilinin kuruma karakteristikleri, renk değişim kinetiği, mineral madde içeriği ve tekstürel özelliklerinin belirlenmesi. Gıda, 46(1), 1-20.
  • [18] Silva Simão, R., de Moraes, J.O., Carciofi, B.A. M., Laurindo, J.B. (2020). Recent advances in the production of fruit leathers. Food Engineering Reviews, 12(1), 68-82.
  • [19] İncedayi, B., Dogan, N., Copur, O.U. (2022). Assessment of cactus pear leather (pestil) as a new snack food. Journal of Food Science and Technology, 59(8), 3158-3166.
  • [20] Kutlu, N., İşci, A., Şakıyan Demirkol, Ö. (2015). Gıdalarda ince tabaka kurutma modelleri. Gıda, 40(1), 39-46.
  • [21] Al-Hilphy, A.R., Mohsen, G., Barba, F.J., Lorenzo, J.M., Al-Shalah, Z.M., Deepak, K.V. (2021). Drying of sliced tomato (Lycopersicon esculentum L.) by a novel halogen dryer: Effects of drying temperature on physical properties, drying kinetics, and energy consumption. Journal of Food Process Engineering, 44(3), e13624.
  • [22] Alaei, B., Dibagar, N., Chayjan, R.A., Kaveh, M., Taghinezhad, E. (2018). The effect of short and medium infrared radiation on some drying and quality characteristics of quince slices under vacuum condition. Quality Assurance and Safety of Crops & Foods, 10(4), 371-381.
  • [23] Srimagal, A., Mishra, S., Pradhan, R.C. (2017). Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. Journal of Food Science and Technology, 54(5), 1192-1198.
  • [24] Bassey, E.J., Cheng, J.-H., Sun, D.-W. (2021). Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends in Food Science & Technology, 112, 137-148.
  • [25] Bozkır, H., Rayman Ergün, A., Tekgül, Y., Baysal, T. (2019a). Ultrasound as pretreatment for drying garlic slices in microwave and convective dryer. Food Science and Biotechnology, 28(2), 347-354.
  • [26] Huang, D., Men, K., Li, D., Wen, T., Gong, Z., Sunden, B., Wu, Z. (2020). Application of ultrasound technology in the drying of food products. Ultrasonics Sonochemistry, 63, 104950.
  • [27] Önal, B., Adiletta, G., di Matteo, M., Russo, P., Ramos, I.N., Silva, C.L.M. (2021). Microwave and ultrasound pre-treatments for drying of the “Rocha” pear: Impact on phytochemical parameters, color changes and drying kinetics. Foods, 10(4), 853.
  • [28] Kumar, C., Karim, M.A. (2019). Microwave-convective drying of food materials: A critical review. Critical Reviews in Food Science and Nutrition, 59(3), 379-394.
  • [29] Ciurzyńska, A., Falacińska, J., Kowalska, H., Kowalska, J., Galus, S., Marzec, A., Domian, E. (2021). The effect of pre-treatment (blanching, ultrasound and freezing) on quality of freeze-dried red beets. Foods, 10(1), 132.
  • [30] Er, T. (2011). Kırmızı pancarın bazı fiziksel ve fitokimyasal özellikleri üzerine farklı kurutma sıcaklıklarının etkisi. Yüksek Lisans Tezi. Selçuk Üniversitesi, Fen Bilimleri Enstitüsü, Konya.
  • [31] Dirim, S.N., Talih, M., Koç, G.Ç. (2019). Drying characteristics of red beet (Beta vulgaris esculentacruenta) puree in a microwave oven. Gıda, 44(4), 654-671.
  • [32] Inyang, U.E., Oboh, I.O., Etuk, B.R. (2018). Kinetic models for drying techniques-Food materials. Advances in Chemical Engineering and Science, 8(02), 27-48.
  • [33] Fernando, J.A.K.M., Amarasinghe, A.D.U.S. (2016). Drying kinetics and mathematical modeling of hot air drying of coconut coir pith. SpringerPlus, 5(1), 807.
  • [34] Abraham-Juárez, M. del R., Olalde-Portugal, V., Cerón-García, A., Sosa-Morales, M.E. (2019). Hot air drying kinetics of thin layers of prickly pear fruit paste. Sains Malaysiana, 48(2), 361-367.
  • [35] Suna, S. (2019). Effects of hot air, microwave and vacuum drying on drying characteristics and in vitro bioaccessibility of medlar fruit leather (pestil). Food Science and Biotechnology, 28(5), 1465-1474.
  • [36] Suna, S., Özkan‐Karabacak, A. (2019). Investigation of drying kinetics and physicochemical properties of mulberry leather (pestil) dried with different methods. Journal of Food Processing and Preservation, 43(8), e14051.
  • [37] Sarkar, T., Saha, S.K., Salauddin, M., Chakraborty, R. (2021). Drying kinetics, Fourier-transform infrared spectroscopy analysis and sensory evaluation of sun, hot-air, microwave and freeze-dried mango. Journal of Microbiology, Biotechnology and Food Sciences, 10(5), e3313.
  • [38] Maskan, M. (2001). Drying, shrinkage, and rehydration characteristics of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 177-182.
  • [39] Lewis, W.K. (1921). The rate of drying of solid materials. Journal of Industrial & Engineering Chemistry, 13(5), 427-432.
  • [40] Page, G.E. (1949). Factors influencing the maximum rate of air drying shelled corn thin layers. Purdue University, Dissertations, AAI1300089.
  • [41] Overhults, D. G., White, G. M., Hamilton, H. E., Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16(1), 112-113.
  • [42] Henderson, S.M. (1961). Grain drying theory (I) temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6, 169-174.
  • [43] Doymaz, İ. (2011). Drying of eggplant slices in thin layers at different air temperatures. Journal of Food Processing and Preservation, 35(2), 280-289.
  • [44] Ertekin, C., Yaldız, O. (2004). Drying of eggplant and selection of a suitable thin layer drying model. Journal of Food Engineering, 63, 349-359.
  • [45] Wang, C.Y., Singh, R.P. (1978). Use of variable equilibrium moisture content in modeling rice drying. Transactions of the American Society of Agricultural Engineers, 11(6), 668-672.
  • [46] Süfer, Ö., Palazoğlu, T.K. (2019). A study on hot-air drying of pomegranate. Journal of Thermal Analysis and Calorimetry, 137(6), 1981-1990.
  • [47] Kılıç, F., Tabanlıgil Calam, T. (2020). Kırmızı kapya biberlerinin (Capsicum annuum L.) kurutma ve rehidrasyon kinetiklerinin belirlenmesi. DEU Mühendislik Fakültesi Fen ve Mühendislik, 22(65), 343-352.
  • [48] Tütüncü, M.A., Labuza, T.P. (1996). Effect of geometry on the effective moisture transfer diffusion coefficient. Journal of Food Engineering, 30(3–4), 433-447.
  • [49] Özkan-Karabacak, A., Durgut-Malçok, S., Tunçkal, C., Tamer, C.E., Pandiselvam, R. (2023a). Optimization of heat pump dryer conditions on bioaccessibility of some secondary metabolites of Cornelian cherry-Capia pepper pestil. Journal of Food Biochemistry, 2023, 5443962.
  • [50] Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433.
  • [51] Silva, J.H.F., Silva Neto, J.S., Silva, E.S., Cavalcanti, D.E. de S., Azoubel, P.M., Benachour, M. (2020). Effect of ultrasonic pretreatment on melon drying and computational fluid dynamic modelling of thermal profile. Food Technology and Biotechnology, 58(4), 381-390.
  • [52] Aydar, A.Y., Mataraci, C.E., Saglam, T.B., Yilmaz, T. (2022). Effect of ultrasound pre-treatment on drying kinetics and quality properties of Jerusalem artichoke. Latin American Applied Research-An International Journal, 52(2), 77-82.
  • [53] Liu, P., Mujumdar, A.S., Zhang, M., Jiang, H. (2015). Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Drying Technology, 33(1), 66-71.
  • [54] Kowalski, S.J., Pawłowski, A., Szadzińska, J., Łechtańska, J., Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233.
  • [55] Abbaspour-Gilandeh, Y., Kaveh, M., Fatemi, H., Aziz, M. (2021). Combined hot air, microwave, and infrared drying of hawthorn fruit: Effects of ultrasonic pretreatment on drying time, energy, qualitative, and bioactive compounds’ properties. Foods, 10(5), 1006.
  • [56] Cemeroğlu, B., Karadeniz, F., Ozkan, M. (2003). Meyve ve sebze işleme teknolojisi (pp. 541-542). Gıda Teknolojisi Derneği Yayınları.
  • [57] Prakash, S., Jha, S.K., Datta, N. (2004). Performance evaluation of blanched carrots dried by three different driers. Journal of Food Engineering, 62(3), 305-313.
  • [58] Oladejo, A.O., Ekpene, M.A.M., Onwude, D.I., Assian, U.E., Nkem, O.M. (2021). Effects of ultrasound pretreatments on the drying kinetics of yellow cassava during convective hot air drying. Journal of Food Processing and Preservation, 45(3), e15251.
  • [59] Malvandi, A., Nicole Coleman, D., Loor, J.J., Feng, H. (2022). A novel sub-pilot-scale direct-contact ultrasonic dehydration technology for sustainable production of distillers dried grains (DDG). Ultrasonics Sonochemistry, 85, 105982.
  • [60] Wang, C., Zhang, L., Qiao, Y., Liao, L., Shi, D., Wang, J., Shi, L. (2022). Effects of ultrasound and ultra-high pressure pretreatments on volatile and taste compounds of vacuum-freeze dried strawberry slices. LWT, 160, 113232.
  • [61] Bozkır, H., Rayman Ergün, A., Serdar, E., Metin, G., Baysal, T. (2019). Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrasonics Sonochemistry, 54, 135-141.
  • [62] Szadzińska, J., Kowalski, S.J., Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074.
  • [63] Durgut-Malçok, S., Özkan Karabacak, A., Tunçkal, C., Ece Tamer, C.E. (2023). Application of response surface methodology for optimisation of Cornelian cherry–Capia pepper leather dried in a heat pump drying system. Journal of Agricultural Engineering, 54, 1538.
  • [64] Rani, P., Tripathy, P.P. (2019). Effect of ultrasound and chemical pretreatment on drying characteristics and quality attributes of hot air dried pineapple slices. Journal of Food Science and Technology, 56(11), 4911-4924.
  • [65] Rashid, M.T., Jatoi, M.A., Safdar, B., Wali, A., Aadil, R.M., Sarpong, F., Ma, H. (2020). Modeling the drying of ultrasound and glucose pretreated sweet potatoes: The impact on phytochemical and functional groups. Ultrasonics Sonochemistry, 68, 105226.
  • [66] Kaur, M., Modi, V. K., Sharma, H.K. (2022). Evaluation of ultrasonication and carbonation-ultrasonication assisted convective drying techniques for enhancing the drying rates and quality parameters of ripe and raw banana (Musa) peel. Journal of Food Science and Technology, 59(11), 4542-4552.
  • [67] Horuz, E., Jaafar, H.J., Maskan, M. (2017). Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Drying Technology, 35(7), 849-859.
  • [68] Labuza, T.P. (1984). Moisture sorption: Practical aspects of isotherm measurement and use. The American Association of Cereal Chemists, St. Paul, MN.
  • [69] Doulia, D., Tzia, K., Gekas, V. (2000). A knowledge base for the apparent mass diffusion coefficient (Deff) of foods. International Journal of Food Properties, 3(1), 1-14.
  • [70] Aydar, A.Y. (2020). Quality parameters and drying kinetics of ultrasound pretreated fermented black table olives. Latin American Applied Research-An International Journal, 50(4), 271-276.
  • [71] Jangam, S.V., Mujumdar, A.S. (2010). Basic concepts and definitions. In Drying of foods, vegetables, and fruits (Vol. 1, Ed. Jangam, S. V., Law, C. L., & Mujumdar, A. S.). ISBN - 978-981-08-6759-1
There are 71 citations in total.

Details

Primary Language Turkish
Subjects Food Engineering
Journal Section Research Papers
Authors

Neslihan Ersoyak This is me 0000-0003-3787-4759

Elif Koç Alibaşoğlu 0000-0001-8315-6411

Büşra Acoğlu Çelik 0000-0002-6079-1970

Perihan Yolcı Ömeroğlu 0000-0001-8254-3401

Project Number FYL-2023-1225
Publication Date December 31, 2024
Submission Date November 27, 2024
Acceptance Date December 28, 2024
Published in Issue Year 2024 Volume: 22 Issue: 4

Cite

APA Ersoyak, N., Koç Alibaşoğlu, E., Acoğlu Çelik, B., Yolcı Ömeroğlu, P. (2024). Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda, 22(4), 314-327. https://doi.org/10.24323/akademik-gida.1610462
AMA Ersoyak N, Koç Alibaşoğlu E, Acoğlu Çelik B, Yolcı Ömeroğlu P. Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda. December 2024;22(4):314-327. doi:10.24323/akademik-gida.1610462
Chicago Ersoyak, Neslihan, Elif Koç Alibaşoğlu, Büşra Acoğlu Çelik, and Perihan Yolcı Ömeroğlu. “Termosonikasyon Ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta Vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri”. Akademik Gıda 22, no. 4 (December 2024): 314-27. https://doi.org/10.24323/akademik-gida.1610462.
EndNote Ersoyak N, Koç Alibaşoğlu E, Acoğlu Çelik B, Yolcı Ömeroğlu P (December 1, 2024) Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda 22 4 314–327.
IEEE N. Ersoyak, E. Koç Alibaşoğlu, B. Acoğlu Çelik, and P. Yolcı Ömeroğlu, “Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri”, Akademik Gıda, vol. 22, no. 4, pp. 314–327, 2024, doi: 10.24323/akademik-gida.1610462.
ISNAD Ersoyak, Neslihan et al. “Termosonikasyon Ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta Vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri”. Akademik Gıda 22/4 (December 2024), 314-327. https://doi.org/10.24323/akademik-gida.1610462.
JAMA Ersoyak N, Koç Alibaşoğlu E, Acoğlu Çelik B, Yolcı Ömeroğlu P. Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda. 2024;22:314–327.
MLA Ersoyak, Neslihan et al. “Termosonikasyon Ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta Vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri”. Akademik Gıda, vol. 22, no. 4, 2024, pp. 314-27, doi:10.24323/akademik-gida.1610462.
Vancouver Ersoyak N, Koç Alibaşoğlu E, Acoğlu Çelik B, Yolcı Ömeroğlu P. Termosonikasyon ve Mikrodalga Ön İşlemlerinin Kırmızı Pancar (Beta vulgaris L.) Pestilinin İnce Tabaka Kuruma Kinetiği Üzerine Etkileri. Akademik Gıda. 2024;22(4):314-27.

25964   25965    25966      25968   25967


88x31.png

Bu eser Creative Commons Atıf-GayriTicari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır.

Akademik Gıda (Academic Food Journal) is licensed under a Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0).